第9章 强度理论

合集下载

强度理论

强度理论
在Mmax和FS,max同时存在的横截面C稍稍偏左的横截 面上,该工字形截面腹板与翼缘交界点a处,正应力 和切应力分别比较接近前面求得的max和max,且该 点处于平面应力状态,故需利用强度理论对该点进 行强度校核。
M max ya 80103 N m 135103 m 122.7 MPa 6 4 Iz 8810 m
第9章 强度理论
9-1 强度理论概述
强度条件: max
[ ]
适用于单向应力状态,σmax为拉(压)杆横截面上 的正应力或梁横截面上的最大弯曲正应力。
max [ ]
适用于纯剪切应力状态,τmax为圆轴扭转时横截 面上的最大切应力或梁在横力弯曲时横截面上的 最大弯曲切应力。
[σ]或[τ]是由拉伸(或压缩)试验或纯剪切试验所
且相应的材料多为塑性材料;为避免在校核强度时
需先求主应力值等的麻烦,可直接利用图示应力状
Ⅱ.产生显著塑性变形而丧失工作能力的塑性屈服。
铸铁拉伸时沿试件的横截面断裂
铸铁圆轴扭转时沿与轴线约成 450的螺旋面断裂。 断裂与最大拉应力或最大拉应变有关,是拉应力 或拉应变过大所致。
低碳钢拉伸至屈服时,会出现与轴线约成450 的滑移线。
低碳钢圆轴扭转时沿纵横方向出现滑移线。
屈服或显著塑性变形是切应力过大所致。
2

2 0
3 2 27.7 MP a 2 2
2

由于梁的材料Q235钢为塑性材料,故用第三或第 四强度理论校核a点的强度。
r3 1 3 150.4 MPa 27.7 MPa 178.1 MPa
r4
1 1 2 2 2 3 2 3 1 2 2

材料力学面试重点概念36题

材料力学面试重点概念36题

材料力学面试重点概念36题第一章绪论1.什么是强度、刚度、稳定性?答:(1)强度:抵抗破坏的能力(2)刚度:抵抗变形的能力(3)稳定性:细长压杆不失稳。

2、材料力学中的物性假设是?答:(1)连续性;物体内部的各物理量可用连续函数表示。

(2)均匀性:构件内各处的力学性能相同。

(3)各向同性:物体内各方向力学性能相同。

3.材料力学与理论力学的关系答:相同点:材力与理力:平衡问题,两者相同不同点:理论力学描述的是刚体,而材料力学描述的是变形体。

4.变形基本形式有答:拉伸或压缩、剪切、扭转、弯曲。

5.材料力学中涉及到的内力有哪些?通常用什么方法求解内力?答:(1)轴力,剪力,弯矩,扭矩。

(2)用截面法求解内力。

6,变形可分为?答:1)、弹性变形:解除外力后能完全消失的变形2)、塑性变形:解除外力后不能消失的永久变形7,什么是切应力互等定理答:受力构件内任意一点两个相互垂直面上,切应力总是成对产生,它们的大小8,什么是纯剪切?答:单元体各侧面上只有切应力而无正应力的受力状态,称为纯剪切应力状态。

9、材料力学中有哪些平面假设1)拉(压)杆的平面假设实验:横截面各点变形相同,则内力均匀分布,即应力处处相等。

2)圆轴扭转的平面假设实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度。

横截面上正应力为零。

3)纯弯曲梁的平面假设实验:梁横截面在变形后仍然保持为平面且垂直于梁的纵向纤维;正应力成线性分布规律。

第二、三章轴向拉压应力表嘻10、轴向拉伸或压缩有什么受力特点和变形特点。

答:(1)受力特点:外力的合力作用线与杆的轴线重合。

(2)变形特点:沿轴向伸长或缩短。

11,什么叫强度条件?利用强度条件可以解决哪些形式的强度问题?要使杆件能正常工作,杆内(构件内)的最大工作应力不超过材料的许用应力,即≤[σ],称为强度条件。

σmax=F NmaxA利用强度条件可以解决:1)结构的强度校核;2)结构的截面尺寸设计;3)估算结构所能承受的最大外荷载。

材料力学-单祖辉-第三版课后答案-(第九章—第十九章)

材料力学-单祖辉-第三版课后答案-(第九章—第十九章)

3Fx 4a 2
[
]
x2 0.1277x6.39104 0
由此得切口的允许深度为
x5.20 mm
10-3 图示矩形截面钢杆,用应变片测得上、下表面的纵向正应变分别为 εa =1.0×10-3
2Sz(a)
S z,max
[2.23104
1 0.0085(0.140 0.0137)2 ]m3 2
2.90104 m3
式中:足标 b 系指翼缘与腹板的交界点;足标 a 系指上翼缘顶边中点。 3.应力计算及强度校核
三个可能的危险点( a , b 和 c )示如图 9-5。
a 点处的正应力和切应力分别为
x1
4F πD 2
x2 0
设圆柱体与外管间的相互作用力的压强为 p,在其作用下,外管纵截面上的周向正应力为
t2
pD 2
(a)
在外压 p 作用下(图 b,尺寸已放大),圆柱体内任一点处的径向与周向正应力均为
r1 t1 p
根据广义胡克定律,圆柱体外表面的周向正应变为
t1
1 E1
t1
1
x1
松比 均为已知。试求内压 p 与扭力偶矩 M 之值。
题 9-14 图 解:圆筒壁内任意一点的应力状态如图 9-14 所示。
图中所示各应力分量分别为
图 9-14
由此可得
x
pD 4
,
t p2D,
2M πD2
σ0 σ x , σ90 σt ,
σ 4 5
τ
3pD, 8δ
根据广义胡克定律,贴片方向的正应变为
σ1
σ2
σt
pD,σ 4δ
3
0
9-13 图示组合圆环,内、外环分别用铜与钢制成,已知铜环与钢环的壁厚分别为

材料力学第9章 强度理论

材料力学第9章 强度理论

由于物体在外力作用下所发生的弹性变形既包括 物体的体积改变,也包括物体的形状改变,所以可推 断,弹性体内所积蓄的变形比能也应该分成两部分: 一部分是形状改变比能(畸变能) ,一部分是体积改 变比能 。 在复杂应力状态下,物体形状的改变及所积蓄的 形状改变比能是和三个主应力的差值有关;而物体体 积的改变及所积蓄的体积改变比能是和三个主应力的 代数和有关。
注意:图示应力状态实际上为弯扭组合加载对 应的应力状态,其相当应力如下:
r 3 2 4 2 [ ] 2 2 [ ] r 4 3
可记住,便于组合变形的强度校核。
例1 对于图示各单元体,试分别按第三强度理论及第四强度理论 求相当应力。
120 MPa 140 MPa
r4
1 2 2 2 [(0 120) ( 120 120) ( 120 0) ] 120MPa 2
140 MPa
(2)单元体(b)
σ1 140MPa
σ 2 110MPa
σ3 0
110 MPa
σr 3 σ1 σ 3 140MPa 1 2 2 2 σr 4 [30 110 ( 140) ] 128MPa 2
1u
1u
E

b
E
1 1 1 2 3 E
1u
1u
E

b
E
1 2 3 b
强度条件为: 1 2 3
b
n
[ ]
实验验证: a) 可解释大理石单压时的纵向裂缝; b) 脆性材料在双向拉伸-压缩应力状态下,且压应 力值超过拉应力值时,该理论与实验结果相符合。
σ1 94 .72MPa σ 3 5 .28MPa

工程力学第9章 应力状态与强度理论

工程力学第9章 应力状态与强度理论

27
根据广义胡克定律,有
解 (1)m-m 截面的内力为:
(2)m-m 截面上 K 点的应力为:
28
29
30
9.5 强度理论
9.5.1 强度理论的概念 在第7章中介绍了杆件在基本变形情况下的强度计 算,根据杆件横截面上的最大正应力或最大切应力及相 应的试验结果,建立了如下形式的强度条件:
31
32
33
(2)第二强度理论———最大伸长线应变理论
34
(3)第三强度理论———最大切应力理论
35
(4)第四强度理论———最大形状改变比能理论
36
37
(2)校核正应力强度
(3)校核切应力强度
38
(4)按第三强度理论校核 D 点的强度
39
思考题 9.1 某单元体上的应力情况如图9.18所示,已知 σx=σy。试求该点处垂直于纸面的任意斜截面上的正应力、 切应力及主应力,从而可得出什么结论?
6
9.2.1 方位角与应力分量的正负号约定 取平面单元体位于Oxy平面内,如图9.5(a)所示。 已知x面(外法线平行于x轴的面)上的应力σx及τxy,y 面上的应力σy及τyx。根据切应力互等定理,τxy=τyx。现 在为了确定与z轴平行的任意斜截面上的应力,需要首 先对方位角α以及各应力分量的正负号作如下约定:
10
11
9.2.3 平面应力状态下的主应力 与极值切应力由式(9.1)和式(9.2)可知,当σx, σy和τxy已知时,σα和τα将随α的不同而不同,即随斜截面 方位不同,截面上的应力也不同。因而有可能存在某种 方向面,其上之正应力为极值。设α=α0时,σα取极值。 由
12
13
14
15
16

第九章第六节梁弯曲时的应力及强度计算(上课用)

第九章第六节梁弯曲时的应力及强度计算(上课用)

m
V
( Stresses in Beams)
m

m
M
V
m m
只有与剪应力有关的切向内力元素 d V = dA 才能合成剪力
只有与正应力有关的法向内力元素 d FN = dA 才能合成弯矩
剪力V 内力 弯矩M 正应力 剪应力
所以,在梁的横截面上一般
既有 正应力, 又有 剪应力
先观察下列各组图
所以,可作出如下 假设和推断:
1、平面假设:
2.单向受力假设: 各纵向纤维之间互不挤压,纵向纤维均处于单向受拉或受压的状态。 因此梁横截面上只有正应力σ而无剪应力τ
各横向线代表横截面,实验表 明梁的横截面变形后仍为平面。
梁在弯曲变形时,上面部分纵向纤维缩短,下面部分纵向纤维伸长,必 有一层纵向纤维既不伸长也不缩短,保持原来的长度,这一纵向纤维层称为 中性层. 中性层与横截面的交线称为中性轴,中性轴通过截面形心,是一条形心轴。 且与截面纵向对称轴y垂直,将截面分为受拉区及受压区。梁弯曲变形时, 各横截面绕中性轴转动。
(3)横截面上任一点处的剪应力计算公式(推导略)为

V S I zb
Z
V——横截面上的剪力
Iz——整个横截面对中性轴的惯性矩
b——需求剪应力处的横截面宽度 S*Z——横截面上需求剪应力处的水平线 以外(以下或以上)部分面积A*(如图 )对 中性轴的静矩
V
3V 4 y2 (1 2 ) 2bh h
应力状态按主应力分类:
(1)单向应力状态。在三个相对面上三个 主应力中只有一个主应力不等于零。 (2)双向应力状态。在三个相对面上三个 主应力中有两个主应力不等于零。
(3)三向应力状态。其三个主应力都不等于零。例 如列车车轮与钢轨接触处附近的材料就是处在三向应 力状态下.

材料力学作业(8-11)

材料力学作业(8-11)

第八章 应力应变状态分析一、选择或填空题1、过受力构件内任一点,取截面的不同方位,各个面上的( )。

A 、正应力相同,切应力不同;B 、正应力不同,切应力相同;C 、正应力相同,切应力相同;D 、正应力不同,切应力不同。

2、在单元体的主平面上( )。

A 、正应力一定最大;B 、正应力一定为零;C 、切应力一定最小;D 、切应力一定为零。

3、图示矩形截面悬臂梁,A-A 为任意横截面,1点位于截面上边缘,3点位于中性层,则1、2、3点的应力状态单元体分别为( )。

A-AA B C4、图示单元体,其最大主应力为( )A 、σ;B 、2σ;C 、3σ;D 、4σ。

5、下面 单元体表示构件A 点的应力状态。

6、图示单元体,如果MPa 30=ασ,则βσ=( ) A 、100Mpa ; B 、50Mpa ; C 、20MPa ; D 、0MPa 。

(C)7、图示单元体应力状态,沿x 方向的线应变εx 可表示为( )A 、Eyσ; B 、)(1y x E μσσ−;C 、)(1x y E μσσ− ;D 、Gτ。

8、图示应力圆对应于单元体( )。

9、已知单元体及应力圆如图所示,σ1所在主平面的法线方向为( )。

A 、n 1;B 、 n 2;C 、n 3;D 、n4。

二、计算题1、已知应力状态如图所示,试用解析法计算图中指定截面上的正应力和切应力。

2、试画图示应力状态的三向应力圆,并求主应力、最大正应力和最大切应力。

3、边长为20mm的钢立方块置于刚性模中,在顶面受力F=14kN作用。

已知材料的泊松比为0.3,求立方体各个面上的正应力。

4、图示矩形截面梁某截面上的弯矩和剪力分别为M=10 kN.m,Q=120 kN。

试绘出截面上1、2、3、4各点的应力状态单元体,并求其主应力。

第九章 强度理论一、选择题或填空题 1、在冬天严寒天气下,水管中的水会受冻而结冰。

根据低温下水管和冰所受力情况可知( )。

A 、冰先破裂而水管完好;B 、水管先破裂而冰完好;C 、冰与水管同时破裂;D 、不一定何者先破裂。

《材料力学 第2版》_顾晓勤第09章第2节 二向应力状态分析

《材料力学 第2版》_顾晓勤第09章第2节 二向应力状态分析

第 2 节 二向应力状态分析 第九章 复杂应力状态和强度理论
最大主应力和最小主应力的计算式
max m in
x
y
2
x
2
y
2
2 x
确定 max 和 min 所在平面的方法
1)若x>y,则所求的两个角度0 和 90º+0 中, 绝对值较小的一个确定max 所在的平面;
2)若x <y,则所求的两个角度0 和 90º+0 中, 绝对值较小的一个确定min 所在的平面;
2

2sin cos sin 2 对以上二式进行整理得到:
x
y
2
x
y
2
cos2
x
sin 2
x
y
2
sin 2
x
cos2
第 2 节 二向应力状态分析 第九章 复杂应力状态和强度理论
x
y
2
x
y
2
cos2
x
sin 2
x
y
2
sin 2
x
cos2
利用上述两式可以求得 de 斜截面上的正应力和切
设 de 斜截面面积为 dA,则 ae 面的面积为 dAsin , ad面的面积为 dAcos 。取 t 和 n 为参考轴,建立棱
柱体 ade 的受力平衡方程如下:
dA ( xdAcos ) sin ( xdAcos ) cos ( ydAsin ) cos ( ydAsin ) sin 0
y
2
2 x
105 MPa
第 2 节 二向应力状态分析 第九章 复杂应力状态和强度理论
0
1 2
arctan(
2 x x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章强度理论
1. 直径d=20mm的拉伸试样,当与杆轴线成45°斜截面的切应力τ=150MPa时,
杆表面将出现滑移线,求此时试样的拉力F。

2. 拉杆的某一斜截面,正应力为50MPa,切应力为50MPa,求最大正应力和最
大切应力。

3. 试绘出图示构件A点处的原始单元体,表示其应力状态。

解:
4. 试绘出图示构件A点处的原始单元体,表示其应力状态。

解:
5.求图示单元体指定斜面上的应力(应力单位:MPa)。

6. 求图示单元体指定斜面上的应力(应力单位:MPa)。

7. 求图示单元体指定斜面上的应力(应力单位:MPa)。

8.已知单元体的应力状态如图所示。

试求:1)主应力的大小和主平面的方位;2)
并在图中绘出主单元体;3)最大切应力(应力单位:MPa)。

9.已知单元体的应力状态如图所示。

试求:1)主应力的大小和主平面的方位;2)
并在图中绘出主单元体;3)最大切应力(应力单位:MPa)。

10. 已知单元体的应力状态如图所示。

试求:1)主应力的大小和主平面的方位;
2)并在图中绘出主单元体;3)最大切应力(应力单位:MPa)。

11 试求图示各单元体的主应力和最大切应力。

(应力单位:MPa)
12.试求图示各单元体的主应力和最大切应力。

(应力单位:MPa)
13. 试对钢制零件进行强度校核,已知[σ]=120MPa,危险点的主应力为
σ1=140MPa,σ2=100MPa,σ3=40MPa。

14. 试对钢制零件进行强度校核,已知[σ]=120MPa,危险点的主应力为
σ1=60MPa,σ2=0,σ3=-50MPa。

15. 试对铸铁零件进行强度校核。

已知[σ]=30M Pa,ν=0.3,危险点的主应力为
σ1=29MPa,σ2=20MPa,σ3=-20MPa。

16. 试对铸铁零件进行强度校核。

已知[σ]=30MPa,ν=0.3,危险点的主应力为
σ1=30MPa,σ2=20MPa,σ3=15MPa。

17. 薄壁锅炉的平均直径D=1250mm,最大内压为2.3MPa,在高温下工作,锅
炉钢板屈服极限σs=182.5MPa,取安全系数n=1.8,试按第三强度理论设计壁厚δ。

18. 钢制圆轴受力如图所示。

已知轴径d=20mm,[σ]=140MPa,试用第三和第四
强度理论校核轴的强度。

相关文档
最新文档