直线中的四类典型对称问题

合集下载

高中数学直线的对称问题终结版知识讲解题型专练总结

高中数学直线的对称问题终结版知识讲解题型专练总结

直线中的对称问题知识讲解题型一、点关于点成中心对称对称中心是这两点为端点的线段的中点,因此中心对称的问题是线段中点坐标公式的应用问题. 设),(00y x P ,对称中心为),(b a A ,则P 关于A 的对称点为)2,2('00y b x a P --.题型二、点与点关于直线成轴对称问题对称轴即为两对称点连线的“垂直平分线”利用“垂直”(位置关系)“平分”(数量关系)这两个条件建立方程组,就可求出对顶点的坐标一般情形如下:设点),(00y x P 关于直线b kx y +=的对称点为)','('y x P ,则有0000'1'''22y y k x x y y x x k b -⎧⋅=-⎪-⎪⎨++⎪=⋅+⎪⎩,可求出'x 、'y . 特殊地,点),(00y x P 关于直线a x =的对称点为),2('00y x a P -;点),(00y x P 关于直线b y =的对称点为)2,(00y b x P -.题型三、曲线关于点、曲线关于直线的中心或轴对称问题一般是转化为点的中心对称或轴对称结论如下:(1)曲线0),(=y x f 关于已知点),(b a A 的对称曲线的方程是0)2,2(=--y b x a f .(2)曲线0),(=y x f 关于直线b kx y +=的对称曲线的求法:设曲线0),(=y x f 上任意一点为),(00y x P ,P 点关于直线b kx y +=的对称点为),('y x P ,则由(2)知,P与'P 的坐标满足0000'1'''22y y k x x y y x x k b -⎧⋅=-⎪-⎪⎨++⎪=⋅+⎪⎩,从中解出0x 、0y ,代入已知曲线0),(=y x f ,应有0),(=y x f 利用坐标代换法就可求出曲线0),(=y x f 关于直线b kx y +=的对称曲线方程.题型四、两点关于点对称、两点关于直线对称的常见结论:(1)点),(y x 关于x 轴的对称点为),(y x -.(2)点),(y x 关于y 轴的对称点为),(y x -.(3)点),(y x 关于原点的对称点为),(y x --.(4)点),(y x 关于直线x -y =0的对称点为),(x y .(5)点),(y x 关于直线x +y =0的对称点为),(x y --.(6)点),(y x 关于直线x -y+c =0的对称点为),(c x c y +-.(7)点),(y x 关于直线x +y+c =0的对称点为),(x c y c ----.例1.求圆22412390x y x y ++-+=关于直线3450x y --=的对称圆方程.例2.求直线042:=-+y x a 关于直线0143:=-+y x l 对称的直线b 的方程.例3.自点)3,3(-A 发出的光线l 射到x 轴上,被x 轴反射,其反射光线所在的直线与圆2244x y x y +-- 70+=相切,求光线l 所在的直线方程.例4.已知点)5,3(M ,在直线022:=+-y x l 和y 轴上各找一点P 和Q ,使MPQ △的周长最小.变式练习1.圆4)1()1(22=-+-y x 关于直线:220l x y --=对称的圆的方程 .变式练习2.试求直线01:1=-+y x l 关于直线033:2=--y x l 对称的直线l 的方程.课后作业1.已知点)3,1(A 、)2,5(B ,在x 轴上找一点P ,使得PB PA +最小,则最小值为_________,P 点的坐标为_________.2.已知点),(b a M 与N 关于x 轴对称,点P 与点N 关于y 轴对称,点Q 与点P 关于直线0=+y x 对称,则点Q 的坐标为( )A .),(b aB .),(a bC .),(b a --D .),(a b --3.已知直线05:1=++my x l 和直线0:2=++p ny x l ,则1l 、2l 关于y 轴对称的充要条件是( )A .n p m =5B .5-=pC .n m -=且5-=pD .nm 11-=且5-=p 4.点)5,4(A 关于直线l 的对称点为)7,2(-B ,则l 的方程为____________.5.设直线054=-+y x 的倾斜角为θ,则它关于直线03=-y 对称的直线的倾斜角是___________.6.已知圆C 与圆1)1(22=+-y x 关于直线x y -=对称,则圆C 的方程为( )A .1)1(22=++y xB .122=+y xC .1)1(22=++y xD .1)1(22=-+y x 7.与直线012=-+y x 关于点)11(-,对称的直线方程为( ) A .052=--y xB .032=-+y xC .032=++y xD .012=--y x 8.一条光线从点(-2,-3)射出,经y 轴反射后与圆(x+3)2+(y-2)2=1相切,则反射光线所在直线的斜率为_______-9.两直线x y 33=和1=x 关于直线l 对称,直线l 的方程是___________.10.直线042=--y x 上有一点P ,它与两定点)1,4(-A 、)4,3(B 的距离之差最大,则P 点的坐标是________.11.直线x y 2=是△ABC 中C ∠的平分线所在的直线,若A 、B 坐标分别为)2,4(-A 、)1,3(B ,求点C 的坐标,并判断△ABC 的形状.12.已知△ABC 的一个顶点)4,1(--A ,B ∠、C ∠的平分线所在直线的方程分别为01:1=+y l ,01:2=++y x l ,求边BC 所在直线的方程13. 已知两点)3,2(A 、)1,4(B ,直线022:=-+y x l ,在直线l 上求一点P .(1)使PB PA +最小;(2)使PB PA -最大.。

例析“直线关于直线对称”问题

例析“直线关于直线对称”问题

例析“直线关于直线对称”问题2019-10-21⾼中数学解析⼏何《直线⽅程》部分涉及点关于点、直线关于点、点关于直线、直线关于直线对称四类问题,现就个⼈在教学中有关直线关于直线对称问题加以分析:(⼀)求已知直线与对称轴平⾏的直线⽅程例求已知直线L1:2x+3y-4=0关于直线2x+3y-6=0的对称直线L的⽅程。

解:由题意知:L1与对称直线2x+3y-6=0平⾏可设其对称直线的⽅程为2x+3y+C=0L1到2x+3y-6=0的距离等于L到对2x+3y-6=0的距离所求直线L的⽅程为:2x+3y-8=0评析:此题为求已知直线与对称轴平⾏的对称问题,解题时,只需利⽤平⾯⼏何知识,即平⾏间的距离相等便能使问题得到解决。

(⼆)求已知直线与对称轴相交的直线⽅程例求已知直线L1:x-y-1=0关于直线2x-y=0的对称直线L的⽅程。

解法1:由x-y-1=02x-y=0得x=-1y=-2(-1,-2)为两已知直线交点,且(-1,-2)也在直线L上。

设所求直线L的斜率为k,则:所求直线L的⽅程为y+2=7(x+1)即为:7x-y+5=0解法2:由解法1知交点为(-1,-2),在L1:x-y-1=0上设其⼀点为(1,0),则(1,0)关于2x-y=0对称点B(x0,y0)即:直线L1:x-y-1=0关于直线2x-y=0对称直线L的⽅程为7x-y+5=0解法3:设所求直线L上任意⼀点P(x0,y0),P点关于2x-y=0的对称点为P1(x1,y1),则P1在直线x-y-1=0上。

即:7x-y+5=0为所求直线L的⽅程评析:此类问题为求已知直线与对称轴相交的直线⽅程,⽅法有3种,各有优势。

其中第1种解法是由轴对称性质,对称轴与两条直线夹⾓相等,然后使⽤到⾓公式求出直线斜率,再利⽤点斜式求出所求直线⽅程;第⼆种⽅法是在已知直线上任找⼀点(特殊点也可),从⽽求出该点关于定直线的对称点,然后根据两点式求出直线⽅程,充分利⽤垂直平分来求解对称的直线⽅程;第三种⽅法由两条直线关于定直线对称,则这两条直线中任何⼀条直线上任意⼀点关于对称轴的点必在另⼀条直线上,对称轴是这两点的中垂线,由此可写出两点坐标间的关系式,⽤代⼊法求出直线⽅程。

直线里的对称问题

直线里的对称问题
直线里的对称问题
1、点关于点对称
例1、已知点A(3,)关于点 2 B(-1,)对称的点 3 C的坐标: 练习:已知平行四边形ABCD, A(- 2,), 2 B(3,), 4 C(-4,) 6 则D点坐标为:
直线关于点对称的直线
例1直线x-y-2=0关于点( 1,-4)对称直线方程: 练习: 已知直线l1关于点( 1, 1)对称的直线为2x y 2 0, 求直线线 2 x -y+2=0对称的点 B的坐标? 练习: 1、点(3,)关于直线 9 x+3y-10=0的 对称点的坐标? 2、已知直线l1 : x 2y 2 0交Y轴与点B ,光线自点A(-1,)射到点 4 B后经直线l1 反射,求入射光线与反射光线所在直线方程。
直线关于直线对称的直线方程
一、关于特殊直线对称 例1 和直线3x -4y+5=0关于x轴对称的直线方程: 关于y轴对称的直线方程为:
二、关于一般直线对称 1、直线关于与其平行直线对称直线方程 例2 求直线2x +y-2=0关于直线4x+2y-1=0 对称 的直线方程。
2、直线关于与其相交直线对称直线方程 例3 求直线2x+y-2=0关于直线2x -y+4=0对 称的直线方程。
总结
• • • • • • • 点关于点对称求法: 线关于点对称求法: 点关于线对称求法: 线关于线对称求法: (1)线关于特殊线对称: (2)线关于平行线对称: (3)线关于相交线对称:

直线的对称问题

直线的对称问题

=-1
y
··A′ (x,y)

(2,6)
3 -4+x ·2
+
42+y-2=0
解题要点: k • kAA’ = -1
O
x
AA’中点在l 上(l为对称轴)
点关于直线的对称问题
M (a,b)关于直线l : Ax By C 0(B 0)
的对称点N (x0 , y0 )的求法:
A x0 2
B(45, 85)
l2
l1 y
A
o.
B
.E
x
故直线l2的方程为:y2((285) )
x3
3
4 5
即 2x 11y 16 0 .
求L1关于 L2的对称直线L的方程的方法
解题要点:(先判断两直线位置关系)
(1)若两直线相交,先求交点P, 再在 L1上取一点Q求其对称点得另一点Q’ 两点式求L方程
P
垂直
l
中点 O
Q
说明两点P和Q关于直线l对称的几何特征
直线l是线段PQ的垂直平分线,即 1.线段PQ的中点在直线l上, 2.线段PQ和直线l垂直
y
P
Q
O
x
例题.已知点A的坐标为(-4,4),直线l 的方程为3x+y2=0,求点A关于直线l 的对称点A’的坐标。
解:设 A(′ x,y)
-3·
y-4 x-(-4)
5.直线关于直线y= -x的对称直线的 方程为 A( y) B(x) C 0
练习:求直线3x-2y+6=0关于直线x-2y+1=0的对
称的直线方程。
分析:在直线3x-2y+6=0上取一点 A(0,3),求它关于直线x2y+1=0的对称点为B(2,-1)。

直线中的对称问题方法总结及典型例题

直线中的对称问题方法总结及典型例题

直线中的对称问题—4类对称题型直线的对称问题是我们学习平面解析几何过程中的不可忽视的问题,我们可以把它主要归纳为,点关于点对称,点关于线对称,线关于点对称,线关于线对称问题,下面我们来一一探讨:一、点关于点对称问题解决点点对称问题的关键是利用中点坐标公式,同时也是其它对称问题的基础.例1.求点(1)()3,1A 关于点()2,3P 的对称点'A 的坐标,(2)()2,4A ,()'0,2A 关于点P 对称,求点P 坐标.解:由题意知点P 是线段'AA 的中点,所以易求(1)()'1,5A(2)()1,3P .因此,平面内点关于对称点坐标为平面内点,关于点对称二、点关于线对称问题 求定点关于定直线的对称问题时,根据轴对称定义利用①两直线斜率互为负倒数,②中点坐标公式来求得.例2.已知点直线:,求点关于直线的对称点的坐标 解:法(一)解:设,则中点坐标为且满足直线的方程 ①又与垂直,且斜率都存在即有 ②由①②解得 ,法(二)求点点关于线对称问题,其实我们可以转化为求点关于点对称的问题,可先求出的直线方程进而求与的交点坐标,再利用中点坐标公式建立方程求坐标.三、线关于点对称问题求直线关于某一点的对称直线的问题,一般转化为直线上的点关于点的对称问题.例3.求直线:关于点的对称直线的方程.解:法(一)直线:与两坐标轴交点为,点关于对称点点关于对称点过的直线方程为故所求直线方程为.法(二)由两直线关于点对称,易知两直线平行,则对称点到两直线的距离相等,可以建立等式,求出直线方程.四、线关于线的对称问题求直线关于直线的对称问题,一般转化为点关于直线对称问题:即在已知直线上任取两不同点,求出这两点关于直线的对称点再求出直线方程.例4.求已知直线:关于直线对称的直线方程.解:在:上任取一点直线的斜率为3过点且与直线垂直的直线斜率为,方程为得所以点为直线与的交点,利用中点坐标公式求出关于的对称点坐标为又直线与的交点也在所求直线上由得所以交点坐标为.过和的直线方程为,故所求直线方程.。

直线中的四类对称问题及讲解

直线中的四类对称问题及讲解

直线中的几类对称问题对称问题,是解析几何中比较典型,高考中常考的热点问题. 对于直线中的对称问题,我们可以分为:点关于点的对称;点关于直线的对称;直线关于点的对称,直线关于直线的对称.一、点关于点的对称问题点关于点的对称问题,是对称问题中最基础最重要的一类,其余几类对称问题均可以化归为点关于点的对称进行求解. 熟练掌握和灵活运用中点坐标公式是处理这类问题的关键.例1 求点A (2,4)关于点B (3,5)对称的点C 的坐标.分析 易知B 是线段AC 的中点,由此我们可以由中点坐标公式,构造方程求解.解 由题意知,B 是线段AC 的中点,设点C (x ,y ),由中点坐标公式有⎪⎪⎩⎪⎪⎨⎧+=+=245223x x ,解得⎩⎨⎧==64y x ,故C (4,6). 点评 解决点关于点的对称问题,我们借助中点坐标公式进行求解. 另外此题可以利用中点的性质AB=BC ,以及A ,B ,C 三点共线的性质去列方程来求解.二、点关于直线的对称问题点关于直线的对称问题是点关于点的对称问题的延伸,处理这类问题主要抓住两个方面:①两点连线与已知直线斜率乘积等于-1,②两点的中点在已知直线上.例2 求点A (1,3)关于直线l :x+2y-3=0的对称点A ′的坐标.分析 因为A ,A ′关于直线对称,所以直线l 是线段AA ′的垂直平分线. 这就找到了解题的突破口.解 据分析,直线l 与直线AA ′垂直,并且平分线段AA ′,设A ′的坐标为(x ,y ),则AA ′的中点B 的坐标为.13,23,21•x y •k •y ••x A A --=⎪⎭⎫ ⎝⎛++' 由题意可知,⎪⎪⎩⎪⎪⎨⎧-=⎪⎭⎫ ⎝⎛-∙--=-+⨯++121130323221x y y x , 解得⎪⎪⎩⎪⎪⎨⎧-=-=5153y x . 故所求点A ′的坐标为.51,53•••⎪⎭⎫ ⎝⎛--三、直线关于某点对称的问题直线关于点的对称问题,可转化为直线上的点关于某点对称的问题,这里需要注意到的是两对称直线是平行的. 我们往往利用平行直线系去求解.例3 求直线2x+11y+16=0关于点P (0,1)对称的直线方程.分析 本题可以利用两直线平行,以及点P 到两直线的距离相等求解,也可以先在已知直线上取一点,再求该点关于点P 的对称点,代入对称直线方程待定相关常数.解法一 由中心对称性质知,所求对称直线与已知直线平行,故可设对称直线方程为2x+11y+c=0. 由点到直线距离公式,得2222112|11|112|1611|++=++c ,即|11+c|=27,得c=16(即为已知直线,舍去)或c= -38. 故所求对称直线方程为2x+11y-38=0.解法二 在直线2x+11y+16=0上取两点A (-8,0),则点A (-8,0)关于P (0,1)的对称点的B (8,2). 由中心对称性质知,所求对称直线与已知直线平行,故可设对称直线方程为2x+11y+c=0.将B (8,2)代入,解得c=-38.故所求对称直线方程为2x+11y-38=0.点评 解法一利用所求的对称直线与已知直线平行,再由点(对称中心)到此两直线距离相等,而求出c ,使问题解决;解法二是转化为点关于点对称问题,利用中点坐标公式,求出对称点坐标,再利用直线系方程,写出直线方程.四、直线关于直线的对称问题直线关于直线对称问题,包含有两种情形:①两直线平行,②两直线相交. 对于①,我们可转化为点关于直线的对称问题去求解;对于②,其一般解法为先求交点,再用“到角”,或是转化为点关于直线对称问题.例4 求直线l 1:x-y-1=0关于直线l 2:x-y+1=0对称的直线l 的方程.分析 转化为点关于直线的对称问题,再利用平行直线系去求解,或者利用距离相等寻求解答.解 设直线l 的方程为x-y+c=0,在直线l 1:x-y-1=0上取点M (1,0),则易求得M 关于直线l 2:x-y+1=0的对称点N (-1,2),将N 的坐标代入方程x-y+c=0,解得c=3,故所求直线l 的方程为x-y+3=0.点评 此题也可以先利用平行直线系方程写出直线l 的形式,然后再在直线l 2上任取一点,在根据该点到互相对称的两直线的距离相等去待定相关常数.例5 试求直线l 1:x-y-2=0关于直线l 2:3x-y+3=0对称的直线l 的方程.直线l 的方程为7x+y+22=0.方法提示:本题可以先求l 1,l 2的交点A ,再在直线l 1上取异于点A 的任意点B ,再求点B 关于点A 的对称点B ′,最后由A ,B ′两点写出直线l 的方程.。

直线中的对称问题6种考法

直线中的对称问题6种考法

直线中的对称问题一、点关于点的对称问题1、实质:该点是两对称点连线段的中点2、方法:利用中点坐标公式平面内点()00,y x A 关于()b a P ,对称点坐标为()002,2y b x a --,平面内点()11,y x A ,()22,y x A '关于点⎪⎭⎫⎝⎛++2,22121y y x x P 对称二、直线关于点的对称问题 1、实质:两直线平行2、法一:转化为“点关于点”的对称问题(在l 上找两个特殊点(通常取直线与坐标轴的交点),求出各自关于A 对称的点,然后求出直线方程)法二:利用平行性质解(求一个对称点,且斜率相等或设平行直线系,利用点到直线距离相等) 三、点关于直线的对称问题1、实质:轴(直线)是对称点连线段的中垂线2、(1)当直线斜率存在时:方法:利用”垂直“和”平分“这两个条件建立方程组,就可求出对称点的坐标,一般地:设点()00,x y 关于直线0++=Ax By C 的对称点(),x y '',则'0'0''01022⎧-⎛⎫-=- ⎪⎪-⎪⎝⎭⎨++⎪++=⎪⎩y y A x x B x x y y A B c (2)当直线斜率不存在时:点()00,x y 关于m x =的对称点为()002,-m x y 2、常见的点关于直线的对称点(1)点()00,x y 关于x 轴的对称点为()00,x y -; (2)点()00,x y 关于y 轴的对称点为()00,x y -; (3)点()00,x y 关于直线y x =的对称点为()00,y x ; (4)点()00,x y 关于直线y x =-的对称点为()00,y x --;(5)点()00,x y 关于直线x m =的对称点为()002,m x y -; (6)点()00,x y 关于直线y n =的对称点为()00,2x n y -;(7)点()00,x y 关于直线0x y m -+=的对称点为()00,,y m x m -+; (8)点()00,x y 关于直线0x y m +-=的对称点为()00,,y m x m ---+; 四、直线关于直线的对称问题1、当1l 与l 相交时:此问题可转化为“点关于直线”的对称问题;求直线1:0l ax by c ++=,关于直线2:0l dx ey f ++=(两直线不平行)的对称直线3l 第一步:联立12l l ,算出交点00()P x y ,第二步:在1l 上任找一点(非交点)11()Q x y ,,求出关于直线对称的点22()Q x y ', 第三步:利用两点式写出3l 方程2、当1l 与l 平行时:对称直线与已知直线平行.两条对称直线到已知直线的距离相等,利用平行线间距离公式建立方程即可解得。

解析几何:直线中的对称问题

解析几何:直线中的对称问题

一:直线关于直线对称【结论】直线0ax by c ++=关于直线=0Ax By C ++对称的直线方程为:222+2ax by c aA bB Ax By C A B ++=+++ 如此对称漂亮的等式相信对于各位的记忆并不困难吧!当然最后你别忘了将之化成直线方程的标准形式二:直线关于点对称这个要简单好多,首先直线关于某点对称的直线,其斜率保持一致(前提是该直线不过此点),再借助点到两直线的距离相等即可解决问题。

由于距离公式涉及到绝对值符号,很多同学在处理这一步的时候走了点弯路,还去讨论情况什么的,甚至还有人进行两边平方,实际上我们很容易知道,绝对值符号内的部分肯定是互为相反数——因为相等的情况就是该直线本身。

【例】求直线0ax by c ++=关于点00P(x ,y )对称的直线方程解:设所求直线方程0ax by d ++=,其中d 由方程0000()(ax by c)0ax by d +++++=来求三:点关于直线已知点M(x 0,y 0)和直线 l :Ax+By+C=0(A≠0,B≠0),求点M 关于直线l 对称的对称点M′的坐标,这是高中数学教学中常见的问题。

其求法是简单的,设M′(x,y),利用直线l 是线段MM′的中垂线,列出方程组,解方程组便可求得M′点的坐标。

由于在教学中遇到此类问题很多,屡屡列方程组并解之不胜其烦,所以不如做一回傻事,就一般情况推导出其坐标公式,“毕其功于一役”,省得以后劳苦再三。

但需说明的是,此公式虽如此优美,但仅适合于教师使用。

而不提倡学生使用此公式(额外增加了记忆负担)。

定理:已知点M(x 0,y 0)和直线 l :Ax+By+C=0(A≠0,B≠0),点M 关于直线l 对称的对称点M′的坐标(x ,y),则 00022000222(x ,y )2(x ,y )Af x x A B Bf y y A B =-+=-+ 其中(x,y)Ax By f C =++证明:设点M 关于直线l 对称的对称点M′的坐标是(x ,y),∵ l⊥MM′,∴ [(y -y 0)/(x-x 0)](-A/B)=-1,∴ y=y 0+B(x-x 0)/A , ①∵ 线段MM′的中点在直线l 上,∴ A(x+x 0)/2+B(y+y 0)/2+C=0,∴Ax+By+C+Ax 0+By 0+C=0,即 Ax+By+C+f(x 0,y 0)=0, ②将①代入②,得Ax+B[y 0+B(x-x 0)/A]+C+f(x 0,y 0)=0,∴ A 2x+B[Ay 0+B(x-x 0)]+AC+Af(x 0,y 0)=0,∴ A 2x+ABy 0+B 2x-B 2x 0+AC+Af(x 0,y 0)=0,∴ (A 2+B 2)x-A 2x 0-B 2x 0+A 2x 0+ABy 0+AC+Af(x 0,y 0)=0,即 (A 2+B 2)x-(A 2+B 2)x 0+2Af(x 0,y 0)=0,∴ x=x 0-2Af(x 0,y 0)/(A 2+B 2),把上式代入①,得y=y 0+B[-2Af(x 0,y 0)/A(A 2+B 2)]=y 0-2Bf(x 0,y 0)/(A 2+B 2).(证毕)例1 已知点M(3,4)和直线 l : x-y=0,点M 关于直线l 对称的对称点M′的坐标。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解 l i: 法: 2 由3
解 : 点 B 的坐标 为 ( b , 设 o, ) 则 段 A 的 中点 为 ( B , ) 。 = , 线
,直 与 的 得 线n z 交
点 E 3 一2 , E 一3 2也 在 直 线 b上 . ( , )且 ( ,) 设直线 b的斜率 为 , 由轴对 称性质 , 知直线 z 到直线 a的角等于直线 6到直线 z 的角 , 由到角公 则 式, 得
1( 6 即为 已知 直 线 , 去 ) c 一3 . 舍 或 = 8 故 所 求 对称 直 线 方 程 为 2 +l’ 8= . 1, 一3 0 点 评 : 法 1 转 化 为 点 关 于 点 的对 称 问 题 , 解 是 利 用 中点坐标公式 求 出对 称点 坐标 , 再利 用两 点式写 出直线方程 ; 而解法 2是利用 所求 的对 称直线 与 已 知直线平行 , 由点 ( 称 中心 ) 再 对 到此两 直线距 离相 等求 出 c 使问题解决 . , 四、 线关于直线对称 直 直 线 关 于直 线 的 对 称 问 题 , 两 种 情 形 : 此 两 有 ① 直 线 平 行 , 此 两 直 线 相 交 . 于 平 行 情 形 比较 简 ② 由 单, 下面介绍第二种情形 , 其解法通常是“ 求交点 , 用 到 角 ” 或 是 转 化 为点 关 于 直 线 的 对 称 问 题 . , 例 4 求直线 a 2 Y :x 一4= 0关于直线 f3 :x+ 4 一1 0对 称 的直 线 b的方 程 . =
I U
考试指导
直 线 中 的 四 类 典 型 对 称 问 题 4 9
◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇ ◇
■ 姜玉 娟
2; )
点 A( , ) 于 P( , ) 对 称 点 的 F( , 3 一2 关 01的 一6
由两点式 , 过点 E、 得 曰的直线也就 是所 求的直 线为 2 +1 ’ 6= . 1, +1 0 点评 : 法 1 利用轴对称性质 , 对称 轴 l 解 是 知 恰 是 直 线 a b所 成 角 的角 平 分 线 , 可 用 到 角 公 式 加 、 故 以解决 , 而解 法 2是 在 直 线 a上 取 点 , 化 点 关 于 直 转 线 对称问题 , 再利用两 点式 , 出直线方程 . 写 ( 作者单位 : 苏常 州武进 区湟里 高级 中学) 江
解 得 = 一音 .


由点 斜 式 , 直) 即 +ly+1 =0 1 6 .
故所求的对称点 曰的坐标为( , ) ÷ .
点评 : 本题 的实质就 是 直线 z 直平 分 于线段 垂 A 也就是对称 轴 z B, 是线段 J A B的垂直平 分线 , 然 显 要满足两个条件 , 才能求 出点 B的坐标 . 三 、 线 关 于 点 对 称 直 直线关于点 的对称 问题 可转化为直线上 的点关 于点对称问题来研究 , 也可运用距离来解决 . 例 3 求 直 线 2 +1 Y+1 1 6=0关 于 点 P( , ) O 1 对称 的 直 线 方 程 . 解 法 1在 直 线 2 : +1Y+1 0取 两 点 A( , 1 6= 一8 0 , 3 一2 . ) 8( , ) 则 点 A( ,) 于 P( , ) 对 称 点 的 E( , 8O关 0 1的 一8
解法2由{x 一 U 得直线 n 的交 : 2÷ n, 。 与z
点 E( , ) 且 E 一32 也在直线 b上. 3 一2 , ( ,) 在直线 a上取一点 A 20 , ( ,) 易求得关于直线 z :
3 + y = 的对称点 日 { , 号 ) x 4 一1 0 ( 一 .
4. )
由 两点 式 , 过 点 E、 的直 线 方 程 为 2 知 F +1 Y l

3 =0. 8
故 所 求 对称 直 线 方 程 为 2 +lY一3 0 1 8= . 解 法 2 由中心对称性 质知 , : 所求 对称直 线与 已 知直线平行 , 可设对称直线方 程为 2 故 +1'+C 1, = 0 由点 到 直 线 距 离 公 式 , . 得 譬
一 — — —
il 举: 2b 0 墨 b + 【 1 + ( a3 - =
+ 2× 2 一 2: 0 Ln 6- 8 -0 ’
号 () 一一 2
— — — — 一


一一 ) (号
— — —

1 一 ) 一 ) 1 ×( }) +( ×( 2 + 一
: ,
1 1
2 2+ 1 1
即 I +1 -2 , 。 。 1 I 7得 :
得 一 解 4 { 得 . 卜 丁
结 论 , 点 ( , o 关 于 点 ( , ) 对 称 点 坐 标 为 即 0 Y ) ab的
据轴对称 的定义加 以解决 , 即满 足两个 条件 : — ・ ①
相关文档
最新文档