3.4《用圆柱的体积解决问题》教学设计
(完整版)用圆柱的体积解决问题教案

小学六年级数学教案课题:用圆柱的体积解决问题教师:杜克辉圆柱体积的综合应用教学内容:教材第27页的例7教学目标:1、通过观察比较,掌握不规则物体的体积的计算方法。
2、培养学生观察、概括的能力,利用所学知识灵活解决实际问题的能力,并逐步参透“转化”的数学思想。
3、引导学生探索和解决问题,渗透、体验知识间相互“转化”的思想方法。
教学重点:通过观察比较,掌握不规则物体的体积的计算方法。
教学难点:利用所学知识灵活解决实际问题的能力,并逐步参透“转化”的数学思想。
教学过程:一、问题引入,导入新课。
1、提出问题师:在学习长方体和正方体的体积时,我们遇到过求不规则的物体的体积的问题,你们还记得是怎样解决的吗?2、揭示课题:解决问题3、二、探究新知,引导归纳1、教学例7 出示例7,(1)读题,理解题意:条件:瓶子内直径是8厘米,瓶内水高7厘米,瓶子倒置后无水部分的高18厘米的圆柱。
问题:这个瓶子的容积是多少?(2)质疑。
这个瓶子是圆柱吗?怎样求出它的容积?(3)实物演示。
用两个相同的酒瓶,内装同样多的水进行演示。
(4)尝试解决。
3.14×(8÷2)2×7+3.14×(8÷2)2×18=3.14×16×(7+18)=1256(cm3) =1256(ml)答:这个瓶子的容积是1256ml。
2、引导归纳。
求不规则的物体的体积的方法:可以利用体积不变的特性,把不规则图形转化成规则的图形再求容积。
三、巩固练习1、完成教材第27页的“做一做”习题。
四、小结这节课我们学习了什么?有哪些收获?还有什么疑问?五、作业课后练习题第10题、11题、12题板书设计:解决问题例7 3.14×(8÷2)2×7+3.14×(8÷2)2×18=3.14×16×(7+18)=1256(cm3)=1256(ml)答:这个瓶子的容积是1256ml。
西师大版六年级下册数学 《圆柱的体积——解决问题》(一等奖创新教案)

西师大版六年级下册数学《圆柱的体积——解决问题》(一等奖创新教案)西师版数学六年级下册圆柱的体积——解决问题教案教学目标:1、学生能运用圆柱的知识解决生活中的简单问题,掌握不规则图形的容积计算方法,培养学生学生的应用意识与实践能力。
2、培养学生科学的学习方法和思维能力。
体会数学中重要的思想方法——转化。
教学重难点:重点:学生能用所学知识,用转化的思想方法解决生活不规则图形的计算方法。
难点:培养学生分析问题的学习方法和思维能力。
教学准备:不规则圆柱形玻璃水杯、透明圆柱水杯、被高温烫变形了的塑料矿泉水瓶子、课件、学习单。
教学过程:复习引入引导学生仔细观察图片引出旧知:知道圆柱的哪些条件可以计算出一个圆柱体的体积,容器的容积及计算,体积、容积的区别与联系。
板书课题:圆柱的体积V=Sh引出新知:这节课我们就用学过体积、容积计算方法解决生活中是实际问题。
板书课题:——解决问题探索新知一瓶装满的矿泉水,李老师口渴了,喝了一些,如图所示。
你想知道李老师喝了多少水怎么解决吗?请同学们帮我解决这个问题探究:小组合作学习(1)学生审题;(2)按合作要求开展小组学习;合作要求:①仔细观察这个瓶子,喝掉的部分,是规则的图形吗?你能把它转化成学过的知识来解决吗?比如手握瓶身慢慢翻转一周瓶子,无水部分发生了怎样的变化。
②交流时,请小组发言人组织好语言准备汇报交流。
解决问题(1)一瓶装满的矿泉水,李老师喝了一些,正放时无水部分高12cm。
把瓶盖拧紧后倒置放平,无水部分高10cm,内直径是6cm。
老师喝了多少水(图中单位:cm)、(2)在一个内直径是8cm的瓶子里,水的高度是7cm,把瓶盖拧紧倒置放平,无水部分是圆柱形,高度是18cm。
这个瓶子的容积是多少?(图中单位:厘米)①生审题;②独立解答,要求只写算式不计算;③说说算式的意义。
4、说说问题1、2的区别与联系课堂小结请说说这节课你的收获四、拓展延伸一个被滚烫的开水烫变形了,又没有标签的矿泉水瓶子,如图所示,你能想个办法,计算这个瓶子的容积吗?板书设计:圆柱的体积V=Sh——解决问题不规则图形。
《圆柱的体积》教学设计

《圆柱的体积》教学设计一、教学目标1. 知识目标:学生能够理解圆柱的定义和性质,掌握圆柱的体积计算公式。
2. 能力目标:学生能够运用所学知识解决相关问题,培养学生的数学思维和解决问题的能力。
二、教学重点和难点2. 教学难点:运用所学知识解决实际问题。
三、教学内容1. 圆柱的定义和性质2. 圆柱的体积计算公式3. 实际问题的应用四、教学过程1. 导入新课引入圆柱的概念,让学生观察不同形状的圆柱体,并让他们描述圆柱的特点和性质,引导学生提出关于圆柱的体积计算问题。
2. 学习新知识详细讲解圆柱的定义,圆柱的底面是一个圆,且两个底面平行,体积等于底面积乘以高。
让学生通过观察和描述的方式深入理解圆柱的性质。
详细介绍圆柱的体积计算公式,即V=πr²h,其中r为圆柱的底面半径,h为高。
通过具体例子和实际计算,让学生掌握圆柱体积计算的方法。
3. 拓展练习让学生通过练习掌握圆柱的体积计算方法,激发学生的兴趣,培养他们对数学的热爱和求知欲。
通过实际问题的应用,让学生将所学知识应用到生活中,提高他们的解决问题能力和实践能力。
5. 总结反思对本节课的重点知识进行总结,并对学生的学习情况进行反思和评价,鼓励学生多思考,多实践,提高学习效果。
五、教学手段1. 教师讲解法:结合课本内容和实际例子,详细讲解圆柱的定义、性质和体积计算公式。
2. 练习法:通过练习巩固所学知识,提高学生的计算能力和解决问题的能力。
4. 讨论法:引导学生进行小组讨论,分享对圆柱的体积计算的理解和应用。
六、教学资源1. 教材:教师用书、学生用书、课件2. 多媒体教学设备:投影仪、电脑等七、教学评价与反馈教学评价主要通过练习和实际问题的应用来进行,根据学生的表现情况进行评价,并及时给予反馈,鼓励学生,激发其学习兴趣和求知欲。
通过不同形式的评价,了解学生的学习情况,及时调整教学方法,提高教学效果。
八、教学总结通过本节课的教学设计,我将重点放在了圆柱的定义、性质和体积计算公式上,通过多种教学手段,如教师讲解、练习、案例分析和讨论等,提高了学生对所学知识的掌握程度,并将其应用于实际问题中,培养了学生的解决问题能力和实践能力。
《圆柱的体积》教案【优秀7篇】

《圆柱的体积》教案【优秀7篇】作为一名优秀的教育工作者,很有必要精心设计一份教案,教案有助于学生理解并掌握系统的知识。
来参考自己需要的教案吧!为您精心收集了7篇《《圆柱的体积》教案》,在大家参考的同时,也可以分享一下给您的好友哦。
《圆柱的体积》数学教案篇一教学目标:1、理解圆柱体积公式的推导过程。
2、能够初步地学会运用体积公式解决简单的实际问题。
3、进一步提高学生解决问题的能力。
教学重、难点:1、理解圆柱体积公式的推导过程。
2、能够初步地学会运用体积公式解决简单的实际问题。
3、理解圆柱体积公式的推导过程。
教学准备:圆柱切割组合模具、小黑板。
教学过程:一、创设情境,生成问题1、什么是体积?(物体所占空间的大小叫做物体的体积。
)2、长方体的体积该怎样计算?归纳到底面积乘高上来。
3、圆的面积怎样计算?二、探索交流,解决问题1、计算圆的面积时,是把圆面积转化成我们学过的长方形进行计算的,能不能把圆柱转化成我们学过的立体图形来计算它的体积?(启发学生思考。
)2、把圆柱的底面分成许多相等的扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?教师演示,引导学生进行观察。
3、思考:(1)圆柱切开后可以拼成一个什么形体?(长方体)(2)通过实验你发现了什么?小组讨论:实验前后,什么变了?什么没变?讨论后,整理出来,再进行汇报。
(拼成的近似长方体体积大小没变,形状变了,拼成的近似长方体和圆柱相比,底面形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。
近似长方形的高就是圆柱的高,没有变化。
)4、推导圆柱体积公式小组讨论:怎样计算圆柱的体积?学生汇报讨论结果。
长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的底面积,高就是圆柱的高,所以圆柱的体积也可以用底面积乘高来计算。
师:圆柱的体积怎样计算?用字母公式,怎样表示?板书:V=Sh5、算一算:已知一根柱子的底面半径为0.4米,高为5米。
《用圆柱的体积解决问题》教案及反思

《用圆柱的体积解决问题》教案及反思第一章:圆柱体积的概念引入1.1 教学目标让学生理解圆柱体积的概念。
让学生掌握圆柱体积的计算公式。
培养学生运用圆柱体积解决实际问题的能力。
1.2 教学内容圆柱体积的定义。
圆柱体积的计算公式:V = πr²h。
1.3 教学方法采用讲解法,让学生理解圆柱体积的概念和计算公式。
采用案例教学法,让学生通过实际案例运用圆柱体积解决实际问题。
1.4 教学步骤1.4.1 引入圆柱体积的概念。
1.4.2 讲解圆柱体积的计算公式。
1.4.3 分析实际案例,让学生运用圆柱体积解决实际问题。
第二章:圆柱体积在实际问题中的应用2.1 教学目标让学生掌握圆柱体积在实际问题中的应用。
培养学生运用圆柱体积解决实际问题的能力。
2.2 教学内容圆柱体积在实际问题中的应用。
2.3 教学方法采用案例教学法,让学生通过实际案例运用圆柱体积解决实际问题。
2.4 教学步骤2.4.1 分析实际案例,让学生运用圆柱体积解决实际问题。
2.4.2 让学生进行小组讨论,分享各自解决问题的方法和经验。
第三章:圆柱体积的综合练习3.1 教学目标巩固学生对圆柱体积的理解和应用。
3.2 教学内容圆柱体积的综合练习。
3.3 教学方法采用练习法,让学生通过练习巩固对圆柱体积的理解和应用。
3.4 教学步骤3.4.1 给学生发放练习题,让学生独立完成。
3.4.2 讲解练习题,让学生理解解题思路。
3.4.3 让学生进行小组讨论,分享解题经验和心得。
第四章:圆柱体积在几何图形中的运用4.1 教学目标让学生掌握圆柱体积在几何图形中的运用。
4.2 教学内容圆柱体积在几何图形中的运用。
4.3 教学方法采用案例教学法,让学生通过实际案例运用圆柱体积解决几何图形问题。
4.4 教学步骤4.4.1 分析实际案例,让学生运用圆柱体积解决几何图形问题。
4.4.2 让学生进行小组讨论,分享解题经验和心得。
第五章:圆柱体积在生活中的应用5.1 教学目标让学生了解圆柱体积在生活中的应用。
《圆柱的体积》教案优秀5篇

《圆柱的体积》教案优秀5篇《圆柱的体积》教案篇一教学目标:1.知识与技能:运用迁移规律,引导学生借助圆面积计算公式的推导方法来推导圆柱的体积计算公式,会用圆柱的体积公式计算圆柱形物体的体积。
2.方法与过程:经历猜测、验证、合作、动手操作等过程,体验和理解圆柱体体积公式的推导过程。
3情感、态度、价值观:创设情境,激发学生学习的积极性。
让学生在主动学习的基础上,逐步学会转化的数学思想和数学法,培养学生解决实际问题的能力和培养学生抽象、概括的思维能力。
教学重点和难点:圆柱体积公式推导过程;正确理解圆柱体积公式推导过程。
教具:圆柱的体积公式演示教具,圆柱的体积公式演示课件教学过程:一、教学回顾1、交代任务:这节课我们来学习《圆柱的体积》。
2、回忆导入(1)、请大家想一想,我们在学习圆的面积时,是怎样把圆变成已学过的图形再计算面积的?(2)、我们都学过那些立体图形的体积公式。
二、积极参与探究感受1、猜测圆柱的。
体积和那些条件有关。
(电脑演示)2、.探究推导圆柱的体积计算公式。
小组合作讨论:(1)将圆柱体切割拼成我们学过的什么立体图形?(2)切拼前后的两个物体什么变了?什么没变?(3)切拼前后的两个物体有什么联系?课件演示拼、组的过程,同时演示一组动画(将圆柱底面等分成32份、64份?),让学生明确:分成的扇形越多,拼成的立体图形就越接近于长方体。
①把圆柱拼成长方体后,形状变了,体积不变。
(板书:长方体的体积=圆柱的体积)②拼成的长方体的底面积等于圆柱的底面积,高就是圆柱的高。
配合回答,演示课件,闪烁相应的部位,并板书相应的内容。
)③圆柱的体积=底面积×高字母公式是V=Sh(板书公式)2、练一练:一根圆柱形木料,底面积为75平方厘米,长90厘米,它的体积是多少?3、要用这个公式计算圆柱的体积必须知道什么条件?三、练习1、填空(1)、圆柱体通过切拼转化成近似的()体。
这个长方体的底面积等于圆柱体的(),这个长方体的高等于圆柱体()。
《圆柱的体积》教学设计(精选9篇)
《圆柱的体积》教学设计(精选9篇)《圆柱的体积》数学教案篇一探究目标:1、组织学生开展测量、计算、估测等数学实践活动,使学生进一步掌握圆柱体积计算公式,并能运用公式正确地计算圆柱的体积。
2、在探索空间与图形的过程中,培养学生初步的空间观念及实践能力,同时结合具体的情境培养其估测意识。
3、使学生学会与他人合作,并能比较清楚地表达和交流解决问题的过程和结果。
4、让学生体验解决策略的多样性,不断激发其对数学的好奇心和求知欲,使其积极地参与数学学习活动。
教学重难点:学生会应用圆柱体积公式解决实际问题。
探究过程:一、迁移引入提问:一个圆柱的底面积是80平方厘米,高是20厘米,求它的体积。
提问:如果已知的是底面半径和高,该怎么求呢?二、自主探究1、出示长方体鱼缸。
要计算这个长方体鱼缸能装多少水,就是求什么?怎样求这个长方体的容积呢?2、出示圆柱形鱼缸。
⑴估测。
这个圆柱形鱼缸的容积大约是多少?⑴操作、汇报。
如果忽略容器的壁厚,这个圆柱形鱼缸的容积到底是多少呢?学生分小组进行操作计算,各小组派代表演示操作过程,并展示计算过程。
学生可能的回答有:生1:这个圆柱的底面周长是94.5厘米,它的高是12厘米,计算过程如下:①94.5÷3.14÷2≈15.0(厘米)②3.14×152×12=8478(立方厘米)生2:我们小组测量的是底面直径和高。
底面直径长30厘米,高是12厘米,计算过程如下:3.14×(30÷2)2×12=8478(立方厘米)生3:我们测量的是底面半径和高。
3.14×152×12=8478(立方厘米)⑴评价。
组织学生间进行评价。
你最喜欢哪个小组的操作方案?为什么?每一步列式的意义是什么?使学生进一步掌握圆柱体积的计算方法。
⑴反思。
引导学生将实际计算结果与自己的估测结果进行对比。
自己矫正偏差。
⑴延伸。
如果每立方分米水重1千克,这个鱼缸大约能装水多少千克?3、自学例题。
圆柱体积教案优秀6篇
圆柱体积教案优秀6篇《圆柱的体积》的教学设计篇一教学目标:1、结合具体情境和实践活动,了解圆柱体积(包括容积)的含义,进一步理解体积和容积的含义。
2、经历类比猜想――验证的探索圆柱体积的计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3、引导学生探索和解决问题,渗透、体验知识间相互“转化”的思想方法。
教学重、难点:掌握圆柱体积公式的推导过程。
教学流程:一、复习引入1、什么是体积?2、怎样计算长方体和正方体的体积?3、引入:这学期我们新学了两个立体图形,分别是?大家想不想知道圆柱的体积怎样计算?这就是我们今天这节课要研究的问题。
二、活动导学、精讲点拨1、观察比较,建立猜想引导学生观察例4的三个立体图形,提问:⑴ 三个立体图形的底面积和高都相等,它们的体积有什么关系?⑵ 长方体和正方体的体积一定相等吗?为什么?⑶ 猜一猜,圆柱的体积与长方体和正方体的体积相等吗?2、实验操作(1)谈话:大家都认为圆柱的体积与长方体、正方体的体积可能是相等的,那你能否再大胆猜一下,圆柱的体积计算公式会是什么呢?指名说。
(等于底面积乘高)。
大家都认为圆柱的体积=底面积×高,老师先写下来,这个公式对不对呢?(打上问号)这只是我们的猜想,我们还需要验证。
那用什么办法验证呢?请独立思考。
(手拿着圆柱,指着底面)老师提示一下:想一想圆的面积公式是怎么推导出来的?我们能不能将圆柱转化成已经学过的立体图形呢?(2)出示底面被分成16等份的圆柱,谈话:老师这里有一个圆柱,底面被平均分成了16份,你能想办法把这个圆柱转化成已经学过的立体图形吗?(3)指名两位同学上台操作教具,让学生观察。
师:大家看,圆柱的底面被拼成了什么图形?(长方形);再看整个圆柱,它又被拼成了什么形状?(长方体)也就是说,把圆柱的底面平均分成16份,切开后能拼成一个近似的长方体。
(4)引导想像:如果把底面平均分的份数越来越多,结果会怎么样?(闭上眼睛,在头脑里想象。
人教新课标六年级下册数学教案:3.4圆柱的体积
标题:人教新课标六年级下册数学教案:3.4圆柱的体积一、教学目标1. 知识与技能:(1)理解圆柱的体积公式,并能够熟练运用公式计算圆柱的体积;(2)能够运用圆柱的体积公式解决实际问题。
2. 过程与方法:(1)通过观察、思考和讨论,引导学生探究圆柱体积的计算方法;(2)通过实际操作,培养学生的空间想象能力和动手操作能力。
3. 情感态度与价值观:(1)培养学生对数学学习的兴趣和积极性;(2)培养学生合作学习、探究学习的精神。
二、教学内容1. 圆柱体积公式的推导;2. 圆柱体积公式的应用;3. 实际问题中的圆柱体积计算。
三、教学重点与难点1. 教学重点:圆柱体积公式的推导和应用;2. 教学难点:圆柱体积公式的理解和灵活运用。
四、教学过程1. 导入新课通过展示生活中的圆柱形状物体,如水杯、圆柱形铅笔等,引导学生思考如何计算圆柱的体积,从而引出本节课的主题。
2. 探究圆柱体积公式(1)引导学生回顾长方体和正方体的体积公式,为圆柱体积公式的推导奠定基础;(2)通过观察圆柱的形状,引导学生发现圆柱可以看作是由无数个平行于底面的薄圆盘叠加而成;(3)通过讨论,引导学生推导出圆柱体积公式:V = πr²h,其中r为底面半径,h为圆柱的高;(4)通过实际操作,让学生加深对圆柱体积公式的理解。
3. 圆柱体积公式的应用(1)计算给定圆柱的体积;(2)已知圆柱的体积和底面半径,求圆柱的高;(3)已知圆柱的体积和高,求圆柱的底面半径。
4. 实际问题中的圆柱体积计算(1)计算水杯的容积;(2)计算圆柱形铅笔的体积;(3)计算圆柱形水池的蓄水量。
5. 课堂小结对本节课的内容进行总结,强调圆柱体积公式的推导和应用,以及在实际问题中的灵活运用。
6. 课后作业布置与圆柱体积相关的练习题,巩固学生对圆柱体积公式的理解和应用。
五、教学评价1. 课堂参与度:观察学生在课堂上的表现,是否积极参与讨论和操作;2. 作业完成情况:检查学生对圆柱体积公式的掌握程度;3. 实际问题解决能力:评估学生在解决实际问题中运用圆柱体积公式的熟练程度。
《圆柱的体积》数学教学设计(优秀13篇)
《圆柱的体积》数学教学设计(优秀13篇)《圆柱的体积》教案篇一教学目标:1、了解圆柱体体积(包括容积)的含义,进一步理解体积和容积的含义。
2、经历探索圆柱体积计算方法的过程,掌握圆柱体积的计算方法,能正确计算圆柱的体积,并会解决一些简单的实际问题。
3、培养初步的空间观念和思维能力;进一步认识“转化”的思考方法。
教学重点:理解和掌握圆柱的体积计算公式,会求圆柱的体积教学难点:理解圆柱体积计算公式的推导过程。
教学用具:圆柱体积演示教具。
教学过程:一、复述回顾,导入新课以2人小组回顾下列内容:(要求1题组员给组长说,组长补充。
2题同桌互说。
说完后坐好。
)1、说一说:(1)什么叫体积?常用的体积单位有哪些?(2)长方体、正方体的体积怎样计算?如何用字母表示?长方体、正方体的体积=()×()用字母表示()2、求下面各圆的面积(只说出解题思路,不计算。
)(1)r=1厘米;(2)d=4分米;(3)C=6.28米。
(二)揭示课题你想知道课本第8页左上方“柱子的体积”吗?你想知道“一个圆柱形杯子能装多少水”吗?今天就来学习“圆柱的`体积”。
(板书课题)二、设问导读请仔细阅读课本第8-9页的内容,完成下面问题(一)以小组合作完成1、2题。
1、猜一猜,圆柱的体积可能等于()×()2、我们在学习圆的面积计算公式时,指出:把一个圆分成若干等份,可以拼成一个近似的长方形。
这个长方形的面积就是圆的面积。
圆柱的底面也可以像上面说的那样转化成一个近似的长方形,通过切、拼的方法,把圆柱转化为一个近似的长方体(如课本第8页右下图所示)。
(用自己手中的学具进行切、拼)观察拼成的长方体与原来的圆柱之间的关系(1)圆柱的底面积变成了长方体的()。
(2)圆柱的高变成了长方体的()。
(3)圆柱转化成长方体后,体积没变。
因为长方体的体积=()×(),所以圆柱的体积=()×()。
如果用字母V代表圆柱的体积,S代表底面积,h代表高,那么圆柱的体积公式可用字母表示为()[汇报交流,教师用教具演示讲解2题](二)独立完成3、4题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.4《用圆柱的体积解决问题》教学设计
一、教学目标
(一)知识与技能
用已学的圆柱体积知识解决生活中的实际问题,并渗透转化思想。
(二)过程与方法
经历探究不规则物体体积的转化、测量和计算过程,让学生在动手操作中初步建立“转化”的数学思想,体验“等积变形”的转化过程。
(三)情感态度和价值观
通过实践,让学生在合作中建立协作精神,并增强学生“用数学”的意识。
二、教学重难点
教学重点:利用所学知识合理灵活地分析、解决不规则物体的体积的计算方法。
教学难点:转化前后的沟通。
三、教学准备
每组一个矿泉水瓶(课前统一搜集农夫山泉矿泉水瓶,装有适量清水,水高度分别为6、
7、8、9厘米),直尺。
四、教学过程
(一)复习旧知,做好铺垫
1.板书:圆柱的体积。
问:圆柱的体积怎么计算?体积和容积有什么区别?
2.揭题:这节课,我们要根据这些体积和容积的知识来解决生活中的实际问题。
(完整板书:用圆柱的体积解决问题。
)
【设计意图】通过复习圆柱的体积计算方法以及体积和容积之间的联系和区别,为学习新知做好知识上的准备。
(二)探索实践,体验转化过程
1.创设情境,提出问题。
每个小组桌子上有一个没有装满水的矿泉水瓶。
教师:原本这是一瓶装满水的矿泉水,已经喝了一部分,你能根据它来提一个数学问题吗?(随机板书)
预设1:瓶子还有多少水?(剩下多少水?)
预设2:喝了多少水?(也就是瓶子的空气部分。
)
预设3:这个瓶子一共能装多少水?(也就是这个瓶子的容积是多少?)
2.你觉得你能轻松解决什么问题?
(1)预设1:瓶子有多少水?(怎么解决?)
学生:瓶子里剩下的水呈圆柱状,只要量出这个圆柱的底面直径和高就能算出它的体积。
教师:需要用到什么工具?(直尺)你想利用直尺得到哪些数据?(底面直径、水的高度)
小结:知道了底面直径和水的高度,要解决这个问题的确轻而易举。
请你准备好直尺,或许等会儿有用哦!
(2)预设2:喝了多少水?
学生:喝掉部分的形状是不规则,没有办法计算。
教师:当物体形状不规则时,我们想求出它的体积可以怎么办?
教师相机引导:能否将空气部分变成一个规则的立体图形呢?
学生能说出方法更好,不能说出则引导:我们不妨把瓶子倒过来看看,你发现了什么?
引导学生发现:在瓶子倒置前后,水的体积不变,空气的体积不变,因此,喝了多少水等于倒置后空气部分的体积,倒置后空气部分是一个圆柱,要求出它的体积需要哪些数据?(倒置后空气的高度)
小结:这个方法不错,我们利用水的流动性成功地将不规则的空气部分转化成了一个圆柱体,得到所需数据后能求出它的体积。
这样一来,第3个问题还难得到你吗?
(3)怎么求这个矿泉水瓶的容积?引导学生得出:倒置前水的体积+倒置后空气的体积=瓶子容积。
3.小组合作,测量计算。
(矿泉水瓶内直径为6cm)
教师:方法找到了,接下来能否正确求出瓶子的容积就看你们的了!
(1)课件出示:
一个内直径是()的瓶子里,水的高度是(),把瓶盖拧紧倒置放平,无水部分是圆柱形,高度是()。
这个瓶子的容积是多少?(测量时取整厘米数)(2)四人小组合作:
A.组长安排好分工:
要量出所需数据,其他组员要监督好测量方法与结果是否正确,要按要求把题目填完整。
B.组内互相说一说:倒置前后哪两部分的体积不变?
矿泉水瓶的容积=()+()。
C.做好以上准备工作后,利用所得数据独立计算,再组内校对结果是否正确。
4.交流反馈。
教师巡查,选择矿泉水瓶中原有水高度分别6、7、8、9厘米的同学板演。
瓶中水高度为6厘米的:
3.14×(6÷2)2×6+3.14×(6÷2)2×13
=3.14×9×(6+13)
≈537(毫升)。
瓶中水高度为7厘米的:
3.14×(6÷2)2×7+3.14×(6÷2)2×12
=3.14×9×(7+12)
≈537(毫升)。
瓶中水高度为8厘米的:
3.14×(6÷2)2×8+3.14×(6÷2)2×11
=3.14×9×(8+11)
≈537(毫升)。
瓶中水高度为9厘米的:
3.14×(6÷2)2×9+3.14×(6÷2)2×10
=3.14×9×(9+10)
≈537(毫升)。
教师:出示某品牌矿泉水瓶的标签,上面写着净含量为550毫升,基本符合。
5.解答正确吗?
教师引导学生回顾反思:刚才我们是怎样解决问题的?
小结:根据具体情况选择合适的转化方法,像这样不规则立体图形的体积可以转化为规则的立体图形来计算。
(三)练习巩固,学以致用
1.数学书P27做一做。
(1)学生独立思考,解决问题。
(2)把自己的想法与同桌说一说。
(3)交流反馈:重点交流如何转化,倒置后哪两部分体积不变?
求小明喝了多少水实际上是求矿泉水瓶上面无水部分的体积,这部分为不规则的立体图形。
将水瓶倒置后不规则容器转化成了圆柱:该圆柱体积=小明喝了的水。
3.14×(6÷2)2×10=282.6(毫升)。
2.如下图,一个底面周长为9.42厘米的圆柱体,从中间斜着截去一段后,它的体积是多少?
(1)思考:这是一个不规则的立体图形,要求它的体积,它不能像瓶子里的水一样可以流动变形转化,怎么办?
(2)讨论方法:
A.重叠:假设把两个大小一样的斜截体拼成一个底面周长为9.42厘米,高为(4+6)厘米的圆柱,这个立体图形的体积是新圆柱体积的一半。
B.切割:把这个立体图形分为两部分,下面是一个底面周长为9.42厘米,高为4厘米的圆柱体,上面是一个高为(6-4)厘米的圆柱斜截体,且体积是高为(6-4)厘米的圆柱体积的一半。
(3)用自己认可的方法计算,并进行反馈。
解法一:3.14×(9.42÷3.14÷2)2×10÷2=35.325(立方厘米)。
解法二: 3.14×(9.42÷3.14÷2)2×4+3.14×(9.42÷3.14÷2)2×2÷2=35.325(立方厘米)。
(四)全课总结,提升认识
1.回忆一下,今天这节课有什么收获?
求不规则的立体图形的体积可以将它转化成为规则的立体图形,这节课我们主要是将不规则的立体图形转化成为圆柱,用圆柱的体积计算方法来解决问题。
在解决问题时,主要要弄清楚转化前后两部分之间的关系。