2006年高考第一轮复习数学:7.6 直线与圆的位置关系
直线与圆的位置关系知识点及例题

直线与圆的位置关系知识点及例题Prepared on 22 November 2020直线与圆的位置关系一、知识点梳理1、直线与圆的位置关系:图形名称相离相切相交判定d>r d=r d<r交点个数无1个2个例1、下列判断正确的是()①直线上一点到圆心的距离大于半径,则直线与圆相离;②直线上一点到圆心的距离等于半径,则直线与圆相切;③直线上一点到圆心的距离小于半径,•则直线与圆相交.A.①②③ B.①② C.②③ D.③例2、过圆上一点可以作圆的______条切线;过圆外一点可以作圆的_____条切线;•过圆内一点的圆的切线______.例3、以三角形一边为直径的圆恰好与另一边相切,则此三角形是_______.例4、下列直线是圆的切线的是()A.与圆有公共点的直线 B.到圆心的距离等于半径的直线C.垂直于圆的半径的直线 D.过圆直径外端点的直线例5.如图所示,Rt△ABC中,∠ACB=90°,CA=6,CB=8,以C为圆心,r为半径作⊙C,当r为多少时,⊙C与AB相切2、切线的判定:(1)根据切线的定义判定:即与圆有一个公共点的直线是圆的切线.(2)根据圆心到直线的距离来判定:即与圆心的距离等于半径的直线是圆的切线. (3)根据切线的判定定理来判定:即经过半径的外端并且垂直于这条半径的直线是圆的切线.判定切线时常用的辅助线作法:(1)若直线与圆有公共点时,辅助线的作法是“连结圆心和公共点”,再证明直线和半径垂直.(2)当直线与圆并没有明确有公共点时,辅助线的作法是“过圆心向直线作垂线”再证明圆心到直线的距离等于圆的半径.例6、判断下列命题是否正确(1)经过半径的外端的直线是圆的切线(2)垂直于半径的直线是圆的切线;(3)过直径的外端并且垂直于这条直径的直线是圆的切线;(4)和圆有一个公共点的直线是圆的切线;(5)以等腰三角形的顶点为圆心,底边上的高为半径的圆与底边相切.例7.OA平分∠BOC,P是OA上任一点(O除外),若以P为圆心的⊙P与OC相离,•那么⊙P与OB的位置关系是()A.相离 B.相切 C.相交 D.相交或相切例8、如图所示,在直角坐标系中,⊙M的圆心坐标为(m,0),半径为2,•如果⊙M与y轴所在直线相切,那么m=______,如果⊙M与y轴所在直线相交,那么m•的取值范围是_______.例9、如图,AB为⊙O的直径,弦CD⊥AB于点M,过点B作BE∥CD,交AC•的延长线于点E,连结BC.(1)求证:BE为⊙O的切线;(2)如果CD=6,tan∠BCD=12,求⊙O的直径.例10、如图,已知:△ABC内接于⊙O,点D在OC的延长线上,sinB=12,∠D=30°.(1)求证:AD是⊙O的切线;(2)若AC=6,求AD的长.例11、如图,P为⊙O外一点,PO交⊙O于C,过⊙O上一点A作弦AB⊥PO于E,若∠EAC=∠CAP,求证:PA是⊙O的切线.3、切线的性质:1、经过切点的半径垂直于圆的切线,经过切点垂直于切线的直线必经过圆心对于切线的性质可分解为:过圆心、过切点、垂直于切线这三个条件中任意两个作为条件,就可以推出第三个作为结论4、切线长定理:切线长定义:经过圆外一点作圆的切线,这点和切点之间的线段的长叫做这点到圆的切线长切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角.例12、如图1,PA、PB是⊙O的两条切线、A、B为切点。
高考数学第一轮知识点总复习 第四节 直线与圆的位置关系

∵|PC|= 112 1 22 5 r 6
∴点P恒在圆C内,∴直线 与l 圆C恒交于两点.
(2)由(1)及平面几何知识知,当l 垂直于PC时,直线l 被圆C截得的弦
长最小,又 kPC
2 1 1 1
1 2
,
k,l
1 kPC
2
∴所求直线 l的方程为y-1=2(x-1),即2x-y-1=0.
题型二 圆与圆的位置关系
2k 6 5 2
3
由点C到直线AB的距离公式 k2 12 ,得k= . 4
l
又直线 的斜率不存在时也满足题意,此时方程为x=0.
3
当k=4
时,直线
l
的方程为3x-4y+20=0.
∴所求直线的方程为x=0或3x-4y+20=0. 方法二:设所求直线的斜率为k,
则直线l的方程为y-5=kx,即y=kx+5,
【例】求过A(3,5)且与圆C: x2 -4yx2-4y+7=0相切的直线方程.
错解 设所求直线 的l 斜率为k,方程为y-5=k(x-3),
即kx-y+5-3k=0,已知圆C的圆心(2,2),r=1.
则圆心到 l的距离为
2k 2 5 ,3即k |1k-3|=
1 k2
, 1 k2
4
∴ k-26k+9= k+2 1,解得k= 3.
∵A到l的距离为 5 ,2
∴所求圆B的直径
即 r2 2.
2r
2
5
2 r,1 2
2
r r 又|OB|=|OA|- 2 , 2
2
1
由 OA与x轴正半轴成45°角,∴B(2,2).
∴所求圆的标准方程为 (x2)2 ( y.2)2 2
高三一轮复习直线与圆、圆与圆的位置关系

栏目 导引
第八章
平面解析几何
(1)本题主要考查集合的运算及圆与圆相切的相关知识, 考查 考 生综 合运 用知 识解 决问 题的 能力 .在求 解时 要注 意对 M∩N≠∅的理解,当题中未指明集合非空时,要考虑到空集 的可能性,例如 A⊆ B,则有 A=∅和 A≠∅两种可能,应分类 讨论, 本题的设计亮点在于将集合的关系与圆的位置关系较 好地结合起来. (2)求解圆的切线方程时, 有时要对切线斜率存在情况进行分 类讨论.
栏目 导引
第八章
平面解析几何
(1) 求 过一点的 圆的切线 方程,首 先要判断 此点是 否在圆 上.若在圆上,该点为切点,切线只有一条;若不在圆上, 切线应该有两条, 设切线的点斜式方程, 用待定系数法求解, 注意,需考虑无斜率的情况. (2)求解与圆的弦长有关的计算问题时,常利用圆的半径 r,
2 l 弦长 l 与弦心距 d 之间的关系:r2=d2+ ,一般不用代数法 4
栏目 导引
第八章
平面解析几何
2.若圆 x2+y2=4 与圆 x2+y2+2ay-6=0(a>0)的公共弦的
1 长为 2 3,则 a=________ .
1 【解析】 两圆的方程相减, 得公共弦所在的直线方程为 y= . a 又 a>0,结合图象 (图略 ),再利用半径、弦长的一半及弦心 距所构成的直角三角形, 1 可知 = 22-( 3) 2= 1⇒a= 1. a
[课堂笔记]
栏目 导引
第八章
平面解析几何
【解析】 (1)设 A(3, 1),易知圆心 C(2, 2),半径 r= 2,当 弦过点 A(3,1)且与 CA 垂直时为最短弦. |CA| = ( 2- 3) 2+( 2- 1) 2 = 2 . ∴ 半 弦 长 = r2- |CA|2 = 4-2= 2.∴最短弦长为 2 2. (2)设 P(3, 1),圆心 C(1,0),切点为 A、B,则 P、 A、 C、 B 四点共圆,且 PC 为圆的直径,∴四边形 PACB 的外接圆 1 5 方程为 (x- 2)2+(y- )2= ① .圆 C:(x-1)2+ y2= 1②,①- 2 4 ②得 2x+ y-3= 0,此即为直线 AB 的方程.
高中数学一轮复习直线与圆的位置关系

有公共点,则实数a的取值范围是(
A.[-3,-1] C.[-3,1]
)
B.[-1,3] D.(-∞,-3]∪[1,+∞)
【解析】 (1)∵x2+y2=2 的圆心(0,0)到直线 y=kx+1 的距离 |0-0+1| 1 d= = ≤1.又∵r= 2, 2 2 1+k 1+k ∴0<d<r.∴直线与圆相交但直线不过圆心. (2)由题意知,圆心为(a,0),半径 r= 2. 若直线与圆有公共点,则圆心到直线的距离小于或等于半径, |a-0+1| 即 ≤ 2,∴|a+1|≤2.∴-3≤a≤1,故选 C. 2
又直线 l 的斜率不存在时,也满足题意, 此时方程为 x=0. ∴所求直线的方程为 3x-4y+20=0 或 x=0. 解法二: 设所求直线的斜率为 k, 则直线的方程为 y-5=kx, 即 y=kx+5,
y=kx+5, 联立直线与圆的方程 2 2 x +y +4x-12y+24=0,
消去 y,得(1+k )x +(4-2k)x-11=0,① 设方程①的两根为 x1,x2,
y2+4x-12y+24=0. (1)若直线 l 过 P 且被圆 C 截得的线 段长为 4 3,求 l 的方程; (2)求过 P 点的圆 C 的弦的中点的 轨迹方程. 【思路分析】 (1)根据弦长求法,求
直线方程中的参数; (2)由垂直关系 找等量关系.
【解析】
(1)解法一:如图所示,AB=4
3 ,D是AB的 中
解:方法一
(1)证明
消去 y 得(k2+1)x2-(2-4k)x-7=0,
因为 Δ=(2-4k)2+28(k2+1)>0, 所以不论 k 为何实数,直线 l 和圆 C 总有两个交点.
|k+2| 方法二 (1)证明 圆心 C(1,-1)到直线 l 的距离 d= 2, 1+k k2+4k+4 11k2-4k+8 圆 C 的半径 R=2 3,R2-d2=12- ,而 2 = 2 1+k 1+k 在 S=11k2-4k+8 中,Δ=(-4)2-4×11×8<0,
直线与圆、圆与圆的位置关系高三复习课

即15x+8y-36=0.
主页
(2)若直线斜率不存在, 圆心C(3,1)到直线x=4的距离也为1, 这时直线与圆也相切,所以另一条切线方程是 x=4. 综上,所求切线方程是15x+8y-36=0或x=4.
主页
【高考链接】
(2014,浙江卷)1.经过点(3,4)的
圆 x2 y2 25 的切线方程为
________.
主页
主页
(1) 点到直线距离公式:
d=
|Ax0+By0+C| √A2+B2
(2)圆的标准方程: (x-a)2+(y-b)2=r2
(3)圆的一般方程:
x2+ y2+Dx+Ey+F=0(D2+E2-4F>0)
- - 圆心坐标 :(
D ,
E ) ,半径: 1 D2 E2 4F
22
2
主页
一轮复习讲义 直线与圆、圆与圆的位置关系
一个公共点 相切
主页
没有公共点 相离
直线与圆的位置关系的判定
思考4:在平面直角坐标系中,我们用方程表示直 线和圆,如何根据直线与圆的方程判断它们之间 的位置关系?
判断直线与圆的位置关系常见的有两种方法: 代数法:根据直线与圆的联立方程组的公共解个数 判断; Δ<0,相交; Δ=0,相切; Δ>0,相离.
2x
3
0
x1
1 2
7
,x2
1 2
7
y B
1 7
1 7
y1 2 ,y2 2
A
O
x
A( 1 7 , 1 7 ),B( 1 7 , 1 7 )
高考一轮复习直线与圆、圆与圆的位置关系

圆O2的方程.
2 例4 已知以点C(t, )(t∈R,t≠0)为圆心的圆与x轴 t
交于点O、A,与y轴交于点O、B,其中O为原点.
(1)求证:△AOB的面积为定值; (2)设直线2x+y-4=0与圆C交于点M、N,若|OM|=|ON| 求圆C的方程; (3)在(2)的条件下,设P、Q分别是直线l:x+y+2=0和圆 C上的动点,求|PB|+|PQ|的最小值及此时点P的坐标.
直线与圆、圆与圆 的位置关系
一、直线与圆的位置关系
1.常用研究方法 ①判别式法;
②考查圆心到直线的距离与半径的大小关系.
2.直线Ax+By+C=0与圆(x-a) +(y-b) =r 的位置关系有 | Aa Bb C | 三种: 若d 2 2 A B
2 2 2
则d____r⇔相切⇔Δ____0; = =
d____r⇔相交⇔Δ____0; < < < d____r⇔相离⇔Δ____0; >
3.直线和圆相切
(1)过圆上一点的圆的切线方程:圆(x-a) +(y-b) =r 的以P( x0,y0)为切点的切线方程是______________________. (x0-a)(x-a)+(y0-b)(y-b)=r (2)一般地,圆x +y +Dx+Ey+F=0的以点P(x0,y0)为切点的
例2 已知点P(0,5)及圆C:x +y 3 +4x-12y+24=0. (1)若直线l过点P且被圆C截得的线段长为4 ,
求l的方程;
(2)求过P点的圆C的弦的中点的轨迹方程.
高考数学一轮复习第八章第二节第1课时系统知识__圆的方程直线与圆的位置关系圆与圆的位置关系讲义含解析

第二节圆与方程第1课时系统知识——圆的方程、直线与圆的位置关系、圆与圆的位置关系1.圆的定义及方程点M(x0,y0),圆的标准方程(x-a)2+(y-b)2=r2.[提醒] 不要把形如x2+y2+Dx+Ey+F=0的结构都认为是圆,一定要先判断D2+E2-4F的符号,只有大于0时才表示圆.[谨记常用结论]若x2+y2+Dx+Ey+F=0表示圆,则有:当F=0时,圆过原点.当D=0,E≠0时,圆心在y轴上;当D≠0,E=0时,圆心在x轴上.当D=F=0,E≠0时,圆与x轴相切于原点;E=F=0,D≠0时,圆与y轴相切于原点.当D2=E2=4F时,圆与两坐标轴相切.[小题练通]1.[人教A版教材P124A组T4]圆C的圆心在x轴上,并且过点A(-1,1)和B(1,3),则圆C的方程为____________.答案:(x-2)2+y2=102.[教材改编题]经过点(1,0),且圆心是两直线x=1与x+y=2的交点的圆的方程为________________.答案:(x -1)2+(y -1)2=13.[教材改编题]圆心为(1,1)且过原点的圆的方程是________. 答案:(x -1)2+(y -1)2=24.[易错题]已知圆的方程为x 2+y 2+ax +2y +a 2=0,一定点为A (1,2),要使过定点A 的圆的切线有两条,则a 的取值范围是________.答案:⎝ ⎛⎭⎪⎫-233,2335.若坐标原点在圆(x -m )2+(y +m )2=4的内部,则实数m 的取值范围是________. 答案:(-2,2)6.在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为________________. 答案:x 2+y 2-2x =01.直线与圆的位置关系(半径r ,圆心到直线的距离为d )2.圆的切线(1)过圆上一点的圆的切线①过圆x 2+y 2=r 2上一点M (x 0,y 0)的切线方程是x 0x +y 0y =r 2.②过圆(x -a )2+(y -b )2=r 2上一点M (x 0,y 0)的切线方程是(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.(2)过圆外一点的圆的切线过圆外一点M (x 0,y 0)的圆的切线求法:可用点斜式设出方程,利用圆心到直线的距离等于半径求出斜率k ,从而得切线方程;若求出的k 值只有一个,则说明另一条直线的斜率不存在,其方程为x =x 0.(3)切线长①从圆x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)外一点M (x 0,y 0)引圆的两条切线,切线长为 x 20+y 20+Dx 0+Ey 0+F .②两切点弦长:利用等面积法,切线长a 与半径r 的积的2倍等于点M 与圆心的距离d 与两切点弦长b 的积,即b =2ard.[提醒] 过一点求圆的切线方程时,要先判断点与圆的位置关系,以便确定切线的条数. 3.圆的弦问题直线和圆相交,求被圆截得的弦长通常有两种方法:(1)几何法:因为半弦长L2、弦心距d 、半径r 构成直角三角形,所以由勾股定理得L =2r 2-d 2.(2)代数法:若直线y =kx +b 与圆有两交点A (x 1,y 1),B (x 2,y 2),则有: |AB |=1+k 2|x 1-x 2|= 1+1k2|y 1-y 2|.[谨记常用结论]过直线Ax +By +C =0和圆x 2+y 2+Dx +Ey +F =D 2+E 2-4F >交点的圆系方程为x 2+y 2+Dx +Ey +F +λAx +By +C =0.,[小题练通]1.[教材改编题]若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( )A .[-3,-1]B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)答案:C2.[教材改编题]直线y =ax +1与圆x 2+y 2-2x -3=0的位置关系是( ) A .相切 B .相交C .相离D .随a 的变化而变化解析:选B ∵直线y =ax +1恒过定点(0,1),又点(0,1)在圆(x -1)2+y 2=4的内部,故直线与圆相交.3.[教材改编题]已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是________.解析:由题意知点M 在圆外,则a 2+b 2>1,圆心到直线的距离d =1a 2+b 2<1,故直线与圆相交.答案:相交4.[易错题]过点(2,3)且与圆(x -1)2+y 2=1相切的直线的方程为________________. 解析:当切线的斜率存在时,设圆的切线方程为y =k (x -2)+3,由圆心(1,0)到切线的距离为1,得k =43,所以切线方程为4x -3y +1=0;当切线的斜率不存在时,易知直线x=2是圆的切线,所以所求的直线方程为4x -3y +1=0或x =2.答案:x =2或4x -3y +1=05.以M (1,0)为圆心,且与直线x -y +3=0相切的圆的方程是________. 答案:(x -1)2+y 2=86.直线y =x +1与圆x 2+y 2+2y -3=0交于A ,B 两点,则|AB |=________. 解析:由x 2+y 2+2y -3=0,得x 2+(y +1)2=4.∴圆心C (0,-1),半径r =2.圆心C (0,-1)到直线x -y +1=0的距离d =|1+1|2=2,∴|AB |=2r 2-d 2=24-2=2 2. 答案:2 2圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|)[提醒] 涉及两圆相切时,没特别说明,务必要分内切和外切两种情况进行讨论.[谨记常用结论]圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与C 2:x 2+y 2+D 2x +E 2y +F 2=0相交时:将两圆方程直接作差,得到两圆公共弦所在直线方程; 两圆圆心的连线垂直平分公共弦;x 2+y 2+D 1x +E 1y +F 1+λx 2+y 2+D 2x +E 2y +F 2=0表示过两圆交点的圆系方程不包括C 2[小题练通]1.[人教A 版教材P133A 组T9]圆x 2+y 2-4=0与圆x 2+y 2-4x +4y -12=0的公共弦的长为________.答案:2 22.[教材改编题]若圆x 2+y 2=1与圆(x +4)2+(y -a )2=25相切,则实数a =________.答案:±25或03.[教材改编题]圆x2+y2=r2与圆(x-3)2+(y+1)2=r2外切,则半径r=________.解析:由题意,得2r=32+-2,所以r=10 2.答案:10 24.[易错题]若两圆x2+y2=m和x2+y2+6x-8y-11=0有公共点,则实数m的取值范围是________.答案:[1,121]5.若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m=( )A.21 B.19C.9 D.-11解析:选C 圆C1的圆心为C1(0,0),半径r1=1,因为圆C2的方程可化为(x-3)2+(y -4)2=25-m,所以圆C2的圆心为C2(3,4),半径r2=25-m(m<25).从而|C1C2|=32+42=5.由两圆外切得|C1C2|=r1+r2,即1+25-m=5,解得m=9,故选C.6.与圆C1:x2+y2-6x+4y+12=0,C2:x2+y2-14x-2y+14=0都相切的直线有( ) A.1条 B.2条C.3条 D.4条解析:选A 两圆分别化为标准形式为C1:(x-3)2+(y+2)2=1,C2:(x-7)2+(y-1)2=36,则两圆圆心距|C1C2|=7-32+[1--2]2=5,等于两圆半径差,故两圆内切.所以它们只有一条公切线.故选A.。
高考数学一轮总复习课件:圆的方程及直线与

(2)(2021·辽宁大连模拟)在直线l:y=x-1上有两个点A, B,且A,B的中点坐标为(4,3),线段AB的长度|AB|=8,则过 A,B两点且与y轴相切的圆的方程为____(_x_-_4_)_2+__(y_-__3)_2=__1_6___
解析 (x+2m)2+(y-1)2=4m2-5m+1表示圆,则 4m2-5m+1>0,解得m<14或m>1.
3.(2021·成都七中月考)圆心在y轴上,且过点(3,1)的圆与
x轴相切,则该圆的方程是( B )
A.x2+y2+10y=0
B.x2+y2-10y=0
C.x2+y2+10x=0
D.x2+y2-10x=0
第3课时 圆的方程及直线与 圆的位置关系
[复习要求] 1.掌握确定圆的几何要素.2.掌握圆的标准方 程和一般方程.3.掌握直线与圆的位置关系.
课前自助餐
圆的定义 平面内到定点的距离__等_于__定_长___的点的集合(轨迹)是圆,定点 是圆心,定长是半径. 注:平面内动点 P 到两定点 A,B 距离的比值为 λ,即||PPAB||= λ, ①当 λ=1 时,P 点轨迹是线段 AB 的垂直平分线; ②当 λ≠1 时,P 点轨迹是圆.
A=B≠0,
__D_2+__E_2_-_4_A_F_>_0.
圆的参数方程 圆心为(a,b),半径为 r 的圆的参数方程为xy==ab++rrcsoinsθθ,(θ 为参数).
确定圆的方程的方法和步骤 确定圆的方程的主要方法是待定系数法,大致步骤为: (1)根据题意,选择标准方程或一般方程; (2)根据条件列出关于 a,b,r 或 D,E,F 的方程组; (3)解出 a,b,r 或 D,E,F 代入标准方程或一般方程.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7.6 直线与圆的位置关系●知识梳理直线和圆1.直线和圆位置关系的判定方法一是方程的观点,即把圆的方程和直线的方程联立成方程组,利用判别式Δ来讨论位置关系. ①Δ>0,直线和圆相交.②Δ=0,直线和圆相切. ③Δ<0,直线和圆相离.方法二是几何的观点,即把圆心到直线的距离d 和半径R 的大小加以比较. ①d <R ,直线和圆相交. ②d =R ,直线和圆相切.③d >R ,直线和圆相离.2.直线和圆相切,这类问题主要是求圆的切线方程.求圆的切线方程主要可分为已知斜率k 或已知直线上一点两种情况,而已知直线上一点又可分为已知圆上一点和圆外一点两种情况.3.直线和圆相交,这类问题主要是求弦长以及弦的中点问题. ●点击双基1.(2005年北京海淀区期末练习题)设m >0,则直线2(x +y )+1+m =0与圆x 2+y 2=m 的位置关系为A.相切B.相交C.相切或相离D.相交或相切解析:圆心到直线的距离为d =21m +,圆半径为m .∵d -r =21m +-m =21(m -2m +1)=21(m -1)2≥0,∴直线与圆的位置关系是相切或相离. 答案:C2.圆x 2+y 2-4x +4y +6=0截直线x -y -5=0所得的弦长等于 A.6 B.225 C.1 D.5解析:圆心到直线的距离为22,半径为2,弦长为222)22()2(-=6.答案:A3.(2004年全国卷Ⅲ,4)圆x 2+y 2-4x =0在点P (1,3)处的切线方程为 A.x +3y -2=0 B.x +3y -4=0 C.x -3y +4=0 D.x -3y +2=0 解法一:x 2+y 2-4x =0 y =kx -k +3⇒x 2-4x +(kx -k +3)2=0.该二次方程应有两相等实根,即Δ=0,解得k =33.∴y -3=33(x -1),即x -3y +2=0.解法二:∵点(1,3)在圆x 2+y 2-4x =0上, ∴点P 为切点,从而圆心与P 的连线应与切线垂直. 又∵圆心为(2,0),∴1230--²k =-1.解得k =33,∴切线方程为x -3y +2=0.答案:D4.(2004年上海,理8)圆心在直线2x -y -7=0上的圆C 与y 轴交于两点A (0,-4)、B (0,-2),则圆C 的方程为____________.解析:∵圆C 与y 轴交于A (0,-4),B (0,-2),∴由垂径定理得圆心在y =-3这条直线上. 又已知圆心在直线2x -y -7=0上,y =-3,2x -y -7=0.∴圆心为(2,-3), 半径r =|AC |=22)]4(3[2---+=5. ∴所求圆C 的方程为(x -2)2+(y +3)2=5.答案:(x -2)2+(y +3)2=55.若直线y =x +k 与曲线x =21y -恰有一个公共点,则k 的取值范围是___________. 解析:利用数形结合. 答案:-1<k ≤1或k =-2●典例剖析【例1】 已知圆x 2+y 2+x -6y +m =0和直线x +2y -3=0交于P 、Q 两点,且OP ⊥OQ (O 为坐标原点),求该圆的圆心坐标及半径.剖析:由于OP ⊥OQ ,所以k OP ²k OQ =-1,问题可解.解:将x =3-2y 代入方程x 2+y 2+x -6y +m =0,得5y 2-20y +12+m =0. 设P (x 1,y 1)、Q (x 2,y 2),则y 1、y 2满足条件 y 1+y 2=4,y 1y 2=512m +.∵OP ⊥OQ ,∴x 1x 2+y 1y 2=0. 而x 1=3-2y 1,x 2=3-2y 2,∴联立 解得x =2,∴x 1x 2=9-6(y 1+y 2)+4y 1y 2. ∴m =3,此时Δ>0,圆心坐标为(-21,3),半径r =25.评述:在解答中,我们采用了对直线与圆的交点“设而不求”的解法技巧,但必须注意这样的交点是否存在,这可由判别式大于零帮助考虑.【例2】 求经过两圆(x +3)2+y 2=13和x 2+(y +3)2=37的交点,且圆心在直线x -y -4=0上的圆的方程.剖析:根据已知,可通过解方程组(x +3)2+y 2=13,x 2+(y +3)2=37由圆心在直线x -y -4=0上,三个独立条件,用待定系数法求出圆的方程;也可根据已知,设所求圆的方程为(x +3)2+y 2-13+λ[x 2+(y +3)2-37]=0,再由圆心在直线x -y -4=0上,定出参数λ,得圆方程.解:因为所求的圆经过两圆(x +3)2+y 2=13和x 2+(y +3)2=37的交点,所以设所求圆的方程为(x +3)2+y 2-13+λ[x 2+(y +3)2-37]=0. 展开、配方、整理,得(x +λ+13)2+(y +λλ+13)2=λλ++1284+22)1()1(9λλ++.圆心为(-λ+13,-λλ+13),代入方程x -y -4=0,得λ=-7.故所求圆的方程为(x +21)2+(y +27)2=289.评述:圆C 1:x 2+y 2+D 1x +E 1y +F 1=0,圆C 2:x 2+y 2+D 2x +E 2y +F 2=0,若圆C 1、C 2相交,那么过两圆公共点的圆系方程为(x 2+y 2+D 1x +E 1y +F 1)+λ(x 2+y 2+D 2x +E 2y +F 2)=0(λ∈R且λ≠-1).它表示除圆C 2以外的所有经过两圆C 1、C 2公共点的圆.特别提示在过两圆公共点的图象方程中,若λ=-1,可得两圆公共弦所在的直线方程.【例3】 已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ).(1)证明:不论m 取什么实数,直线l 与圆恒交于两点;(2)求直线被圆C 截得的弦长最小时l 的方程.剖析:直线过定点,而该定点在圆内,此题便可解得. (1)证明:l 的方程(x +y -4)+m (2x +y -7)=0. 2x +y -7=0, x =3, x +y -4=0, y =1, 即l 恒过定点A (3,1).∵圆心C (1,2),|AC |=5<5(半径), ∴点A 在圆C 内,从而直线l 恒与圆C 相交于两点. (2)解:弦长最小时,l ⊥AC ,由k AC =-21,∴l 的方程为2x -y -5=0.评述:若定点A 在圆外,要使直线与圆相交则需要什么条件呢?得圆上两点,∵m ∈R ,∴得思考讨论求直线过定点,你还有别的办法吗?●闯关训练 夯实基础1.若圆(x -3)2+(y +5)2=r 2上有且只有两个点到直线4x -3y =2的距离等于1,则半径r 的范围是A.(4,6)B.[4,6)C.(4,6]D.[4,6]解析:数形结合法解. 答案:A2.(2003年春季北京)已知直线ax +by +c =0(ab c ≠0)与圆x 2+y 2=1相切,则三条边长分别为|a |、|b |、|c |的三角形A.是锐角三角形B.是直角三角形C.是钝角三角形D.不存在 解析:由题意得22|00|bac b a ++⋅+⋅=1,即c 2=a 2+b 2,∴由|a |、|b |、|c |构成的三角形为直角三角形.答案:B3.(2005年春季北京,11)若圆x 2+y 2+mx -41=0与直线y =-1相切,且其圆心在y 轴的左侧,则m 的值为____________.解析:圆方程配方得(x +2m )2+y 2=412+m,圆心为(-2m ,0).由条件知-2m <0,即m >0.又圆与直线y =-1相切,则0-(-1)=412+m,即m 2=3,∴m =3.答案:34.(2004年福建,13)直线x +2y =0被曲线x 2+y 2-6x -2y -15=0所截得的弦长等于____________.解析:由x 2+y 2-6x -2y -15=0,得(x -3)2+(y -1)2=25. 知圆心为(3,1),r =5.由点(3,1)到直线x +2y =0的距离d =5|23|+=5.可得21弦长为25,弦长为45.答案:455.自点A (-3,3)发出的光线l 射到x 轴上,被x 轴反射,其反射光线所在的直线与圆x 2+y 2-4x -4y +7=0相切,求光线l 所在直线的方程.解:圆(x -2)2+(y -2)2=1关于x 轴的对称方程是(x -2)2+(y +2)2=1.设l 方程为y -3=k (x +3),由于对称圆心(2,-2)到l 距离为圆的半径1,从而可得k 1=-43,k 2=-34.故所求l 的方程是3x +4y -3=0或4x +3y +3=0.6.已知M (x 0,y 0)是圆x 2+y 2=r 2(r >0)内异于圆心的一点,则直线x 0x +y 0y =r 2与此圆有何种位置关系?分析:比较圆心到直线的距离与圆半径的大小. 解:圆心O (0,0)到直线x 0x +y 0y =r 2的距离为d =20202y x r+.∵P (x 0,y 0)在圆内,∴2020y x +<r .则有d >r ,故直线和圆相离.培养能力7.方程ax 2+ay 2-4(a -1)x +4y =0表示圆,求a 的取值范围,并求出其中半径最小的圆的方程.解:(1)∵a ≠0时,方程为[x -aa )1(2-]2+(y +a2)2=22)22(4aa a+-,由于a 2-2a +2>0恒成立, ∴a ≠0且a ∈R 时方程表示圆. (2)r 2=4²2222aa a+-=4[2(a1-21)2+21],∴a =2时,r min 2=2.此时圆的方程为(x -1)2+(y -1)2=2.8.(文)求经过点A (-2,-4),且与直线l :x +3y -26=0相切于(8,6)的圆的方程. 解:设圆为x 2+y 2+Dx +Ey +F =0,依题意有方程组 3D -E =-36, 2D +4E -F =20, 8D +6E +F =-100. D =-11, E =3,F =-30.∴圆的方程为x 2+y 2-11x +3y -30=0.(理)已知点P 是圆x 2+y 2=4上一动点,定点Q (4,0). (1)求线段PQ 中点的轨迹方程;(2)设∠POQ 的平分线交PQ 于R ,求R 点的轨迹方程.解:(1)设PQ 中点M (x ,y ),则P (2x -4,2y ),代入圆的方程得(x -2)2+y 2=1. (2)设R (x ,y ),由||||RQ PR =||||OQ OP =21,设P (m ,n ),则有∴m =243-x ,n =23y ,代入x 2+y 2=4中,得 (x -34)2+y 2=916(y ≠0).探究创新9.已知点P 到两个定点M (-1,0)、N (1,0)距离的比为2,点N 到直线PM 的距离为1,求直线PN 的方程.解:设点P 的坐标为(x ,y ), 由题设有||||PN PM =2,即22)1(y x ++=2²22)1(y x +-, 整理得x 2+y 2-6x +1=0.①因为点N 到PM 的距离为1,|MN |=2, 所以∠PMN =30°,直线PM 的斜率为±33. 直线PM 的方程为y =±33(x +1).②将②代入①整理得x 2-4x +1=0. 解得x 1=2+3,x 2=2-3.代入②得点P 的坐标为(2+3,1+3)或(2-3,-1+3);(2+3,-1-3)或(2-3,1-3).直线PN 的方程为y =x -1或y =-x +1.●思悟小结1.直线和圆的位置关系有且仅有三种:相离、相切、相交.判定方法有两个:几何法,比较圆心到直线的距离与圆的半径间的大小;代数法,看直线与圆的方程联立所得方程组的解的个数.2.解决直线与圆的位置关系的有关问题,往往充分利用平面几何中圆的性质使问题简化. ●教师下载中心 教学点睛1.有关直线和圆的位置关系,一般要用圆心到直线的距离与半径的大小来确定.2.当直线和圆相切时,求切线方程一般要用圆心到直线的距离等于半径,求切线长一般要用切线、半径及圆外点与圆心连线构成的直角三角形;与圆相交时,弦长的计算也要用弦心距、半径及弦长的一半构成的直角三角形.3.有关圆的问题,注意圆心、半径及平面几何知识的应用.4.在确定点与圆、直线与圆、圆与圆的位置关系时,经常要用到距离,因此,两点间的距离公式、点到直线的距离公式等应熟练掌握,灵活运用.拓展题例【例1】 已知圆的方程为x 2+y 2+ax +2y +a 2=0,一定点为A (1,2),要使过定点A (1,2)作圆的切线有两条,求a 的取值范围.解:将圆的方程配方得(x +2a )2+(y +1)2=4342a-,圆心C 的坐标为(-2a ,-1),半径r =4342a-,条件是4-3a 2>0,过点A (1,2)所作圆的切线有两条,则点A 必在圆外,即22)12()21(+++a >4342a-.化简得a 2+a +9>0.4-3a 2>0, a 2+a +9>0, -332<a <332,a ∈R . ∴-332<a <332.故a 的取值范围是(-332,332).【例2】 已知⊙O 方程为x 2+y 2=4,定点A (4,0),求过点A 且和⊙O 相切的动圆圆心的轨迹. 剖析:两圆外切,连心线长等于两圆半径之和,两圆内切,连心线长等于两圆半径之差,由此可得到动圆圆心在运动中所应满足的几何条件,然后将这个几何条件坐标化,即得到它的轨迹方程.解法一:设动圆圆心为P (x ,y ),因为动圆过定点A ,所以|PA |即动圆半径.当动圆P 与⊙O 外切时,|PO |=|PA |+2; 当动圆P 与⊙O 内切时,|PO |=|PA |-2. 综合这两种情况,得||PO |-|P A ||=2. 将此关系式坐标化,得|22y x +-22)4(y x +-|=2. 化简可得(x -2)2-32y=1.解法二:由解法一可得动点P 满足几何关系||OP |-|P A ||=2,即P 点到两定点O 、A 的距离差的绝对值为定值2,所以P 点轨迹是以O 、A 为焦点,2为实轴长的双曲线,中心在OA 中点(2,0),实半轴长a =1,半焦距c =2,虚半轴长b =22ac -=3,所以轨迹方程为(x -2)2-32y=1.由 解之得。