1990年普通高等学校招生全国统一考试(文史类)数学

合集下载

全国统考的考试有哪些

全国统考的考试有哪些

全国统考的考试主要分为全国统一升学考试(普通高考、成人高考、研究生考试、在职研究生考试)国家司法考试、全国职业技能考试(资格证书)、专业技术职称资格考试、全国注册师考试五种。

一、全国统一升学考试1、普通高考文科:语文、数学、外语、文科综合(思想政治、历史、地理)理科:语文、数学、外语、理科综合(物理、化学、生物)2、成人高考a、专升本考试(专升本考试统考科目均为三门,每门满分均为150分。

)(1)哲学、文学(艺术类除外)、历史学以及中医、中药学(一级学科):政治、外语、大学语文。

(2)艺术类(一级学科):政治、外语、艺术概论。

(3)工学、理学(生物科学类、地理科学类、环境科学类、心理学类等四个一级学科除外):政治、外语、高数(一)。

(4)经济学、管理学以及职业教育类、生物科学类、地理科学类、环境科学类、心理学类、药学类(除中药学类外)等六个一级学科:政治、外语、高数(二)。

(5)法学:政治、外语、民法。

(6)教育学(职业教育类一级学科除外):政治、外语、教育理论。

(7)农学:政治、外语、生态学基础。

(8)医学(中医学类、药学类等两个一级学科除外):政治、外语、医学综合。

(9)体育类:政治、外语、教育理论。

b、高中起点升本、专科考试(高起本、高起专考试按文科、理科分别设置统考科目。

外语分英语、俄语、日语三个语种,由考生根据招生专业目录中明确的语种要求进行选择。

报考高起本的考生,除参加三门统考公共课的考试外,还需参加专业基础课的考试,文科类专业基础课为“历史、地理综合”(简称史地),理科类专业基础课为“物理、化学综合”(简称理化)。

以上试题均由统一命制,每门满分150分。

各科命题范围不超出《全国成人高等学校招生复习考试大纲》。

)(1)高起本各专业考试科目:文史类、外语类、艺术类:语文、数学(文)、外语、史地。

理工类、体育类:语文、数学(理)、外语、理化。

(2)高起专各专业考试科目:文史类、外语类、艺术类、公安类:语文、数学(文)、外语理工类、体育类、西医类、中医类:语文、数学(理)、外语。

1998年普通高等学校招生全国统一考试.文科数学试题及答案

1998年普通高等学校招生全国统一考试.文科数学试题及答案

1998年全国高校招生数学统考试题(文史类)一、选择题:本大题共15小题;第(1)-(10)题每小题4分,第(11)-(15)题每小题5分,共65分。

在每小题给出的四项选项中,只有一项是符合题目要求的。

(1)sin600°的值是(A)1/2 (B)-1/2 (C)/2 (D)-/2(2)函数y=a|x|(a>1)的图象是(3)已知直线x=a(a>0)和圆(x-1)2+y2=4相切,那么a的值是(A)5 (B)4 (C)3 (D)2(4)两条直线A1x+B1y+C1=0,A2x+B2y+C2=0垂直的充要条件是(A)A1A2+B1B2=0 (B)A1A2-B1B2=0(C)A1A2/B1B2=-1 (D)B1B2/A1A2=1(5)函数f(x)=1/x(x≠0)的反函数f-1(x)=(A)x(x≠0) (B)1/x(x≠0)(C)-x(x≠0) (D)-1/x(x≠0)(6)已知点P(sinα-cosα,tgα)在第一象限,则[0,2π)内α的取值范围是(A)(π/2,3π/4)∪(π,5π/4) (B)(π/4,π/2)∪(π,5π/4)(C)(π/2,3π/4)∪(5π/2,3π/2) (D)(π/4,π/2)∪(3π/4,π)(7)已知圆锥的全面积是底面积的3倍,那么该圆锥的侧面积展开图扇形的圆心角为(A)120°(B)150°(C)180°(D)240°(8)复数-i的一个立方根是i,它的另外两个立方根是(A)/2±1/2 (B)-/2±1/2i(C)±/2+1/2i (D)±/2-1/2i(9)如果棱台的两底面积分别是S,S',中截面的面积是S0,那么(A)2=+(B)S0=(C)2S O=S+S' (D)S02=2S'S(10)2名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2名护士。

1996年普通高等学校招生全国统一考试 数学(文史类)

1996年普通高等学校招生全国统一考试  数学(文史类)

绝密★启用前 试卷类型:A1996年普通高等学校招生全国统一考试数 学(文史类)考生注意:本试卷共三道大题(25个小题),分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

第Ⅰ 卷1至2页,第Ⅱ卷3至8页,满分150分.考试时间120分钟。

第Ⅰ卷(选择题共65分)注意事项:1.答案Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,在选涂其它答案,不能答在试题卷上.3.考试结束,监考人将本试卷和答题卡一并收回.一.选择题:本大题共15小题;第1—10题每小题4分,第11—15题每小题5分,共65分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集I={1,2,3,4,5,6,7},集合A={1,3,5,7},B={3,5}.则 (A)I=A ∪B (B)I=∪B(C)I=A ∪ (D)I=∪2.当a>1时,在同一坐标系中.函数y=a-x 与y=log a x 的图象是3.若sin2x>cos2x,则x 的取值范围是 (A){x|2kπ-3π/4<x<2kπ+π/4,k ∈Z} (B){x|2kπ+π/4<x<2kπ+5π/4,k ∈Z} (C){x|kπ-π/4<x<kπ+π/4,k ∈Z} (D){x|kπ+3π/4<x<kπ+3π/4,k ∈Z}4.复数(2+2i)4/(1-i)5等于(A)1+i (B)-1+i (C)1-i (D)-1-i5.六名同学排成一排,其中甲、乙两人必须排在一起的不同排法有 (A)720种 (B)360种 (C)240种 (D)120种6.已知α是第三象限角且si nα=-24/25,则tgα=(A)34 (B)43 (C)- 43 (D)- 347.如果直线l、m 与平面α、β、γ满足l=β∩γ,l∥α,m =α,m⊥γ,那么必有(A)α⊥γ且l⊥m(B)α⊥γ且m∥β(C)m∥β且l⊥m(D)α∥β且α⊥γ8.当-π/2≤x≤π/2时,函数f(x)=sinx+cosx的(A)最大值是1,最小值是-1 (B)最大值是1,最小值是-1/2(C)最大值是2,最小值是-2 (D)最大值是2,最小值是-19.中心在原点,准线方程为x=±4,离心率为1/2的椭圆方程是(A)x2/4+y2/3=1 (B)x2/3+y2/4=1(C)x2/4+y2=1 (D)x2+y2/4=110.圆锥母线长为1,侧面展开图圆心角为240°,该圆锥的体积是(A)2π/81(B)4π/81(C)10π/81(D)8π/8111.椭圆25x2-150x+9+18y2+9=0的两个焦点坐标是(A)(-3,5),(-3,-3) (B)(3,3),(3,-5)(C)(1,1),(-7,1) (D)(7,-1),(-1,-1)12.将边长为a的正方形ABCD沿对角线AC折起,使得BD=a,则三棱锥D-ABC的体积为(A)a3/6 (B)a3/12(C)a3/12(D)a3/1213.等差数列{an}的前m项和为30,前2m项和为100,则它的前3m项和为(A)130 (B)170(C)210 (D)26014.设双曲线x2/a2+y2/b2=1(0<a<b)的半焦距为c,直线l过(a,0),(0,b)两点.已知原点到直线的距离为c/4,则双曲线的离心率为(A)2 (B)(C) (D)2/315.设f(x)是(-∞,+∞)上的奇函数,f(x+2)=f(x),当0≤x≤1时,f(x)=x,则f(7.5)等于(A)0.5 (B)-0.5(C)1.5 (D)-1.5绝密★启用前试卷类型:A1996年普通高等学校招生全国统一考试数学(文史类)第Ⅱ卷(非选择题共85分)注意事项:1.第Ⅱ卷共6页,用钢笔或圆珠笔直接答在试题卷中.2.答卷前将密封线内的项目填写清楚.二.填空题:本大题共4小题;每小题4分,共16分.把答案填在题中横线上.16.已知点(-2,3)与抛物线y2=2px(p>0)的焦点的距离是5,则p=______.17.正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有______个.(用数字作答)18.tg20º+tg40º+3tg20ºtg40º的值是______。

2024年普通高等学校招生全国统一考试数学真题试卷(新课标Ⅰ卷)含解析

2024年普通高等学校招生全国统一考试数学真题试卷(新课标Ⅰ卷)含解析

2024年普通高等学校招生全国统一考试数学真题试卷(新课标Ⅰ卷)1.已知集合,,则( ).{}355A x x =-<<∣{3,1,0,2,3}B =--A B = A. B. C. D.{1,0}-{2,3}{3,1,0}--{1,0,2}-2.若,则( ).1i 1zz =+-z =A. B. C. D.1i--1i-+1i-1i+3.已知向量,,若,则( ).(0,1)a =(2,)b x = (4)b b a ⊥- x =A.-2B.-1C.1D.24.已知,,则( ).cos()m αβ+=tan tan 2αβ=cos()αβ-=A. B. C.D.3m-3m -3m 3m5.,则圆锥的体积为( ).A. B. C. D.6.已知函数在R 上单调递增,则a 的取值范围是( ).22,0()e ln(1),0x x ax a x f x x x ⎧---<=⎨++≥⎩A. B. C. D.(,0]-∞[1,0]-[1,1]-[0,)+∞7.当时,曲线与的交点个数为( ).[0,2π]x ∈sin y x =π2sin 36y x ⎛⎫=- ⎪⎝⎭A.3B.4C.6D.88.已知函数的定义域为R ,,且当时,,则下列()f x ()(1)(2)f x f x f x >-+-3x <()f x x =结论中一定正确的是( ).A. B. C. D.(10)100f >(20)1000f >(10)1000f <(20)10000f <9.为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值,样本方差,已知该种植区以往的亩收入X 服从正态分布2.1X =20.01S =,假设失去出口后的亩收入Y 服从正态分布,则( ).(若随机变量Z 服从()21.8,0.1N ()2,N X S 正态分布,则)()2,N μσ()0.8413P Z μμ<+≈A. B. C. D.(2)0.2P X >>()0.5P X Z ><()0.5P Y Z >>()0.8P Y Z ><10.设函数,则( ).2()(1)(4)f x x x =--A.是的极小值点B.当时,3x =()f x 01x <<()2()f x f x <C.当时, D.当时,12x <<4(21)0f x -<-<110x -<<(2)()f x f x ->11.造型可以看作图中的曲线C 的一部分,已知C 过坐标原点O ,且C 上的点满足横坐标大于-2,到点的距离与到定直线的距离之积为4,则( ).(2,0)F (0)x a a =<A.2a =-B.点在C上C.C 在第一象限的点的纵坐标的最大值为1D.当点在C 上时,()00,x y 0042y x ≤+12.设双曲线的左右焦点分別为,,过作平行于y 轴的直线交2222:1x y C a b-=0a >0b >1F 2F 2F C 于A ,B 两点,若,,则C 的离心率为_________.113F A =||10AB =13.若曲线在点处的切线也是曲线的切线,则_________.e xy x =+(0,1)ln(1)y x a =++a =14.甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两个各自从自己持有的卡片中随机选一张,并比较所选卡片的数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛比赛后,甲的总得分小于2的概率为_________.15.记的内角A ,B ,C 的对边分别为a ,b ,c ,已知,ABC △sin C B =.222a b c +-=(1)求B ;(2)若的面积为,求c .ABC △3+16.已知和为椭圆上两点.(0,3)A 33,2P ⎛⎫⎪⎝⎭2222:1(0)x y C a b a b +=>>(1)求C 的率心率;(2)若过P 的直线l 交C 于另一点B ,且的面积为9,求l 的方程.ABP △17.如图,四棱锥中,底面,,,.P ABCD -PA ⊥ABCD 2PA PC ==1BC =AB =(1)若,证明:平面PBC ;AD PB ⊥//AD(2)若,且二面角,求AD .AD DC ⊥A CP D --18.已知函数.3()ln(1)2xf x ax b x x=++--(1)若,且,求a 的最小值;0b =()0f x '≥(2)证明:曲线是中心对称图形;()y f x =(3)若,当且仅当,求b 的取值范围.()2f x >-12x <<19.设m 为正整数,数列,,…,是公差不为0的等差数列,若从中删去两项和1a 2a 42m a +i a 后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列,()j a i j <1a ,…,是——可分数列.2a 42m a +(,)i j (1)写出所有的,,使数列,,…,是——可分数列;(,)i j 16i j ≤<≤1a 2a 6a (,)i j (2)当时,证明:数列,,…,足——可分数列;3m ≥1a 2a 42m a +(2,13)(3)从1,2,…,中一次任取两个数i 和,记数列,,…,足—42m +()j i j <1a 2a 42m a +(,)i j —可分数列的概率为,证明.m P 18m P >答案1.A解析:,选A.{1,0}A B =- 2.C 解析:3.D解析:,,,,,选D.4(2,4)b a x -=-(4)b b a ⊥-(4)0b b a ∴-=4(4)0x x ∴+-=2x ∴=4.A解析:,,cos cos sin sin sin sin 2cos cos mαβαβαβαβ-=⎧⎪⎨=⎪⎩sin sin 2cos cos m m αβαβ=-⎧∴⎨=-⎩,选A.cos()cos cos sin sin 23m m m αβαβαβ-=+=--=-5.B解析:设它们底面半径为r ,圆锥母线l ,,,,2ππrl ∴=l ∴==3r ∴=,选B.1π93V =⋅⋅=6.B解析:在R 上↗,,,选B.()f x 0e ln1a a -≥⎧⎨-≤+⎩10a ∴-≤≤7.C解析:6个交点,选C.8.B解析:,,,,(1)1f =(2)2f =(3)(2)(1)3f f f >+=(4)(3)(2)5f f f >+>,,,(5)(4)(3)8f f f >+>(6)(5)(4)13f f f >+>(7)(6)(5)21f f f >+>,,,(8)(7)(6)34f f f >+>(9)(8)(7)55f f f >+>(10)(9)(8)89f f f >+>,,,(11)(10)(9)144f f f >+>(12)(11)(10)233f f f >+>(13)(12)(11)377f f f >+>,,,(14)(13)(12)610f f f >+>(15)(14)(13)987f f f >+>(16)1000f >(20)1000f ∴>,选B.9.BC解析:,,,()2~ 1.8,0.1X N ()2~ 2.1,0.1Y N 2 1.820.12μσ=+⨯=+,A 错.(2)(2)()10.84130.1587P X P X P X μσμσ>=>+<>+=-=,B 对.(2)( 1.8)0.5P X P X ><>=,,C 对.2 2.10.1μσ=-=-(2)( 2.1)0.5P Y P Y >>>=,D 错,所以选BC.(2)()()0.84130.8P Y P Y P Y μσμσ>=>-=<+=>10.ACD解析:A 对,因为;()3(1)(3)f x x x '=--B 错,因为当时且,所以;01x <<()0f x '>201x x <<<()2()f x f x <C 对,因为,,2(21)4(1)(25)0f x x x -=--<2(21)44(2)(21)0f x x x -+=-->,时,2223(2)()(1)(2)(1)(4)(1)(22)2(1)f x f x x x x x x x x --=------=--+=--11x -<<,,D 对.(2)()0f x f x -->(2)()f x f x ->11.ABD解析:A 对,因为O 在曲线上,所以O 到的距离为,而,x a =a -2OF =所以有,那么曲线的方程为.242a a -⋅=⇒=-(4x +=B 对,因为代入知满足方程;C 错,因为,求导得,那么有2224(2)()2y x f x x ⎛⎫=--= ⎪+⎝⎭332()2(2)(2)f x x x '=---+,,于是在的左侧必存在一小区间上满足,因此(2)1f =1(2)02f '=-<2x =(2,2)ε-()1f x >最大值一定大于1;D 对,因为.()22220000004442222y x y x x x ⎛⎫⎛⎫=--≤⇒≤ ⎪ ⎪+++⎝⎭⎝⎭12.32解析:由知,即,而,所以,即||10AB =25F A =2225b c a a a-==121F F F A ⊥1212F F =,代回去解得,所以.6c =4a =32e =13.ln 2解析:14.12解析:甲出1一定输,所以最多3分,要得3分,就只有一种组合、、、18-32-54-76-得2分有三类,分别列举如下:(1)出3和出5的赢,其余输:,,,16-32-54-78-(2)出3和出7的赢,其余输:,,,;,,,,14-32-58-76-18-32-56-74-,,,16-32-58-74-(3)出5和出7的赢,其余输:,,,;,,,;12-38-54-76-14-38-52-76-,,,;,,,;,,,;18-34-52-76-16-38-52-74-18-36-52-74-16-,,,;,,,38-54-72-18-36-54-72-共12种组合满足要求,而所有组合为24,所以甲得分不小于2的概率为1215.(1)π3B =(2)c =解析:(1)已知,根据余弦定理,222a b c +-=222cos 2a b c C ab+-=可得.cos C ==因为,所以.(0,π)C ∈π4C =又因为,即,解得.sin C B =πsin4B =B =1cos 2B =因为,所以.(0,π)B ∈π3B =(2)由(1)知,,则.π3B=π4C =ππ5πππ3412A B C =--=--=已知的面积为,ABC △31sin 2ABCS ab C =△则,.1πsin 324ab =132ab =+2(3ab =+又由正弦定理,可得.sin sin sin a b c A B C ==sin sin sin sin a C b Cc A B==则,,同理.π5πsin sin412c a =5πsin12πsin 4c a=πsin 3πsin 4c b =所以2225ππsin sin 421232(3π1sin42c c ab ⎝⎭===+解得c =16.(1)12(2)见解析解析:(1)将、代入椭圆,则(0,3)A 33,2P ⎛⎫⎪⎝⎭22220919941a b a b⎧+=⎪⎪⎨⎪+=⎪⎩22129a b ⎧=⎨=⎩.c=12ce a ∴===(2)①当L 的斜率不存在时,,,,A 到PB 距离,:3L x =33,2B ⎛⎫- ⎪⎝⎭3PB =3d =此时不满足条件.1933922ABP S =⨯⨯=≠△②当L 的斜率存在时,设,令、,3:(3)2PB y k x -=-()11,P x y ()22,B x y ,消y 可得223(3)21129y k x x y ⎧=-+⎪⎪⎨⎪+=⎪⎩()()22224324123636270k x k k x k k +--+--=,2122212224124336362743k k x x k k k x x k ⎧-+=⎪⎪+⎨--⎪=⎪+⎩PB =17.(1)证明见解析(2)AD =解析:(1)面,平面,PA ⊥ABCD AD ⊂ABCD PA AD∴⊥又,,平面PABAD PB ⊥ PB PA P = ,PB PA ⊂面,平面,AD ∴⊥PAB AB ∴⊂PAB AD AB∴⊥中,,ABC △222AB BC AC +=AB BC∴⊥,B ,C ,D 四点共面,A //AD BC∴又平面,平面PBCBC ⊂ PBC AD ⊄平面PBC .//AD ∴(2)以DA ,DC 为x ,y 轴过D 作与平面ABCD 垂直的线为z 轴建立如图所示空间直角坐标系D xyz-令,则,,,,AD t =(,0,0)A t (,0,2)P t (0,0,0)D DC =()C 设平面ACP 的法向量()1111,,n x y z =不妨设,,1x =1y t =10z =)1,0n t =设平面CPD 的法向量为()2222,,n x y z =不妨设,则,,2200n DP n DC ⎧⋅=⎪⎨⋅=⎪⎩222200tx z +=⎧∴=2z t =22x =-20y =2(2,0,)n t =- 二面角A CP D --121212cos ,n n n n n n ⋅===.t ∴=AD ∴=18.(1)-2(2)证明见解析(3)23b ≥-解析:(1)时,,对恒成立0b =()ln2x f x ax x =+-11()02f x a x x '=++≥-02x ∀<<而,11222(2)a a a x x x x ++=+≥+--当且仅当时取“=”,1x =故只需,即a 的最小值为-2.202a a +≥⇒≥-(2)方法一:,(0,2)x ∈(2)()f x f x -+332ln (2)(1)ln (1)22x x a x b x ax b x a x x-=+-+-+++-=-关于中心对称.()f x ∴(1,)a 方法二:将向左平移一个单位关于中心对称平移()f x 31(1)ln(1)1x f x a x bx x+⇒+=+++-(0,)a 回去关于中心对称.()f x ⇒(1,)a (3)当且仅当,()2f x >- 12x <<(1)22f a ∴=-⇒=-对恒成立3()ln 2(1)22x f x x b x x∴=-+->--12x ∀<<222112(1)2()23(1)3(1)(1)32(2)(2)x f x b x b x x b x x x x x x ⎡⎤-'=+-+-=+-=-+⎢⎥---⎣⎦令,必有(必要性)2()3(2)g x b x x =+-∴2(1)2303g b b =+≥⇒≥-当时,对,23b ≥-(1,2)x ∀∈32()ln 2(1)()23x f x x x h x x ≥---=-2222(1)1()2(1)2(1)10(2)(2)x h x x x x x x x ⎡⎤-'=--=-->⎢⎥--⎣⎦对恒成立,符合条件,(1,2)x ∀∈()(1)2h x h ∴>=-综上.23b ≥-19.(1),,(1,2)(1,6)(5,6)(2)证明见解析(3)证明见解析解析:(1)以下满足:,,(,)i j (1,2)(1,6)(5,6)(2)易知:,,,等差等差p a q a r a s a ,,,p q r s ⇔故只需证明:1,3,4,5,6,7,8,9,10,11,12,14可分分组为,,即可(1,4,7,10)(3,6,9,12)(5,8,11,14)其余,,按连续4个为一组即可k a 1542k m ≤≤+(3)由第(2)问易发现:,,…,是可分的是可分的.1a 2a 42m a +(,)i j 1,2,42m ⇔+ (,)i j 易知:1,2,…,是可分的42m +(41,42)k r ++(0)k r m ≤≤≤因为可分为,…,与(1,2,3,4)(43,42,41,4)k k k k ---,…,(4(1)1,4(1),4(1)1,4(1)2)r r r r +-+++++(41,4,41,42)m m m m -++此时共种211C (1)(1)(2)2m m m m +++=++再证:1,2,…,是可分的42m +(42,41)k r ++(0)k r m ≤<≤易知与是可分的1~4k 42~42r m ++只需考虑,,,…,,,41k +43k +44k +41r -4r 42r +记,只需证:1,3,5,…,,,可分*N p r k =-∈41p -4p 42p +去掉2与1~42p +41p +观察:时,1,3,4,6无法做到;1p =时,1,3,4,5,6,7,8,10,可以做到;2p =时,1,3,4,5,6,7,8,9,10,11,12,143p =时,1,3,4,5,6,7,8,9,10,11,12,13,14,15,16,184p =,,,满足(1,5,9,13)(3,7,11,15)(4,8,12,16)(6,10,14,18)故,可划分为:2p ∀≥,,,(1,1,21,31)p p p +++(3,3,23,33)p p p +++(4,4,24,34)p p p +++,…,,,共p 组(5,5,25,35)p p p +++(,2,3,4)p p p p (2,22,32,42)p p p p ++++事实上,就是,,且把2换成(,,2,3)i p i p i p i +++1,2,3,,i p = 42p +此时,均可行,共组(,)k k p +2p ≥211C (1)2m m m m +-=-,,…,不可行(0,1)(1,2)(1,)m m -综上,可行的与至少组(42,41)k r ++(41,42)k r ++11(1)(1)(2)22m m m m -+++故,得证!()222224212221112C (21)(41)8618m m m m m m m m P m m m m +++++++≥==>++++。

1949-1961年普通高等学校招生全国统一考试数学试题

1949-1961年普通高等学校招生全国统一考试数学试题

1949年北大清华联合招生数学试题 一、(5分)有连续三自然数,其平方和为50,求此三数.二、(5分)解方程:6640x +=. 三、(15分)求适合sin 2cos 2x x +x =的根(02x π≤≤). 四、(15分),,PA PB PC 为过圆周上P 点之三弦,PT 为圆周之切线.设一直线平行于PT ,交,,PA PB PC 于,,A B C '''之三点,证明:PA PA PB PB PC PC '''⋅=⋅=⋅. 五、(10分)已知A ∠及角内部一点P ,求作通过P 点的直线,使其在A ∠之内部分被点P 所平分. 六、(5分)用数学归纳法证明:3333221123(1)4n n n ++++=+. 七、(10分)某人在高处望见正东海面上一船只,其俯角为30︒.当该船向正南航行a 里后,其船只的俯角为15︒.求此人视点高出海平面若干垂足 八、(15分)自ABC ∆之顶点A 至对边作垂线AD ,自垂足D 作边,AB AC 之垂线, 其垂足为,E F .求证:,,,B E F C 在同一圆上. 九、(10分)一平面内有10点,除其中4点在同一直线上外,其余各点无3点在一直线上.问连接各点之所有直线共若干条. 十、(10分)下列做法对吗?不对的请改正.16==对吗?为什么?2.(sin cos )sin cos ni n i n θθθθ+=+对吗?为什么?3.log log 1a b b a ⋅=对吗?为什么?1950年全国统一高考数学试题 一、(5分)k 为何值时,二次方程22(1)520x k x k --+-=有等根,并求其根. 二、(20分)有等长两竹杆直立在地上,皆被风吹折.折处距地面两者不同,其差为3尺.顶着地之处与竹杆足相距一个为8尺,另一个为16尺.求竹杆之长. 三、(10分)绳长40丈,围一矩形之地.问其面积最大时,其边长若干? 四、(5分)求国旗上五角星每一角之度数. 五、(10分)过梯形上底一点作直线,分梯形为两个等面积梯形. 六、(20分)从塔之正南面一点A ,测得塔顶仰角为45︒,又从塔之正东面一点B 测得塔的仰角为30︒.若AB =100尺,求塔高. 七、(10分)试证: 1.22cos()cos()cos sin A B A B A B +-==-. 2.22sin()sin()sin sin A B A B A B +-=-. 八、(20分)分别指出下列正误,并加以改正:1.011,1a a ==.2.,mnmnmnm na a a a a a+⋅=+=.3==. 4.lg11,lg00=-=.5.lg()lg lg ,lg lg lg a b a b ab a b +=+=. 6.11sin sinsin()x y x y --+=+.7.在ABC ∆及A B C '''∆中,若,,AB A B BC B C A A '''''==∠=∠,则两三角形全等.8.若,,,A B C D 在同一个圆上,则恒有ACB ADB ∠=∠.1950年华北高考数学试题甲组 第一部分一、将下列各题正确的答案填入括号内: 1.322240x x x --+=的一个根为2,其他两根为A .两个0B .一个0,一个实数C .两个实数D .一个实数根,一个虚数根E .两个虚数根2.已知lgsin 26201.6470'︒=,lgsin 26301.6495'︒=.若 lgsin 1.6486x =,则x 的近似值为A .2623'︒B .2624'︒C .2625'︒D .2626'︒E .2627'︒3.若(,)ρθ为一点之极坐标,则20cos ρθ=的图形为A .圆B .椭圆C .双曲线D .抛物线E .二平行直线4.22220x xy y x y ++++-=之图形为 A .圆 B .椭圆 C .双曲线 D .抛物线 E .二平行直线5.展开二项式17()a b +,其第15项为 A .152238a b B .314680a bC .143736a bD .15()a b +E .87a b二、将下列各题正确的答案填在虚线上: 1.二直线40x y ++=及5210x y -=相交之锐角之正切为 .2.设,x y 都是实数,且()(84)x yi i +-+()(1)x yi i =++,则x = .3.555ad a dbe b e cfc f++=+ . 4.已知x 在第四象限内,而21sin 9x =,则tan x 之值至第二位小数为 . 5.参数方程12,(1)x t y t t =+⎧⎨=+⎩之直角坐标方程为 .甲组 第二部分 1.证明21sin (tan sec )1sin xx x x+=+-.2.设t 及s 为实数,已知方程3250x x tx s -++=之一根为23i -,求t及s 之值.3.用数学归纳法证明:122334(1)n n ⨯+⨯+⨯+++1(1)(2)3n n n =++. 4.设1P 及222(,)P x y 为二定点,过1P 作直线交y 轴于B (如图),过2P 作直线与过1P 之直线垂直,并交轴x 于A ,求AB 中点Q 之轨迹.5.如图,N 第一部分.a c e c eb d f d f +++=+++ .ac ebd f= 内,若1:2;3:4,则︒︒︒ ︒a = .1n R-.1n R+lg 2.190.3404=,ABA .0.5770B .1.1038C .6.1038D .264.06 E.416.745.2sin tan 5AA A ===,1sin tan 2B B B ===,则t a n ()A B +=A .112-B .34C .18-D .98E .18二、将下列各题正确的答案填在虚线上: 1.sin 330︒之值为 . 2.32452x x x -+-的因子是 . 3.书一本,定价元p .因为有折扣,实价较定价少d 元,则该书实价是定价的百分之 .4.若一个多边形之每一外角各为45︒,则此多边形有 边. 5.a 年前,弟年龄是兄年龄的1n,今年弟年龄是兄年龄的1m,兄今年 岁. 乙、丙组 第二部分1.设AB 是一圆的直径,过,A B 作AC 及BD 二弦相交于E ,则2AE AC BE BD AB ⋅+⋅=.2.若,,A B C 为ABC ∆之内角,则tan tan tan tan tan tan A B C A B C ++=.3.分解因式:(1)32221x x x +++.(2)22282143x xy y x y +-++-. (3)444222222222x y z x y y z z x ++---.4.设s 为ABC ∆三边和的一半,r 为内切圆半径,又tan2A=求证:r =5.设一调和级数第p 项为a ,第q 项为b ,第r 项为c ,则()()()0q r bc r p ca p q ab -+-+-=.γC /B /A /βαC B A 1951年普通高等学校招生全国统一考试数学 第一部分1.设有方程组8,27x y x y +=-=,求,x y .2.若一三角形的重心与外接圆圆心重合,则此三角形为何种三角形?3.当太阳的仰角是600时,若旗杆影长为1丈,则旗杆长为若干丈?4.若x y z a b b c c a ==---,而,,a b c 各不相等,则?x y z ++=5.试题10道,选答8道,则选法有几种? 6.若一点P 的极坐标是(,)x θ,则它的直角坐标如何?7.若方程220x x k ++=的两根相等,则k =?8.列举两种证明两个三角形相似的方法9.当(1)(2)0x x +-<时,x 的值的范围如何?10.若一直线通过原点且垂直于直线0ax by c ++=,求直线的方程.11.61x x ⎛⎫+ ⎪⎝⎭展开式中的常数项如何?12.02cos =θ的通解是什么?13.系数是实数的一元三次方程,最少有几个根是实数,最多有几个根是实数?14.245505543--=?15.2241x y -=的渐近线的方程如何?16.三平行平面与一直线交于,,A B C 三点,又与另一直线交于,,A B C '''三点,已知3,7AB BC ==及9A B ''=,求A C '17.有同底同高的圆柱及圆锥,已知圆柱的体积为18立方尺,求圆锥的体积18.已知lg2=0.3010,求lg5.19.二抛物线212y x =与223x y =的公共弦的长度是多少?20.国旗上的正五角星的每一个顶角是多少度?第二部分1. ,,P Q R 顺次为△ABC 中BC ,CA ,AB 三边的中点,求证圆ABC 在A 点的切线与圆PQR 在P 点的切线平行.2.设ABC ∆的三边4BC pq =,223CA p q =+,2232AB p pq q =+-,求B ∠,并证明B ∠为A ∠及C ∠的等差中项.3.(1)求证,若方程320x ax bx c +++=的三根可排成等比数列,则33a cb =.(2)已知方程32721270x x x +--=的三根可以排成等比数列,求三根.4.过抛物线顶点任做互相垂直的两弦,交此抛物线于两点,求证此两点联线的中点的轨迹仍为一抛物线.1952年普通高等学校招生全国统一考试数学 第一部分 1.因式分解44x y -=?2.若lg(2)21lg x x =,问x =?3.若方程320x bx cx d +++=的三根为1,-1,21,则c =?4.40=,求x .5. 123450?321=6.两个圆的半径都是4寸,并且一个圆过另一个圆的圆心,则此两圆的公共弦长是多少寸?7.三角形ABC 的面积是60平方寸,M 是AB 的中点,N 是AC 的中点,△AMN 的面积是多少?9.祖冲之的圆周率π=?10.球的面积等于大圆面积的多少倍?11.直圆锥之底半径为3尺,斜高为5尺,则其体积为多少立方尺?12.正多面体有几种?其名称是什么?13.已知 1sin 3θ=,求cos 2θ=?14.方程21tg x =的通解x =?15.太阳的仰角为300时,塔影长为5丈,求塔高是多少? 16.△ABC 的b 边为3寸,c 边为4寸,A 角为300,问△ABC 的面积为多少平方寸?17.已知一直线经过(2,3),其斜率为-1,则此直线方程如何?18.若原点在一圆上,而此圆的圆心为(3,4),则此圆的方程如何?19.原点至3410x y ++=的距离是什么?20.抛物线286170y x y -++=的顶点坐标是什么?第二部分 1.解方程432578120x x x x +---=.2.△ABC 中,∠A 的外角平分线与此三角形外接圆相交于P ,求证:BP CP =.3.设三角形的边长为4,5,6a b c ===,其对角依次为,,A B C ,求cos C ,sin C ,sin B ,sin A .问,,A B C 三角为锐角或钝角?4.一椭圆通过(2,3)及(1,4)-两点,中心为原点,长短轴重合于坐标轴,试求其长轴,短轴及焦点.1953年普通高等学校招生全国统一考试数学1.甲、解1110113x x x x +-+=-+.乙、23120x kx ++=的两根相等,求k 值.丙、求311246?705-=丁、求300700lg lg lg173++.戊、求tg870︒=?已、若1cos2x 2=,求x 之值.庚、三角形相似的条件为何?(把你知道的都写出来)辛、长方体之长、宽、高各为12寸、3寸、4寸,求对角线的长.壬、垂直三棱柱之高为6寸,底面三边之长为3寸、4寸、5寸,求体积.2.解方程组2222239, (1)45630.(2)x xy y x xy y ⎧-+=⎪⎨-+=⎪⎩3..乙、求123)12(xx +之展开式中的常数项.4.锐角△ABC ∆的三高线为AD ,BE ,CF ,垂心为H ,求证HD 平分EDF ∠.5.已知△ABC ∆的两个角为450,600,而其夹边之长为1尺,求最小边的长及三角形的面积.1954年普通高等学校招生全国统一考试数学 1.甲、化简131121373222[()()()]a b ab b ---. 乙、解c b a x lg lg 2lg 31lg 61++=.丙、用二项式定理计算43.02,使误差小于千分之一.丁、试证直角三角形弦上的半圆的面积,等于勾上半圆的面积与股上半圆的面积的总和. 戊、已知球的半径等于r ,试求内接正方形的体积.己、已知a 是三角形的一边,β及γ是这边的两邻角,试求另一边b 的计算公式.2.描绘2371y x x =--的图象,并按下列条件分别求x 的值所在的范围:①0y >; ②0y <.3.假设两圆互相外切,求证用连心线做直径的圆,必与前两圆的外公切线相切4.试由11sin 21tgxx tgx+=+-,试求x 的通值.5.有一直圆锥,另外有一与它同底同高的直圆柱,假设a 是圆锥的全面积,a '是圆柱的全面积,试求圆锥的高与母线的比值.1955年普通高等学校招生全国统一考试数学 1.甲、以二次方程2310x x --=的两根的平方为两根,作一个二次方程.乙、等腰三角形的一腰的长是底边的4倍,求这三角形各角的余弦.丙、已知正四棱锥底边的长为a ,侧棱与底面的交角为450,求这棱锥的高.丁、写出二面角的平面角的定义.2.求,,b c d 的值,使多项式32x bx cx d +++适合于下列三条件: (1)被1x -整除, (2)被3x -除时余2,(3)被2x +除时与被2x -除时的余数相等.3.由直角△ABC 勾上一点D 作弦AB 的垂线交弦于E ,交股的延长线于F ,交外接圆于G 求证:EG 为EA 和EB 的比例中项,又为ED 和EF 的比例中项. 4.解方程x x x sin cos 2cos +=,求x 的通值.5.一个三角形三边长成等差数列,其周长为12尺,面积为6平方尺,求证这个三角形为一个直角三角形.B C F B C EM A B C DD //1956年普通高等学校招生全国统一考试数学1.甲、利用对数性质计算2lg 5lg5lg50+⋅.乙、设m 是实数,求证方程222(41)0x m x m m ----=的两根必定都是实数. 丙、设M 是ABC ∆的边AC 的中点,过M 作直线交AB 于E ,过B 作直线平行于ME 交AC 于F AEF ∆的面积等于ABC ∆的面积的一半.丁、一个三角形三边长分别为3尺,4尺及37尺,求这个三角形的最大角的度数.戊、设tan ,tan αβ是方程2670x x ++=的两根求证:)cos()sin(β+α=β+α.2.解方程组12,(1)136.(2)x y x y ⎧-=⎪⎨+=⎪⎩ 3.设P 为等边ABC ∆外接圆的点,求证:22PA AB PB PC =+⋅.4.有一个四棱柱,底面是菱形ABCD ,A AB A AD ''∠=∠A ACC''垂直于底面ABCD .5.若三角形的三个角成等差级数,则其中有一个角一定是600;若这样的三角形的三边又成等比级数,则三个角都是600,试证明之.1957年普通高等学校招生全国统一考试数学 1.甲、化简1223271020.12927--⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭.乙、求适合不等式22<+x x 的实数x 的范围.丙、求证cot 22301'︒=丁、在四面体A B C D 中,AC BD =,,,,P Q R S 依次为棱,,,AB BC CD DA 的中点,求证:PQRS 为一个菱形.戊、设b a ,为异面直线,EF 为b a ,的公垂线,α为过EF 的中点且与b a ,平行的平面,M 为a 上任一点,N 为b 上任一点求证线段MN 被平面α二等分.2.解方程组⎩⎨⎧⋅==-++)2(101010)1(1)2lg()12lg( yx xy y x3.设ABC ∆的内切圆半径为r ,求证BC边上的高.2sin2cos 2cos2A C B r AD ⋅⋅=4.设ABC ∆为锐角三角形,以BC 为直径作圆,并从A 作此圆的切线AD 与圆切于D 点,由在AB 边上取AE AD =,并过E 作AB 的垂线与AC 边的延长线交于F ,求证:(1)AE :AB =AC :AF . (2)ABC ∆的面积=AEF ∆的面积.5.求证:方程0)2()12(23=+-++-Q x Q x x 的一个根是1.设这个方程的三个根是ABC ∆的三个内角的正弦,sin ,sin ,sin C B A 求,,A B C 的度数以及Q 的值.AC AB1958年普通高等学校招生全国统一考试数学 1.甲、求二项式5)21(x +展开式中3x 的系数.乙、求证.sin 88sin 4cos 2cos cos xxx x x =⋅⋅丙、设AB ,AC 为一个圆的两弦,D 为 的中点,E 为 的中点,作直线DE 交AB 于M ,交AC 于N ,求证: AM AN =.丁、求证:正四面体ABCD 中相对的两棱(即异面的两棱)互相垂直.戊、求解.cos 3sin x x =2.解方程组4,(1)1229. (2)x y y =⎪++=⎪⎩3.设有二同心圆,半径为,()R r R r >,今由圆心O 作半径交大圆于A ,交小圆于A ',由A 作直线AD 垂直大圆的直径BC ,并交BC 于D ;由A '作直线A E '垂直AD ,并交AD 于E ,已知OAD α∠=,求OE 的长 4.已知三角形ABC ,求作圆经过A 及AB 中点M ,并与BC 直线相切.5.已知直角三角形的斜边为2,斜边上的高为23,求证此直角三角形的两个锐角是下列三角方程的根043sin 231sin 2=++-x x .321O G F ED C BA cb a A B CDαO 1959年普通高等学校招生全国统一考试数学1.甲、已知lg 20.3010,lg 70.8451==,求lg35乙、求ii +-1)1(3的值.丙、解不等式.3522<-x x丁、求︒165cos 的值 戊、不在同一平面的三条直线c b a ,,互相平行,,A B 为b 上两定点,求证另两顶点分别在c a 及上的四面体体积为定值己、圆台上底面积为225cm π,下底直径为cm 20,母线为cm 10,求圆台的侧面积2.已知△ABC 中,∠B =600,4AC =,面积为3,求,AB BC .3.已知三个数成等差数列,第一第二两数的和的3倍等于第三个数的2倍,如果第二个数减去2,则成等比数列,求这三个数.4.已知圆O 的两弦AB 和CD 延长相交于E ,过E 点引EF ∥BC 交AD 的延长线于F ,过F 点作圆O 的切线FG ,求证:EF =FG .5.已知,,A B C 为直线l 上三点,且A B B C a ==;P 为l 外一点,且90,APB ∠=︒45BPC ∠=︒,求 (1)PBA ∠的正弦、余弦、正切; (2)PB 的长;(3)P 点到l 的距离.O DC B A 1960年普通高等学校招生全国统一考试数学 1.甲、解方程.075522=---x x (限定在实数范围内)乙、有5组蓝球队,每组6队,首先每组中各队进行单循环赛(每两队赛一次),然后各组冠军再进行单循环赛,问先后比赛多少场?.丙、求证等比数列各项的对数组成等差数列(等比数列各项均为正数).丁、求使等式2cos 2sin12xx =-成立的x 值的范围(x 是00~7200的角).戊、如图,用钢球测量机体上一小孔的直径,所用钢球的中心是O ,直径是12mm,钢球放在小孔上测得钢球上端与机件平面的距离CD 是9mm ,求这小孔的直径AB 的长.己、四棱锥P ABCD -的底面是一个正方形,PA 与底面垂直,已知3PA =cm ,P 到BC 的距离是5cm ,求PC 的长.2.有一直圆柱高是20cm ,底面半径是5cm,它的一个内接长方体的体积是80cm 3,求这长方体底面的长与宽.3.从一船上看到在它的南300东的海面上有一灯塔,船以30里/小时的速度向东南方向航行,半小时后,看到这个灯塔在船的正西,问这时船与灯塔的距离(精确到0.1里)4.要在墙上开一个矩形的玻璃窗,周长限定为6米.(1)求以矩形的一边长x 表示窗户的面积y 的函数;(2)求这函数图像的顶点坐标及对称轴方程;(3)画出这函数的图像,并求出x 的允许值范围.5.甲、已知方程0cos 3sin 422=θ+θ⋅-x x 的两个根相等,且θ为锐角,求θ和这个方程的两个根.乙、a 为何值时,下列方程组的解是正数?⎩⎨⎧=+=+8442y x ay x .O CBA 1961年普通高等学校招生全国统一考试数学 1.甲、求二项式10)2(x -展开式里含7x 项的系数.乙、解方程2lg lg(12)x x =+.丙、求函数51--=x x y 的自变量x 的允许值. 丁、求125sin 12sinπ⋅π的值.戊、一个水平放着的圆柱形水管,内半径是12cm ,排水管的圆截面上被水淹没部分的弧含1500(如图),求这个截面上有水部分的面积(取14.3=π).己、已知△ABC 的一边BC 在平面M 内,从A 作平面M 的垂线,垂足是1A .设 △ABC 的面积是S ,它与平面M 组成的二面角等于)900(︒<α<︒α,求证:1cos A BC S S α∆=.2.一机器制造厂的三年生产计划每年比上一年增产的机器台数相同,如果第三年比原计划多生产1000台,那么每年比上一年增长的百分率相同,而且第三年生产的台数恰等于原计划三年生产总台数的一半,原计划每年生产机器多少台? 3.有一块环形铁皮,它的内半径是45厘米,外半径是75厘米,用它的五分之一(如图中阴影部分)作圆台形水桶的侧面.求这水4.在平地上有,A B 两点,A 在山的正东,B 在山的东南,且在A 的650南300米的地方,在A 测得山顶的仰角是300,求山高(精确到10米,94.070sin =︒).5.两题任选一题.甲、k 是什么实数时,方程22(23)310x k x k -+++=有实数根?乙、设方程28(8sin )2cos2x x αα-++0=的两个根相等,求α.。

2009年普通高等学校招生全国统一考试大纲——数学(文)

2009年普通高等学校招生全国统一考试大纲——数学(文)

2009年普通高等学校招生全国统一考试大纲——数学(文)(必修+选修Ⅰ)Ⅰ.考试性质普通高等学校招生全国统一考试是由合格的高中毕业生和具有同等学力的考生参加的选拔性考试,高等学校根据考生的成绩,按已确定的招生计划,德、智、体、全面衡量,择优录取,因此,高考应有较高的信度、效度,必要的区分度和适当的难度.Ⅱ.考试要求《普通高等学校招生全国统一考试大纲(文科·2009年版)》中的数学科部分,根据普通高等学校对新生文化素质的要求,依据国家教育部2002年颁布的《全日制普通高级中学课程计划》和《全日制普通高级中学数学教学大纲》的必修课与选修I的教学内容,作为文史类高考数学科试题的命题范围.数学科的考试,按照“考查基础知识的同时,注重考查能力”的原则,确立以能力立意命题的指导思想,将知识、能力与素质考查融为一体,全面检测考生的数学素养.数学科考试要发挥数学作为基础学科的作用,既考查中学数学知识和方法,又考查考生进入高校继续学习的潜能.一、考试内容的知识要求、能力要求和个性品质要求1.知识要求知识是指《全日制普通高级中学数学教学大纲》所规定的教学内容中的数学概念、性质、法则、公式、公理、定理以及其中的数学思想和方法.对知识的要求,依此为了解、理解和掌握、灵活和综合运用三个层次.(1)了解:要求对所列知识的含义及其相关背景有初步的、感性的认识,知道这一知识内容是什么,并能(或会)在有关的问题中识别它.(2)理解和掌握:要求对所列知识内容有较深刻的理论认识,能够解释、举例或变形、推断,并能利用知识解决有关问题.(3)灵活和综合运用:要求系统地掌握知识的内在联系,能运用所列知识分析和解决较为复杂的或综合性的问题.2.能力要求能力是指思维能力、运算能力、空间想象能力以及实践能力和创新意识.(1)思维能力:会对问题或资料进行观察、比较、分析、综合、抽象与概括;会用类比、归纳和演绎进行推理;能合乎逻辑地、准确地进行表述.数学是一门思维的科学,思维能力是数学学科能力的核心.数学思维能力是以数学知识为素材,通过空间想象、直觉猜想、归纳抽象、符号表示、运算求解、演绎证明和模式构建等诸方面,对客观事物中的空间形式、数量关系和数学模式进行思考和判断,形成和发展理性思维,构成数学能力的主体.(2)运算能力:会根据法则、公式进行正确运算、变形和数据处理;能根据问题的条件和目标,寻找与设计合理、简捷的运算途径;能根据要求对数据进行估计和近似计算.运算能力是思维能力和运算技能的结合.运算包括对数字的计算、估值和近似计算,对式子的组合变形与分解变形,对几何图形各几何量的计算求解等.运算能力包括分析运算条件、探究运算方向、选择运算公式、确定运算程序等一系列过程中的思维能力,也包括在实施运算过程中遇到障碍而调整运算的能力以及实施运算和计算的技能。

(详细解析)1991年普通高等学校招生全国统一考试数学试题及答案(文)

(详细解析)1991年普通高等学校招生全国统一考试数学试题及答案(文)

1991年普通高等学校招生全国统一考试数学(文史类)考生注意:这份试卷共三道大题(26个小题).满分120分.一、选择题:本大题共15小题;每小题3分,共45分.在每小题给出的四个选项中,只有一是符合题目要求的.把所选项前的字母填在题后括号内1.已知4sin 5α=,并且是第二象限的角,那么tan α的值等于 A .34- B .43- C .43 D .34【答案】A【解析】由题设3cos 5α=-,所以4tan 3α=-.2.焦点在(1,0)-,顶点在(1,0)的抛物线方程是A .)1(82+=x y B .)1(82+-=x y C .)1(82-=x y D .)1(82--=x y 【答案】D【解析】抛物线开口向左,且112p=+,所以4p =.3.函数x x y 44sin cos -=的最小正周期是 A .2πB .πC .π2D .π4 【答案】B【解析】44222222cos sin (cos sin )(cos sin )cos sin cos 2y x x x x x x x x x =-=+-=-=,所以最小正周期是π.4.(2,5)P 关于直线0x y +=的对称点的坐标是A .(5,2)PB .(2,5)P -C .(5,2)P --D .(2,5)P -- 【答案】C【解析】设(2,5)P 的对称点(,)P x y ',则250,2251,2x y y x ++⎧+=⎪⎪⎨-⎪=⎪-⎩解得5,2,x y =-⎧⎨=-⎩.5.如果把两条异面直线看成“一对”,那么六棱锥的棱所在的12条直线中,异面直线共有 A .12对 B .24对 C .36对 D .48对 【答案】B【解析】每一条侧棱与不共点的其余底面4条边均异面,所以共有24对.6.函数5sin(2)2y x π=+的图象的一条对称轴的方程是 A .2π-=x B .4π-=x C .8π=x D .45π=x【答案】A【解析】对称轴的方程满足52()22x k k Z πππ+=+∈,则()2x k k Z ππ=⋅-∈,显然1k =时2π-=x .7.如果三棱锥S ABC -的底面是不等边三角形,侧面与底面所成的二面角都相等,且顶点S 在底面的射影O 在ABC ∆内,那么O 是ABC ∆的A .垂心B .重心C .外心D .内心 【答案】D【解析】由题设可知点O 到ABC ∆三边的距离相等,所以O 是ABC ∆的内接圆的圆心.8.已知}{n a 是等比数列,且252,0645342=++>a a a a a a a n ,那么53a a + 的值等于 A .5 B .10 C .15 D .20 【答案】A【解析】设公比为q ,则由题设可得22224442225a a a q q ++⋅=,即2241()25a q q+=,则41()5a q q+=,即355a a +=.9.已知函数651x y x +=-(x R ∈,且1x ≠),那么它的反函数为 A .651x y x +=-(x R ∈,且1x ≠) B .56x y x +=-(x R ∈,且6x ≠)C .165x y x -=+(x R ∈,且56x ≠-)D .65x y x -=+(x R ∈,且5x ≠-)【答案】B【解析】65516x y y x x y ++=⇒=--,所以所求反函数为56x y x +=-(x R ∈,且6x ≠),B 正确.10.从4台甲型和5台乙型电视机中任取出3台,其中至少要有甲型与乙型电视机各1台,则不同的取法共有 A .140种 B .84种 C .70种 D .35种 【答案】C【解析】直接法:1221454570C C C C +=. 间接法:33374570C C C --=.11.设甲、乙、丙是三个命题.如果甲是乙的必要条件;丙是乙的充分条件但不是乙的必要条件.那么 A .丙是甲的充分条件,但不是甲的必要条件 B .丙是甲的必要条件,但不是甲的充分条件 C .丙是甲的充要条件D .丙不是甲的充分条件,也不是甲的必要条件 【答案】A【解析】由题意,乙⇒甲,丙⇒乙,但乙⇒丙,从而可得甲⇒丙,丙⇒甲.12. )]211()511)(411)(311([lim +----∞→n n n 的值等于 A .0 B .1 C .2 D .3 【答案】C【解析】11112341lim[(1)(1)(1)(1)]lim[]34523452n n n n n n n →∞→∞+----=⋅⋅⋅⋅⋅++ 2lim22n nn →∞==+.13.如果0AC <且0BC <,那么直线0Ax By C ++=不通过...A .第一象限B .第二象限C .第三象限D .第四象限【答案】C 【解析】A C y x B B =--,由于0AC <且0BC <,所以0,0A CB B->->,故D 正确.14.如果奇函数()f x 在区间[3,7]上是增函数且最小值为5,那么()f x 在区间[7,3]--上是 A .增函数且最小值为5- B .增函数且最大值为5- C .减函数且最小值为5- D .减函数且最大值为5-【答案】B【解析】若[7,3]x ∈--,则[3,7]x -∈,()()f x f x -=-是增函数的最大值为(3)f -=(3)5f -=-.15.圆222430x x y y +++-=上到直线10x y ++=的距离为2的点共有 A .1个 B .2个 C .3个 D .4个 【答案】C【解析】圆的标准方程为222(1)(2)x y +++=,圆心(1,2)--到直线10x y ++=的距离为2,故与直线10x y ++=平行的直径上和与直线平行的切线上满足条件的点分别有2个和1个.二、填空题:本大题共5小题;每小题3分,共15分.把答案填在题中横线上.16.双曲线以直线1x =-和2y =为对称轴,如果它的一个焦点在y 轴上,那么它的另一焦点的坐标是 . 【答案】(2,2)-【解析】根据题意一个焦点落在2y =上,为(0,2),则另一焦点满足012m+=-,得2m =-,所以另一焦点的坐标是(2,2)-.17.已知sin x =sin 2()4x π-= .【答案】2【解析】2sin 2()sin(2)cos 22sin 1242x x x x ππ-=-=-=-=-.18.不等式2lg(22)1x x ++<的解集是 . 【答案】{}42x x -<<|【解析】由题设得21(1)110x ≤++<,即2280x x +-<,解得42x -<<.19.在7(1)ax +的展开式中,3x 的系数是2x 的系数与4x 的系数的等差中项.若实数1>a ,那么a = .【答案】1015+【解析】由题设可得234,,x x x 的系数分别为524334777,,C a C a C a ⋅⋅⋅,则4352772C a C a ⋅=⋅+347C a ⋅,化简得251030a a -+=,由于1>a ,所以1015a =+.20.在长方体1111ABCD A B C D -中,已知顶点A 上三条棱长分别是23,2,.如果对角线1AC 与过点A 的相邻三个面所成的角分别是,,αβγ,那么222cos cos cos αβγ++=. 【答案】2【解析】∵11B C ⊥面11ABB A ,∴1AC 与面11ABB A 所成的角为11C AB α∠=;同理1AC 与面11ADD A 所成的角为11C AD β∠=;1AC 与面ABCD 所成的角为1C AC γ∠=.∵不妨设12,2,3AB AD AA ===,∴1113,6,7,5AC AC AB AD ====, ∴11111756cos ,cos ,cos 333AB AD AC AC AC AC αβγ======.所以222cos cos cos 2αβγ++=.三、解答题:本大题共6小题;共60分.21.(本小题满分8分)求函数x x x x y 22cos 3cos sin 2sin ++=的最大值.【解】本小题考查三角函数式的恒等变形及三角函数的性质.满分8分.22sin 2sin cos 3cos y x x x x =++222(sin cos )2sin cos 2cos x x x x x =+++ ——1分1sin 2(1cos 2)x x =+++ ——3分2sin 2cos 222sin(2)4x x x π=++=++. ——5分当sin(2)14x π+=时y 取得最大值,这时最大值等于22+. ——6分22.(本小题满分8分)已知复数i z +=1,求复数1632++-z z z 的模和辐角的主值.【解】本小题考查复数基本概念和运算能力.满分8分.2236(1)3(1)631112z z i i iz i i-++-++-==++++ ——2分1i =-. ——4分1i -的模221(1)2r =+-=.因为1i -对应的点在第四象限且辐角的正切tan 1θ=-, 所以辐角的主值74θπ=. ——8分23.(本小题满分10分)如图,在三棱台111A B C ABC -中,已知1AA ⊥底面ABC ,11111AA A B B C a ===,1B B BC ⊥,且1B B 和底面ABC 所成的角45︒,求这个棱台的体积.【解】本小题考查直线与直线,直线与平面的位置关系,以及逻辑推理和空间想象能力.满分10分.因为1AA ⊥底面ABC ,所以根据线面垂线的 定义有1AA BC ⊥.又1BC BB ⊥,且棱1AA 和1BB 的延长线交于一点,所以利用直线和平面垂直的判定定理可以推出BC ⊥侧面11A ABB , 从而根据线面垂线的定义又可得出BC AB ⊥. ∴ABC ∆是直角三角形,90ABC ∠=︒.并且1ABB ∠就是1BB 和底面ABC 所成的角,145ABB ∠=︒. ——3分 作1B D AB ⊥交AB 于D ,则11//B D A A ,故1B D ⊥底面ABC . ∵1Rt B DB ∆中145DBB ∠=︒, ∴ 11DB DB AA a ===,∴2AB a =. ——6分 由于棱台的两个底面相似,故111Rt ABC Rt A B C ∆≅∆.∵1111,2B C A B a AB a ===,∴2BC a =.∴21111122a S A B B C =⋅=上,2122S AB BC a =⋅=下. ——8分11()3V A A S S S S =⋅⋅+⋅+下下棱台上上2222317(22)3226a a a a a a =⋅+⨯+=. ——10分24.(本小题满分10分)设{}n a 是等差数列,1()2n an b =.已知123123211,88b b b b b b ++==.求等差数列的通项n a . 【解】本小题考查等差数列,等比数列的概念及运用方程(组)解决问题的能力.满分10分.设等差数列{}n a 的公差为d ,则1(1)n a a n d =+-.∴()111()2a n dn b +-=.1112222132111()()()222a a d a d b b b ++===. 由12318b b b =,得3218b =,解得212b =. ——3分代入已知条件⎪⎪⎩⎪⎪⎨⎧=++=.82181321321b b b b b b ,整理得⎪⎪⎩⎪⎪⎨⎧=+=.817413131b b b b ,解这个方程组得1312,8b b ==或131,28b b ==. ——6分 ∴11,2a d =-=或13,2a d ==-. ——8分 所以,当11,2a d =-=时1(1)23n a a n d n =+-=-.当13,2a d ==-时1(1)52n a a n d n =+-=-. ——10分25.(本小题满分12分)设0,1a a >≠,解关于x 的不等式42221()xx a a a->. 【解】本小题考查指数函数性质、解不等式及综合分析能力.满分12分. 解法一:原不等式可写成4222x x a aa-->. ① ——1分根据指数函数性质,分为两种情形讨论:(Ⅰ)当01a <<时,由①式得42220x x a -+<, ② ——3分由于01a <<时,判别式2440a ∆=->,所以②式等价于2211x x ⎧>⎪⎨<⎪⎩——5分解③式得x <或x >解④式得x << ——7分 所以,01a <<时,原不等式的解集为{{1x x x x <<-<<||.——8分(Ⅱ)当1a >时,由①式得42220x x a -+>, ⑤ ——9分由于1a >,判别式0∆<,故⑤式对任意实数x 成立,即得原不等式的解集为{}x x -∞<<+∞|. ——12分综合得当01a <<时,原不等式的解集为{{1x x x x <<-<<||;当1a >时,原不等式的解集为{}x x -∞<<+∞|. 解法二:原不等式可写成2242a x x a a-->. ① ——1分(Ⅰ)当01a <<时,由①式得42220x x a -+<, ②——3分分解因式得22(110x x --<. ③即2210,10;x x ⎧-+>⎪⎨--<⎪⎩ 或2210,10.x x ⎧-+⎪⎨-->⎪⎩——5分解由④、⑤组成的不等式组得x<<x <<.——7分 由⑥、⑦组成的不等式组解集为空集;所以,01a <<时,原不等式的解集为{{1x x x x <<-<<||;——8分 (Ⅱ)当1a >时,由①式得42220x x a -+>, ⑧ ——9分配方得222(1)10x a -+->, ⑨对任意实数x ,不等式⑨都成立,即1a >时,原不等式的解集为{}x x -∞<<+∞|.——12分综合得当01a <<时,原不等式的解集为{{1x x x x <<-<<||;当1a >时,原不等式的解集为{}x x -∞<<+∞|.26.(本小题满分12分)已知椭圆的中心在坐标原点O ,焦点在坐标轴上,直线1y x =+与该椭圆相交于P 和Q,且,OP OQ PQ ⊥=.求椭圆的方程. 【解】本小题考查椭圆的性质、两点的距离公式、两条直线垂直条件、二次方程根与系数的关系及分析问题的能力.满分12分.解法一:设所求椭圆方程为22221x y a b+=.依题意知,点,P Q 的坐标满足方程组22221,1.x y a b y x ⎧+=⎪⎨⎪=+⎩将②式代入①式,整理得222222()2(1)0a b x a x a b +++-=,③ ——2分 设方程③的两个根分别为12,x x ,那么直线1y x =+与椭圆的交点为1122(,1),(,1)P x x Q x x ++. ——3分由题设,OP OQ PQ ⊥=,可得[]12122222121111()(1)(1)(.2x x x x x x x x ++⎧⋅=-⎪⎪⎨⎪-++-+=⎪⎩,整理得()()12122121221041650.x x x x x x x x +++=⎧⎪⎨+--=⎪⎩,——6分 解这个方程组,得⎪⎪⎩⎪⎪⎨⎧-=+=;,23412121x x x x 或⎪⎪⎩⎪⎪⎨⎧-=+-=.21412121x x x x ,根据根与系数的关系,由③式得(Ⅰ)2222222232(1)14a a b a b a b ⎧=⎪⎪+⎨-⎪=⎪+⎩,;或(Ⅱ)2222222212(1)1.4a a b a b a b ⎧=⎪⎪+⎨-⎪=-⎪+⎩, ——10分资料内容仅供您学习参考,如有不当之处,请联系改正或者删除----完整版学习资料分享---- 解方程组(Ⅰ),(Ⅱ),得⎪⎩⎪⎨⎧==;,32222b a 或⎪⎩⎪⎨⎧==.23222b a , 故所求椭圆的方程为132222=+y x ,或.123222=+y x ——12分 解法二:同解法一得222222()2(1)0a b x a x a b +++-=, ③ ——2分解方程③得 22222222222111b a b a ab a x b a b a ab a x +-+--=+-++-=,. ④ ——4分 则直线1y x =+与椭圆的交点为1122(,1),(,1)P x x Q x x ++.由题设OP OQ ⊥,得1212111x x x x ++⋅=-. ⑤ 将④式代入⑤式,整理得22222a b a b +=. ⑥由PQ =,得[]2222121()(1)(1)x x x x -++-+=,即2215()4x x -=.⑦ 将④式代入⑦式,整理得22222224(1)5()4a b a b a b +-=+. ⑧ 将⑥式、⑧式联立,整理得2222834.3a b a b ⎧+=⎪⎪⎨⎪=⎪⎩,解此方程得⎪⎩⎪⎨⎧==;,32222b a 或⎪⎩⎪⎨⎧==.23222b a , 故所求椭圆的方程为132222=+y x ,或.123222=+y x ——12分。

2023年普通高等学校招生全国统一考试(重庆卷)数学试题卷(文史类)全解全析

2023年普通高等学校招生全国统一考试(重庆卷)数学试题卷(文史类)全解全析

2023年普通高等学校招生全国统一考试(重庆卷)数学试卷卷(文史类)数学试卷卷(文史类)共5页。

满分150分。

考试时间120分钟。

注意事项:1.答题前,务必将自己地姓名、准考证号填写在答题卡规定地位置上。

2.答选择题时,必须使用2B 铅笔将答题卡上对应题目地解析标号涂黑。

如需改动,用橡皮擦擦干净后,再选涂其他解析标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将解析书写在答题卡规定地位置上。

4.所有题目必须在答题卡上作答,在试卷卷上答题无效。

5.考试结束后,将试卷卷和答题卡一并交回。

参考公式:如果事件A 、B 互斥,那么 P(A+B)=P(A)+P(B).如果事件A 、B 相互独立,那么P(A ·B)=P(A)·P(B).如果事件A 在一次试验中发生地概率是P ,那么n 次独立重复试验中恰好发生k 次地概率 P n (K)=k m P k (1-P)n-k一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出地四个备选项中,只有一项是符合题目要求地.(1)已知{a n }为等差数列,a 2+a 8=12,则a 5等于(A)4 (B)5(C)6(D)7【解析】C【解析】本小题主要考查等差数列地性质。

由285212a a a +==得:56a =,故选C 。

(2)设x 是实数,则"x >0"是"|x |>0"地 (A)充分而不必要条件(B)必要而不充分条件(C)充要条件(D)既不充分也不必要条件【解析】A【解析】本小题主要考查充要条件地判定。

由0x >||0x ⇒>充分 而||0x >0x ⇒>或0x <,不必要,故选A 。

(3)曲线C :cos 1.sin 1x y θθ=-⎧⎨=+⎩(θ为参数)地普通方程为(A)(x -1)2+(y +1)2=1(B) (x +1)2+(y +1)2=1(C) (x -1)2+(y -1)2=1(D) (x -1)2+(y -1)2=1【解析】C【解析】本小题主要考查圆地参数方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1990年全国高考试题(文史类)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.把所选项前的字母填在题后括号内.【】(2)cos275°+cos215°+cos75°cos15°的值等于【】(3)如果轴截面为正方形的圆柱的侧面积是S,那么圆柱的体积等于【】【】【】(6)已知上图是函数y=2sin(ωx+ψ)(│ψ│<)的图象,那么【】(7)设命题甲为:0<x<5;命题乙为:│x-2│<3.那么(A)甲是乙的充分条件,但不是乙的必要条件.(B)甲是乙的必要条件,但不是乙的充分条件.(C)甲是乙的充要条件.(D)甲不是乙的充分条件,也不是乙的必要条件.【】(A){-2,4}(B){-2,0,4}(C){-2,0,2,4}(D){-4,-2,0,4}【】(9)如果直线y=ax+2与直线y=3x-b关于直线y=x对称,那么(C)a=3,b=-2(D)a=3,b=6【】(10)如果抛物线y2=a(x+1)的准线方程是x=-3,那么这条抛物线的焦点坐标是(A)(3,0)(B)(2,0)(C)(1,0)(D)(-1,0)【】(A)Ф(B){(2,3)}(C)(2,3)(D){(x,y)│y=x+1}【】(12)A,B,C,D,E五人并排站成一排,如果A,B必须相邻且B在A的右边,那么不同的排法共有(A)60种(B)48种(C)36种(D)24种【】(13)已知f(x)=x5+ax3+bx-8,且f(-2)=10,那么f(2)等于(A)-26(B)-18(C)-10(D)10【】(14)如图,正三棱锥S-ABC的侧棱与底面边长相等,如果E、F分别为SC、AB的中点,那么异面直线EF与SA所成的角等于(A)90°(B)60°(C)45°(D)30°【】(15)以一个正三棱柱的顶点为顶点的四面体共有(A)6个(B)12个(C)18个(D)30个【】二、填空题:把答案填在题中横线上.(17)(x-1)-(x-1)2+(x-1)3-(x-1)4+(x-1)5的展开式中,x2的系数等于.(19)如图,三棱柱ABC—A1B1C1中,若E、F分别为AB、AC的中点,平面EB1C1F 将三棱柱分成体积为V1、V2的两部分,那么V1:V2= .三、解答题.(21)有四个数,其中前三个数成等差数列,后三个数成等比数列,并且第一个数与第四个数的和是16,第二个数与第三个数的和是12,求这四个数.(23)如图,在三棱锥S-ABC中,SA⊥底面ABC,AB⊥BC.DE垂直平分SC,且分别交AC、SC于D、E.又SA=AB,SB=BC.求以BD为棱,以BDE与BDC为面的二面角的度数.(24)已知a>0,a≠1,解不等式log a(4+3x-x2)-log a(2x-1)>log a2.(25)设a≥0,在复数集C中解方程z2+2│z│=a.1990年试题(文史类)答案一、选择题:本题考查基本知识和基本运算.(1)A(2)C(3)D(4)B(5)D(6)C(7)A(8)B(9)A(10)C(11)B(12)D(13)A(14)C(15)B二、填空题:本题考查基本知识和基本运算.三、解答题.(21)本小题考查等差数列、等比数列的概念和运用方程(组)解决问题的能力.依题意有由②式得d=12-2a.③整理得a2-13a+36=0.解得a1=4, a2=9.代入③式得d1=4, d2=-6.从而得所求四个数为0,4,8,16或15,9,3,1.解法二:设四个数依次为x,y,12-y,16-x.依题意,有由①式得x=3y-12.③将③式代入②式得y(16-3y+12)=(12-y)2,整理得y2-13y+36=0.解得y1=4,y2=9.代入③式得x1=0,x2=15.从而得所求四个数为0,4,8,16或15,9,3,1.(22)本小题考查三角公式以及三角函数式的恒等变形和运算能力.解法一:由已知得两式相除得解法二:如图,不妨设0≤α≤β<2π,且点A的坐标是(cosα,sinα),点B的坐标是(cosβ,sinβ),则点A,B在单位圆x2+y2=1上.连结AB,若C是AB的中点,由题设知点C连结OC,于是OC⊥AB,若设点D的坐标是(1,0),再连结OA,OB,则有解法三:由题设得4(sinα+sinβ)=3(cosα+cosβ).将②式代入①式,可得sin(α-ϕ)=sin(ϕ-β).于是α-ϕ=(2k+1)π-(ϕ-β)(k∈Z),或α-ϕ=2kπ+(ϕ-β)(k∈Z).若α-ϕ=(2k+1)π-(ϕ-β)(k∈Z),则α=β+(2k+1)π(k∈Z).于是sinα=-sinβ,即sinα+sinβ=0.由此可知α-ϕ=2kπ+(ϕ-β)(k∈Z).即α+β=2ϕ+2kπ(k∈Z).(23)本小题考查直线和平面,直线和直线的位置关系,二面角等基本知识,以及逻辑推理能力和空间想象能力.解法一:由于SB=BC,且E是SC的中点,因此BE是等腰三角形SBC的底边SC的中线,所以SC⊥BE.又已知SC⊥DE,BE∩DE=E,∴S C⊥面BDE,∴S C⊥BD.又∵SA⊥底面ABC,BD在底面ABC上,∴SA⊥BD.而SC∩SA=S,∴BD⊥面SAC.∵D E=面SAC∩面BDE,DC=面SAC∩面BDC,∴B D⊥DE,BD⊥DC.∴∠EDC是所求的二面角的平面角.∵S A⊥底面ABC,∴SA⊥AB,SA⊥AC.又已知DE⊥SC,所以∠EDC=60°,即所求的二面角等于60°.解法二:由于SB=BC,且E是SC的中点,因此BE是等腰三角形SBC的底边SC的中线,所以SC⊥BE.又已知SC⊥DE,BE∩DE=E.∴S C⊥面BDE,∴S C⊥BD.由于SA⊥底面ABC,且A是垂足,所以AC是SC在平面ABC上的射影.由三垂线定理的逆定理得BD⊥AC;又因E∈SC,AC是SC在平面ABC上的射影,所以E在平面ABC上的射影在AC上,由于D∈AC,所以DE在平面ABC上的射影在AC上,根据三垂线定理又得BD⊥DE.∵DE面BDE,DC面BDC,∴∠EDC是所求的二面角的平面角.以下同解法一.(24)本小题考查对数,不等式的基本知识及运算能力.解:原不等式可化为log a(4+3x-x2)>log a2(2x-1).①当0<a<1时,①式等价于即当0<a<1时,原不等式的解集是{x│2<x<4}.当a>1时,①式等价于(25)本小题考查复数与解方程等基本知识以及综合分析能力.解法一:设z=x+yi,代入原方程得于是原方程等价于方程组由②式得y=0或x=0.由此可见,若原方程有解,则其解或为实数或为纯虚数.下面分别加以讨论.情形1.若y=0,即求原方程的实数解z=x.此时,①式化为x2+2│x│=a.③(Ⅰ)令x>0,方程③变为x2+2x=a.④由此可知:当a=0时,方程④无正根;(Ⅱ)令x<0,方程③变为x2-2x=a.⑤由此可知:当a=0时,方程⑤无负根;(Ⅲ)令x=0,方程③变为0=a.⑥由此可知:当a=0时,方程⑥有零解x=0;当a>0时,方程⑥无零解.所以,原方程的实数解是:当a=0时,z=0;情形2.若x=0,由于y=0的情形前已讨论,现在只需考查y≠0的情形,即求原方程的纯虚数解z=yi(y≠0).此时,①式化为-y2+2│y│=a.⑦(Ⅰ)令y>0,方程⑦变为-y2+2y=a,即(y-1)2=1-a.⑧由此可知:当a>1时,方程⑧无实根.从而,当a=0时,方程⑧有正根y=2;(Ⅱ)令y<0,方程⑦变为-y2-2y=a,即(y+1)2=1-a.⑨由此可知:当a>1时,方程⑨无实根.从而,当a=0时,方程⑨有负根y=-2;所以,原方程的纯虚数解是:当a=0时,z=±2i;而当a>1时,原方程无纯虚数解.解法二:设z=x+yi,代入原方程得于是原方程等价于方程组由②式得y=0或x=0.由此可见,若原方程有解,则其解或为实数,或为纯虚数.下面分别加以讨论.情形1.若y=0,即求原方程的实数解z=x.此时,①式化为x2+2│x│=a.情形2.若x=0,由于y=0的情形前已讨论,现在只需考查y≠0的情形,即求原方程的纯虚数解z=yi(y≠0).此时,①式化为-y2+2│y│=a.当a=0时,因y≠0,解方程④得│y│=2,即当a=0时,原方程的纯虚数解是z=±2i.即当0<a≤1时,原方程的纯虚数解是当a>1时,方程④无实根,所以这时原方程无纯虚数解.解法三:因为z2=-2│z│+a是实数,所以若原方程有解,则其解或为实数,或为纯虚数,即z=x或z=yi(y≠0).情形1.若z=x.以下同解法一或解法二中的情形1.情形2.若z=yi(y≠0).以下同解法一或解法二中的情形2.解法四:设z=r(cosθ+isinθ),其中r≥0,0≤θ<2π.代入原方程得r2cos2θ+2r+ir2sin2θ=a.于是原方程等价于方程组情形1.若r=0.①式变成0=a.③由此可知:当a=0时,r=0是方程③的解.当a>0时,方程③无解.所以,当a=0时,原方程有解z=0;当a>0时,原方程无零解.(Ⅰ)当k=0,2时,对应的复数是z=±r.因cos2θ=1,故①式化为r2+2r=a.④由此可知:当a=0时,方程④无正根;(Ⅱ)当k=1,3时,对应的复数是z=±ri.因cos2θ=-1,故①式化为-r2+2r=a,即(r-1)2=1-a,⑤由此可知:当a>1时,方程⑤无实根,从而无正根;从而,当a=0时,方程⑤有正根r=2;所以,当a=o时,原方程有解z=±2i;当0<a≤1时,原方程有解当a>1时,原方程无纯虚数解.(26)本小题考查椭圆的性质,距离公式,最大值知识以及分析问题的能力.解:设所求椭圆的直角坐标方程是。

相关文档
最新文档