一元一次方程的应用----等积变形问题
5.3_一元一次方程的应用(2)_等积变形--

解
设容器内放入金属圆柱后水的高度为x厘米。
(1)如果容器内的水升高后不淹没放入的金属圆柱,
根据题意,得 π·(32-22)·x=π·32×15
解这个方程,得x=27 因为27>18,这表明此时容器内的水已淹没了金属圆 柱,不符合题意,应舍去。
(2)如果容器内的水升高后淹没放入的金属 圆柱, 根据题意,得 π ·32 ·x= π ·32×15+ π ·22×18 解这个方程,得 x=23 23-15=8 所以,容器内的水升高8厘米。
解:水的底面积、高度发生了变化,水的体积和质量都保持不变
2、用一根15cm长的铁丝围成一个三角形,然后 把它围成长方形;
解:围成的图形的面积发生了变化,但铁丝的长度不变3、用一块橡皮泥先来自成一个立方体,再把它改 变成球。
解:形状改变,体积不变
一圆柱形容器的内半径为3厘米,内壁高30厘 米,容器内盛有15厘米高的水。现将一个底 面半径为2厘米、高18厘米的金属圆柱竖直放 入容器内,问容器的水将升高多少米? 分析:本题涉及圆柱的体积v=πr2h,这里r是圆柱底 面半径,h为圆柱的高。一个金属圆柱竖直放入容器 内,会出现两种可能: (1)容器内的水升高后不淹没放入的金属圆柱; (2) 容器内的水升高后 淹没放入的金属圆柱 。 因此列方程求解时要分两种情况。
20cm
30cm
课后拓展
如图一个铁片长30cm,宽20cm,打算从四个角各截去一 个小正方形,然后把四边折起来做一个无盖的铁盒, 铁盒的底面周长为60cm,问铁盒的高是多少?
xcm
x
20cm
30-2x
20-2x
20-2x 30-2x
相等关系: 铁盒的底面周长=60cm
30cm
一元一次方程的应用—等积变形和行程问题

一元一次方程的应用——等积变形和行程问题一、教学目标1.通过分析图形问题中数量关系体会方程模型的作用,进一步提高学生分析问题、解决问题、敢于提出问题的能力;2.理解行程问题中数量之间的关系,能根据行程问题中的数量关系建立方程,进一步提高学生分析问题、解决问题的能力;3.通过实际问题的探讨,使学生在独立思考的过程中,进一步体会数学的应用价值,鼓励学生大胆质疑,激发学生的好奇心和主动学习的欲望.二、教学重难点1.教学重点:掌握用一元一次方程解决实际问题的基本过程.2.教学难点:分清有关数量关系,正确找出作为列方程依据的主要等量关系.三、教学方法启发式、精讲精练四、教学过程(一)导入新课【情景引入】一支牙膏出口处直径为5mm,小明每次刷牙都挤出1cm 长的牙膏,这样一支牙膏可以用36次。
该品牌牙膏现推出新包装,只是将出口直径改为6mm,小明还是按习惯每次挤出1cm 长的牙膏,这样,这只牙膏能用多少次?(二)讲授新课1.等积变形问题例1:如图,用直径为200mm 的圆柱体钢,锻造一个长、宽、高分别为300mm 、300mm 和90mm 的长方体毛坯底板,应截取圆钢多少(圆柱的体积公式:体积 = 底面积高线长.计算时 取3.14.要求结果误差不超过1mm )?【想一想】问题1:题目中有哪些已知量和未知量?如何表示未知量?已知:圆钢直径(200mm )、长方体毛胚的长宽高(300mm 、300mm 、90mm ) 未知:圆钢的高设未知数:设应截取圆钢x 毫米问题2:分析题意,你能找到什么等量关系?等量关系:圆钢体积=长方体毛胚的体积问题3:如何根据等量关系“圆钢体积=长方体毛胚的体积”列出方程? 根据等量关系列出方程,得: 200x90 3003009030030022002⨯⨯=⎪⎭⎫ ⎝⎛x π 解方程,得:258≈x答:应截取258mm 长的圆柱体钢.【点拨】等积变形就是无论物体怎么变化都存在一个等量关系,即物体变化前后面积或体积不变.【归纳总结】列方程解应用题的一般步骤:1.设未知数:弄清题意和题中数量关系,用字母(如x,y)表示问题中的未知数;2.找等量关系:分析题意,找出相等关系;3.列出方程:根据相等关系,列出需要的代数式,并列出方程;4.解方程:解这个方程,求出未知数的值;5.检验作答:检查所得值是否正确和符合实际情形,并写出答案(包括单位名称).2.行程问题例2:为了适应经济发展,铁路运输再次提速.如果客车行驶的平均速度增加40km/h,提速后由合肥到北京1110km 的路程只需行驶10h.那么,提速前,这趟客车平均每时行驶多少千米?【分析】行程问题中常涉及的量有路程、平均速度和时间,它们之间的基本关系为:路程=平均速度×时间.【解答】设提速前客车平均每小时行驶xkm,那么提速后客车每小时行驶(x+40)km,客车行驶路程为1110km,平均速度为(x+40)km/h,所需时间是10h.根据题意,得10(x+40)=1110解方程,得x=71答:提速前这趟客车的平均速度为71km/h.例3 甲、乙两站相距480千米,一列慢车从甲站开出,每小时行90千米,一列快车从乙站开出,每小时行140千米.(1)慢车先开出1小时,快车再开,两车相向而行.问快车开出多少小时后两车相遇?(2)两车同时开出,相背而行,多少小时后两车相距600千米?(3)两车同时开出,慢车在快车后面同向而行,多少小时后快车与慢车相距600千米?(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车?【归纳总结】行程问题中一般涉及“路程”“速度”“时间”这三个量,且路程=速度×时间.行程问题分同向而行和相向而行两种情况,找等量关系时可以画线段示意图帮助分析.例4:汽船从甲地顺水开往乙地,所用时间比从乙地逆水开往甲地少1.5小时.已知船在静水的速度为18千米/小时,水流速度为2千米/小时,求甲、乙两地之间的距离?【分析】本题是行程问题,故有:路程=平均速度×时间;时间=路程÷平均速度.但涉及水流速度,必须要掌握:顺水速度=船速+水速;逆水速度=船速-水速.【解答】方法一:直接设元法解:设甲、乙两地的距离为x 千米,等量关系:逆水所用时间-顺水所用时间=1.5方法二:间接设元法解:设汽船逆水航行从乙地到甲地需x小时,则汽船顺水航行的距离是(18+2)(x-1.5)千米,逆水航行的距离是(18-2)x千米.等量关系:汽船顺水航行的距离=汽船逆水航行的距离环形跑道问题问题1:操场一周是400米,小明每秒跑5米,小华骑自行车每秒10米,两人绕跑道同时同地同向而行,他俩能相遇吗?问题2:操场一周是400米,小明每秒跑5米,小华骑自行车每秒10米,两人绕跑道同时同地同向而行,经过几秒钟两人第一次相遇?变式训练:操场一周是400米,小明每秒跑5米,小华骑自行车每秒10米,两人绕跑道同时同地相背而行,则两个人何时相遇?【当堂练习】1.一个宽为3cm的长方形与一个边长为6cm的正方形面积相等,则这个长方形的周长为()A.12cmB.18cmC.24cmD.30cm2.甲、乙两人骑自行车同时从相距65千米的两地相向而行,2小时相遇,若甲比乙每小时多骑2.5千米,则乙的时速是()A.12.5千米/时B.15千米/时C.17.5千米/时D.20千米/时3.一个底面直径为16厘米的圆柱形木桶内装满水,水中淹没着一个底面直径为8厘米、高为15厘米的铁质小圆柱体.当铁质小圆柱体取出后,木桶内水面下降了多少?4.一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时.已知水流的速度是3千米/时,求船在静水中的速度.(三)课堂小结(四)课后作业p1.全品作业本5354五、板书设计等积变形和行程问题列方程解应用题的一般步骤:设未知数;找等量关系;列出方程;解方程;检验作答1.等积变形问题2.行程问题。
一元一次方程的应用等积变化问题

一元一次方程的应用等积变化问题等积变化问题是一元一次方程应用题中的一种常见题型,其基本特点是涉及到体积、面积、长度等量的变化,而这种变化是等积的,即变化前后的量是相等的。
解决等积变化问题的关键在于理解“等积”的含义,即体积、面积、长度等量在变化过程中保持不变。
因此,我们需要根据题目描述,建立等量关系,然后列出方程求解。
下面是一个具体的例子:题目:有一个长方体,它的长增加了2cm,宽和高不变,体积增加了40立方厘米;宽增加了2cm,长和高不变,体积增加了60立方厘米;高增加了2cm,长和宽不变,体积增加了48立方厘米。
求原来长方体的体积是多少?解:设原长方体的长为l cm,宽为w cm,高为h cm。
根据题目描述,我们可以建立以下方程:1. 长增加2cm后,体积增加了40立方厘米:(l + 2) × w × h - l × w × h = 402. 宽增加2cm后,体积增加了60立方厘米:l × (w + 2) × h - l ×w × h = 603. 高增加2cm后,体积增加了48立方厘米:l × w × (h + 2) - l × w × h = 48将以上三个方程整理为一元一次方程组:1) (l + 2) × w × h - l × w × h = 402) l × (w + 2) × h - l × w × h = 603) l × w × (h + 2) - l × w × h = 48通过解这个方程组,我们可以得到原长方体的长、宽、高分别为:l = 5 cm, w = 4 cm, h = 3 cm。
因此,原来长方体的体积是:l × w × h = 5 × 4 × 3 = 60 立方厘米。
一元一次方程---等积变形

0.5米
0.5m 1. 5m
0.3m
0. 5m
巩固
延伸
用
方
程
解
决
问 题
一只乌鸦口渴需要喝水,来到一个底面积 为5平方厘米圆柱体玻璃瓶且水面只有20 厘米,要喝水需要30厘米高的水面,玻璃 杯旁有堆石头,每块10克,每1立方厘米 重5克,问需要多少石头乌鸦才能喝到水?
课堂小结: 通过学习你这节课收获了什么?
2
C 2(a b)
S ah
你会填下表中各图形的体积公式吗? 名称
正方体
图形
a
用字母表示公式
体积(V)
V a
c b
3
长方体
a
V abc
V r 2 h
1 2 V r h 3
圆柱体
r
h
圆锥体
h
r
学习目标: 1、掌握等积变形问题中常见的数量关系,并能 列出方程解决问题。 2、通过解决问题进一步认识分析数量关系,列 方程解决问题的一般过程。
6、答:写出答案,注意规范完整.
提升
方 解 问 题 小明的爸爸想用10米铁线在墙边围成一个 菜地(即利用墙面作为一边),使长比宽 大2米,问小明要帮他爸爸围成的菜地的 长和宽各是多少呢?
用
程
决
墙面
x
X+2 铁线
提升
方 解 问 题 小明的爸爸想用10米铁线在墙边围成一个 菜地(即利用墙面作为一边),使长比宽 大2米,问小明要帮他爸爸围成的菜地的 长和宽各是多少呢?
等积变形问题的一般等量关系: 体积(周长)相等(不变)。
归
纳
列一元一次方程解应用题的一般步骤: 1、分析:分析题意,分析题中数量及其关系; 2、设:设出未知数,用含未知数的一次式表示有 关的量. 3、列:根据等量关系列出方程.
一元一次方程实际应用题之等积变形问题

一元一次方程实际应用题之等积变形问题“等积变形”是以形状改变而体积不变为前提. 常见几何图形的周长、面积、体积公式:1.等长变形问题例题1:用一根长10米的铁丝围成一个长方形.使得长方形的长比宽多1.2米,此时长方形的长是多少米?宽是多少米?分析:抓住总长度不变,也就是长方形的周长等于10米。
可设宽为未知数,进而表示出长,等量关系为:2(长+宽)=10,把相关数值代入可求得宽,进而求得长即可。
解:设长方形的宽为x米,则长为(x+1.2)米.依题意得:2(x+1.2+x)=10,解得x=1.9,∴x=1.2+1.9=3.1,答:长方形的长为3.2米,宽为1.9米。
2.等体积变形问题例题2:要锻造直径为60mm,高为30mm的圆柱形毛坯,需截取直径为40mm的圆钢长是多少毫米?分析:抓住锻造前后的体积不变,此题的等量关系为:锻造前的体积=锻造后的体积.据此列方程求解。
要注意的是,题目中已知直径,需要转化为半径。
解:设需截取直径为40mm的圆钢长xmm,60÷2=30(mm)、40÷2=20(mm);依题意得:π×30^2×30=π×20^2×x解得:x=67.5例题3:有一段钢材可作一个底面直径 8 厘米,高 9 厘米的圆柱形零件。
如果把它改制成高是 12 厘米的圆锥形零件,零件的底面积是多少平方厘米?分析:根据“底面直径8厘米,高9厘米的圆柱形零件”,利用圆柱体积公式,可以求出圆柱的体积,又因为把圆柱形的零件改制成圆锥形零件时,此段钢的体积不变,根据体积不变列出方程求解。
解:零件的底面积是x平方厘米。
8÷2=4(厘米)依题意得:3×π×4^2×9=x×12解得:x=36π答:零件的底面积是36π平方厘米。
3.等面积变形问题例题4:如图,某小学将一块梯形空地改成宽为30m的长方形运动场地,要求面积不变.若在改造后的运动场地,小王、小李两人同时从点A出发,小李沿着长方形边顺时针跑,小王则是逆时针跑,并且小王每秒比小李多跑2m,经过10秒钟他们相遇.(1)求长方形的长;(2)求小王、小李两人的速度分析:(1)求得原梯形的面积,利用面积不变和长方形的面积求得长方形的长即可;(2)设小李的速度是xm/s,则小王的速度是(x+2)m/s,利用10秒钟他们相遇所走的路程为长方形的周长列出方程解决问题。
一元一次方程的应用等积变形问题

抚松外国语七年级数学“一元一次方程的应用等积变形问题〞师生共用导学稿审核: 序号:【学习目标】1.知识与技能:会找等积变形问题类型应用题的相等关系设未知数列方程2.过程与方法:通过学生观察、独立思考等过程,培养学生分析解决问题的能力;态度价值观:激发学生浓厚的学习兴趣,使学生有独立思考、勇于创新的精神,养成按客观规律办事的良好习惯;重点:找相等关系,设未知数列方程.难点:分析题意,找等积变形问题类型应用题的相等关系设未知数列方程。
一.自主探究〔前置性学习〕探究活动〔一〕本课内容必备:圆柱体积公式:长方体体积公式:如图,圆柱(2)的体积是圆柱(1)的体积的3倍,求圆柱(1)的高(图中φ40表示直径为40毫米)〔二〕知识盘点:〔三〕学习中还有哪些疑问没有解决?二.合作探究〔一〕交流展示〔二〕体验成功1、用直径为4cm的圆钢〔截面为圆形的实心长条钢材〕铸造3个直径为2cm,高为16cm的圆柱形零件,那么需要截取多长的圆钢?2、某铜铁厂要锻造长、宽、高分别为260mm、150 mm、130 mm的长方体毛坯,需要截取截面积为 130 mm2的方钢多长?3、用直径为4厘米的圆钢,铸造三个直径为2厘米,高为16厘米的圆柱形零件,问需要截取多长的圆钢?4、某机器加工厂要锻造一个毛胚,上面是一个直径为20毫米,高为40毫米的圆柱,下面也是一个圆柱,直径为60毫米,高为20毫米,问需要直径为40毫米的圆钢多长?5、某工厂锻造直径为60毫米,高20毫米的圆柱形瓶内装水,再将瓶内的水倒入一个底面直径6厘米、高10厘米的圆柱形玻璃杯中,能否完全装下?假设装不下,那么瓶内水面还有多高?假设未能装满,求杯内水面离杯口的距离。
6、将一罐满水的直径为40厘米,高为60厘米的圆柱形水桶里的水全部灌于另一半径为30厘米的圆柱形水桶里,问这时水的高度是多少?7、一个直径为米高为米的圆柱形水桶,已装满水,向一个底面边长为1米的正方形铁盒倒水,当铁盒装满水时,水桶中的水高度下降了多少米。
新浙教版七年级数学上册5.4《一元一次方程的应用(2)等积变形》课件

单位:厘米
4
4
方案如下:
方案一
4(4x42) Z.x.x. K
方案二
44(x4)
方案三
方案四
4(xx8)4 2[4x4(x8)] 2
4×4(x+4)=2×2×80 解这个方Zx.程xk ,得x=16 经检验,x=16是方程的解且符合题意 答:中间挖去正方形的边长为16厘米.
•不习惯读书进修的人,常会自满于现状,觉得再没有什么事情需要学习,于是他们不进则退。经验丰富的人读书用两只眼睛,一只眼睛看到纸面上的话,另 一眼睛看到纸的背面。2022年4月12日星期二2022/4/122022/4/122022/4/12 •书籍是屹立在时间的汪洋大海中的灯塔。2022年4月2022/4/122022/4/122022/4/124/12/2022 •正确的略读可使人用很少的时间接触大量的文献,并挑选出有意义的部分。2022/4/122022/4/12April 12, 2022 •书籍是屹立在时间的汪洋大海中的灯塔。
20cm
30cm
课后提高
如图一个铁片长30cm,宽20cm,打算从四个角各截去一 个小正方形,然后把四边折起来做一个无盖的铁盒, 铁盒的底面周长为60cm,问铁盒的高是多少?
xcm
x
20cm
20-2x 30-2x
30-2x
30cm
相等关系: 铁盒的底面周长=60cm
20-2x
喜于收获
合作探究
解:设中间挖去正方形的边长ห้องสมุดไป่ตู้x厘米,根据题意 得:
一元一次方程的应用----等积变形问题

精讲
例题
一、分析题意,找出等量关系 :
例 如图,用直径为200毫 米的圆钢,锻造一个长、
圆解钢:体设积应截= 取长的方圆体钢毛长坯为体x积毫,米,根据题意
设得应:截取圆钢长为x毫米
宽、高分别为300毫米、 二圆 、钢•(用的2含体00未积/2知是)2数的(• 式2x0子0/表=2)示32 0有0x立关×方的3毫量00米:×是. 指80
小结:说说列方程解应用题的一半步骤:
列一元一次方程解应用题的一般步骤: 1、分析题意,找出等量关系,分析题中数量及其关系, 用字母(例如x),表示问题里的未知数. 2、用代数式表示有关的量. 3、根据等量关系列出方程. 4、解方程,求出未知数的值. 5、检验求得的值是否正确和符合实际情形,并写出答案 .
想一想: 请指出下列过程中,哪些量发生 了变化,哪些量保持不变?
1、把一小杯水倒入另一只大杯中; 解:水的底面积、高度发生变化,水的 体积和质量都保持不变 2、用一根15cm长的铁丝围成一个三角形, 然后把它围成长方形;
解:围成的图形的面积发生了变化,但 铁丝的长度不变 3、用一块橡皮泥先做成一个立方体,再把 它改变成球。解:形状改变,体积不变
等积变形问题的等量关系
变形前的体积(周长)=变形后的体积(周长)
归
纳
列一元一次方程解应用题的一般步骤: 1、分析题意,找出等量关系,分析题中数量及其关系, 用字母(例如 x),表示问题里的未知数. 2、用代数式表示有关的量. 3、根据等量关系列出方程. 4、解方程,求出未知数的值. 5、检验求得的值是否正确和符合实际情形,并写出答案.
300毫米和80毫米的长方体 三、根据等量3.关14系x列=7出20方程,得:
毛坯底板,应截取圆钢多
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
想一想: 请指出下列过程中,哪些量发生 了变化,哪些量保持不变?
1、把一小杯水倒入另一只大杯中; 解:水的底面积、高度发生变化,水的 体积和质量都保持不变 2、用一根15cm长的铁丝围成一个三角形, 然后把它围成长方形;
解:围成的图形的面积发生了变化,但 铁丝的长度不变 3、用一块橡皮泥先做成一个立方体,再把 它改变成球。解:形状改变,体积不变
问题1
用一根长 60厘米的铁丝围成一个长方形.使长方形的宽比长少 4 厘米,求这个长方形的面积.
60厘米
C铁丝 = C 长方形
精讲
例题
例 如图,用直径为200毫米
的圆钢,锻造一个长、宽、
高分别为300毫米、300毫米
和90毫米的长方体毛坯底板,
应截取圆钢多少(计算时? 取
3.14.要求结果误差不超过1
0.5m
1.ห้องสมุดไป่ตู้m
1m
0.3m 0.5m
分析: 根据以上演示我们知道了它们的等量关系:
水位上升部分的体积=小圆柱形铁块的体积
圆柱形体积公式是_?_r_2_h___,
水升高后的体积 小铁块的体积
(__0_._5_2_?__X__) (_0_._3_2__×__0_._5__?____)
解:设水面将升高x米, 根据题意得
x厘米
? × 102 ? x
根据等量关系,列出方程: ? ? × 52×36= × 102 ? x
解得: x =9
因此,高变成了 9 厘米
练
习
2.已知一圆柱形容器底面半径为0.5m,高为1.5m,里面盛有 1m深的水,将底面半径为0.3m,高为0.5m的圆柱形铁块沉 入水中,问容器内水面将升高多少?
毫米)?
90
200
??
300 300
精讲
90
例题
200
x
300 300
分
析
思考1:题目中有哪些已知量和
未知量?它们之间有什么关系?如
何设未知数?
已知:圆钢直径( 200mm)、长方体毛
胚的长宽高( 300mm、300mm、90mm)
一、未知分:析圆钢题的意高,找出等量 关系相等,关分系:析题中数量及其 圆关钢系体积,=长用方字体母毛胚(的例体积如 x), 表示设未问知题数:里的未知数;
x 设应截取圆钢 毫米。
精讲
例题 200
x
分
析
思考2:如何用字母(未知 数x)表示圆钢的体积?
圆钢的体积=?
(
200 2
)2x
立方毫米
90 300
二、用含未知数 x的一次式 300 表示有关的量;
精讲 90
例题 200
x
分
析
思考3:如何根据等量关系“圆钢体 积=长方体毛胚的体积”列出方程?
根据等量关系列出方程,得:
复习:常用几何图形的计算公式
?长方形的周长 = (长+宽) ×2 ?长方形的面积 = 长 ×宽 ?三角形的面积 = 1 ×底×高
2
?圆的周长= 2πr(其中r是圆的半径) ?圆的面积= πr2
?长方体的体积 = 长×宽×高
?圆柱体的体积 = 底面积×高=π r2h
(这里r为底面圆的半径, h为圆柱体的高)
练
习
1.将一个底面直径为10厘米,高为36厘米的“瘦长”形 圆柱锻压成底面直径是20厘米的“矮胖”形圆柱,高变 成了多少?
锻压 等量关系:变形前的体积=变形后的体积
等量关系: 锻压前的体积=锻压后的体积
解:设锻压后圆柱的高为x厘米,填写下表:
锻压前
锻压后
底面半径
5厘米
10厘米
高 体积
36厘米
?× 52×36
答:x应?截取25圆8 钢的长为 230毫米 .
五、检验求得的值是否正确和符合实际情形, 并写出答案 :应截取圆钢的长为 258毫米.
等积变形问题的等量关系
变形前的体积(周长)=变形后的体积(周长)
归
纳
列一元一次方程解应用题的一般步骤: 1、分析题意,找出等量关系,分析题中数量及其关系, 用字母(例如 x),表示问题里的未知数. 2、用代数式表示有关的量. 3、根据等量关系列出方程. 4、解方程,求出未知数的值. 5、检验求得的值是否正确和符合实际情形,并写出答案.
精讲
例题
例 如图,用直径为 200毫 米的圆钢,锻造一个长、 宽、高分别为 300毫米、 300毫米和 80毫米的长方体 毛坯底板,应截取圆钢多 少(计算时 ?取3.14.要求 结果误差不超过 1毫米)?
一、分析题意,找出等量关系 :
圆解钢:体设积应截=取长的方圆体钢毛长坯为体x积毫,米,根据题意
设得应:截取圆钢长为 x毫米
二圆? 、钢?(用的2含体00未积/2知是)2数?的(? 式2x0子0/表=2)示230有x0立关×方的毫3量0米:0 ×是. 指80 三、根据等量3.关14系x列=7出20方程, 得:
? ×(200/x2)2? ?23x0= 300×300×90
四、解方程求出未知数的值 即解这个方程得:
??
(
200 2
)
2
?
x
=300×300×80
三、根据等量关系列出方 300 程;
精讲
例题
200
x
分
析
思考4:如何解这个方程?
?×
( 200
)
2
x
=300×300×90
2
方程化简为?x =810
解得 x≈258
90 300
四、解方程,求出未知数的值;
五、检验求得的值是否正确和符 300 合实际情形,并写出答案.
方程为:_0_._5_2__?_X__=__0_.__3_2_×__0_.5 ? 解这个方程:__X__=_0_.__1_8_ 答:_容__器___内__水__面__将___升__高__0_._1_8m。
小结:说说列方程解应用题的一半步骤:
列一元一次方程解应用题的一般步骤: 1、分析题意,找出等量关系,分析题中数量及其关系, 用字母(例如x),表示问题里的未知数. 2、用代数式表示有关的量. 3、根据等量关系列出方程. 4、解方程,求出未知数的值. 5、检验求得的值是否正确和符合实际情形,并写出答案.