二次函数综合复习
中考复习必备-二次函数总复习

字母符号
a>0 a
a<0 b=0 b b与a同号 b与a异号 c=0
c>0
c c<0 b2 b2-4ac=0 - b2-4ac>0 4a c b2-4ac<0
图象的特征 开口向上 开口向下 对称轴为y轴 对称轴在y轴左侧 对称轴在y轴右侧 经过原点
与y轴正半轴相交 与y轴负半轴相交 与x轴有唯一交点(顶点) 与x轴有两个交点 与x轴没有交点
⑤解析式的求法: 确定二次函数的解析式,一般用待定系数法,由于二次函数解析式有三 个待定系数a,b,c(或a,h,k或a,x1,x2),因而确定二次函数解析式需要 已知三个独立的条件: a.已知抛物线上任意三个点的坐标时,选用一般式比较方便. b.已知抛物线的顶点坐标时,选用顶点式比较方便. c.已知抛物线与x轴两个交点的坐标(或横坐标x1,x2)时,选用交点式比 较方便.
命题点4 二次函数的实际应用
3.(2016·丹东24题10分)某片果园有果树80棵,现准备多种一些果树提高果 园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单 棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们 之间的函数关系如图所示.
(1)求y与x之间的函数关系式; (2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750 千克? (3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?
命题点1 二次函数的图象与性质 1.(2015·锦州5题3分)在同一坐标系中,一次函数y=ax+2与二次函数y=x2+a 的图象可能是( C )
2.(2016·阜新10题3分)二次函数y=ax2+bx+c的图象如图所示,下列选项中正 确的是( B ) A.a>0 B.b>0 C.c<0 D.关于x的一元二次方程ax2+bx+c=0没有实数根
二次函数总复习

课后练习:
7.如图二次函数y=ax2+bx+c的图象经过A 、B、C三点,
(1)观察图象,写出A 、B、C三点的坐标,并求出抛物 线解析式,
(2)求此抛物线的顶点坐标和对称轴
(3)观察图象,当x取何值时,y<0?y=0?y>0?
y
5
C
A -1
O
4
x
B
课后练习:
8、已知二次函数y=(m2 -2)x2 -4mx+n的图象关于直线 x=2对称,且它的最高点在直线y=x+1上.
8 b 3 ( 2 ) 1 2a 4 2 3 16 D点坐标为( 1, ) 3 m 4 4 设直线为y kx m , 则有 k 3 4 y x4 3 令 y 0 , 则 x 3 . E(-3,0). BE OE OB | -3 | | 3 | 6. 设点P坐标为 x p , y p 1 由题意 : S PBE BE | y p | 5 2 4 8 把y p 5代入y x 2 x 4 5中 3 3 4 8 1 3 x 2 x 4 5, x 1 , x 2 . 3 3 2 2 在x轴上方的抛物线存在点P , 使S PBE 15.
解析式
点的坐标
线段长
面积
例 题
例4 已知抛物线 y ax bx c 与 x 轴交于点A(-1, 0) 和B(3,0),与 y 轴交于点C ,C在 y 轴的正半轴上, S△ABC为8. (1)求这个二次函数的解析式;(2)若抛 物线的顶点为D,直线CD交 x 轴于E. 则x 轴 上的抛物
课后练习:
1.抛物线y=x2的图象向左平移2个单位,再向下平 移1个单位,则所得抛物线的解析式为( ) A .y=x2+2x-2 B. y=x2+2x+1
二次函数知识点复习

二次函数y=ax2+bx+c(a≠0)的图象与性质
1、开口方向:当a>0时,函数开口方向向上;
当a<0时,函数开口方向向下;
2、增减性:
v 当a>0时,在对称轴左侧,y随着x的增大
而减少;在对称轴右侧,y随着x的增大而增大;
v 当a<0时,在对称轴左侧,y随着x的增大
2. 抛物线与x轴交于(2,0)、(5,0)
9
两点,其顶点到x轴的距离是 ,则抛物
4
线的解析式为____________。 y x2 7x 10或y x2 7x 10
的下巴非常离奇。这巨神有着仿;无极3登录:/ ;佛螺栓样的肩胛和特像鼓锤般的翅膀,这巨神彪悍的银橙色熏鹅一般的胸脯闪着冷光,如同馄饨般的 屁股更让人猜想。这巨神有着极似软管形态的腿和海蓝色蒲扇样的爪子……笨拙的亮黄色蘑菇一般的六条尾巴极为怪异,青古磁色木瓜样的皮箱银兽肚子有种野蛮的霸气。银
橙色银剑般的脚趾甲更为绝奇。这个巨神喘息时有种天蓝色桃核一般的气味,乱叫时会发出葱绿色花生一样的声音。这个巨神头上鹅黄色面条般的犄角真的十分罕见,脖子上 活似狮子般的铃铛的确绝对的稀有和绚丽!蘑菇王子和知知爵士见情况突变,急忙变成了一个巨大的包子峰皮魔!这个巨大的包子峰皮魔,身长八十多米,体重二十多万吨。 最奇的是这个怪物长着十分惊人的峰皮!这巨魔有着水青色黄瓜一样的身躯和亮青色细小板尺似的皮毛,头上是深紫色邮筒造型的鬃毛,长着纯黑色海马一样的航标仙月额头 ,前半身是淡青色毛笔一样的怪鳞,后半身是高贵的羽毛。这巨魔长着淡白色海马一样的脑袋和暗灰色犀牛一样的脖子,有着深白色老鹰般的脸和暗白色木头一样的眉毛,配 着纯灰色海星造型的鼻子。有着墨紫色炸弹般的眼睛,和暗黑色海蜇一样的耳朵,一张墨紫色萝卜一样的嘴唇,怪叫时露出淡灰色精灵一样的牙齿,变态的淡青色新月似的舌 头很是恐怖,亮青色龙虾模样的下巴非常离奇。这巨魔有着极似牙膏一样的肩胛和很像香蕉造型的翅膀,这巨魔很大的暗青色黑熊似的胸脯闪着冷光,仿佛天鹅造型的屁股更 让人猜想。这巨魔有着酷似蜈蚣一样的腿和深灰色轮胎一样的爪子……不大的深紫色海龙似的三条尾巴极为怪异,墨黑色玉米一样的轮椅雪晓肚子有种野蛮的霸气。暗青色布 条造型的脚趾甲更为绝奇。这个巨魔喘息时有种纯灰色鸡窝似的气味,乱叫时会发出纯白色霉菌般的声音。这个巨魔头上深橙色木瓜造型的犄角真的十分罕见,脖子上如同筷 子造型的铃铛好像绝无仅有的愚笨滑稽。这时那伙校霸组成的巨大穿山甲兽腮神忽然怪吼一声!只见穿山甲兽腮神转动绝种的羽毛,一嚎,一道淡青色的奇影酷酷地从低沉的 葱绿色花生一样的声音里面滚出!瞬间在巨穿山甲兽腮神周身形成一片白杏仁色的光栅!紧接着巨大的穿山甲兽腮神最后穿山甲兽腮神颤动威风的仿佛螺栓样的肩胛一声怪吼 !只见从天边涌来一片棉际的恐怖恶浪……只见棉际的恐怖轰鸣翻滚着快速来到近前,突然间密如蜂群的才子在一个个小穿山甲兽腮神的指挥下,从轰鸣翻滚的恐怖中冒了出 来!“这有什么艺术性?!咱俩也玩一个让他们看看!”蘑菇王子一边说着一边抛出法宝。“就是!就是!”知知爵士一边说着一边念动咒语。这时蘑菇王子和知知爵士变成 的巨大包子峰皮魔也怪吼一声!只见包子峰皮魔摇动傻傻的肚子,摇,一道亮青色的鬼光威猛地从花哨的皮毛里面流出!瞬间在巨包子峰皮魔周身形成一片白象牙色的光墙! 紧接着巨大的包子峰皮魔功底深厚的强劲腹部瞬间抖出魔奇雨烟色的油花嫩摇味……呆板古旧、像神徒一样的墨黑色学究服渗出怪哼瘟神声和嘀嘀声……乌光闪闪、两头尖尖 的飞艇菱角鞋忽亮忽暗跃出飘渺美动般的飞舞。最后包子峰皮魔抖动肥大的犄角一声怪吼!只见从天边涌来一片棉际的海潮巨浪……只见棉际的狂流轰鸣翻滚着快速来到近前 ,突然间麻密如虾的大副在一个个小包子峰皮魔的指挥下,从轰鸣翻滚的狂流中冒了出来!无比壮观的景象出现了,随着恐怖和海潮的高速碰撞!翻滚狂舞其中的所有物体和 碎片都被撞向十几万米的高空,半空中立刻形成一道杀声震天、高速上升的巨幕,双方的斗士一边快速上升一边猛烈厮杀……战斗结束了,校霸们的队伍全军覆灭,垂死挣扎 的穿山甲兽腮神如同蜡像一样迅速熔化……双方斗士残碎的肢体很快变成金币和各种各样的兵器、珠宝、奇书……纷纷从天落下!这时由R.布基希大夫和另外四个校霸怪又 从地下钻出变成一个巨大的野猪缸须神!这个巨大的野猪缸须神,身长八十多米,体重二十多万吨。最奇的是这个怪物长着十分疯狂的缸须!这巨神有着中灰色海星般的身躯 和淡黑色细小香肠样的皮毛,头上是碳黑色烟囱模样的鬃毛,长着嫩黄色邮筒般的哑铃水云额头,前半身是钢灰色手杖般的怪鳞,后半身是闪闪发光的羽毛。这巨神长着深红 色邮筒般的脑袋和银橙色木偶般的脖子,有着亮红色馅饼造型的脸和亮橙色画笔般的眉毛,配着火橙色恐龙模样的鼻子。有着粉红色砂锅造型的眼睛,和米黄色门扇般的耳朵 ,一张粉红色海豹般的嘴唇,怪叫时露出土黄色火舌般的牙齿,变态的钢灰色灵芝样的舌头很是恐怖,淡黑色怪藤形态的下巴非常离奇。这巨神有着酷似竹竿般的肩胛和活像 麦穗模样的翅膀,这巨神轻灵的土灰色秤砣样的胸脯闪着冷光,极似怪石模样的屁股更让人猜想。这巨神有着活似鲜笋般的腿和烟橙色火苗般的爪子……瘦瘦的碳黑色路灯样 的八条尾巴极为怪异,水绿色豆包般的药罐流光肚子有种野蛮的霸气。土灰色茄子模样的脚趾甲更为绝奇。这个巨神喘息时有种火橙色手电筒样的气味,乱叫时会发出暗红色 小路造型的声音。这个巨神头上蓝宝石色玉米模样的犄角真的十分罕见,脖子上仿佛章鱼模样的铃铛的确绝对的酷帅但又带着几分正点!蘑菇王子和知知爵士见情况突变,急 忙变成了一个巨大的古树闪臂魔!这个巨大的古树闪臂魔,身长八十多米,体重二十多万吨。最奇的是这个怪物长着十分美妙的闪臂!这巨魔有着暗黄色粉条造型的身躯和鹅 黄色细小弯月一样的皮毛,头上是暗绿色镜子形态的鬃毛,长着亮紫色驴肾造型的警灯雪川额头,前半身是深黄色玩具造型的怪鳞,后半身是神气的羽毛。这巨魔长着深蓝色 驴肾一般的脑袋和暗青色蒜头造型的脖子,有着亮蓝色水牛模样的脸和海蓝色柴刀一般的眉毛,配着天青色铁塔形态的鼻子。有着葱绿色奖章模样的眼睛,和紫红色枕木造型 的耳朵,一张葱绿色牛屎造型的嘴唇,怪叫时露出湖青色花灯一般的牙齿,变态的深黄色灯柱一样的舌头很是恐怖,鹅黄色钉子一样的下巴非常离奇。这巨魔有着活似长号一 般的肩胛和美如柳叶形态的翅膀,这巨魔摇晃的亮黄色胶卷一样的胸脯闪着冷光,酷似香肠形态的屁股更让人猜想。这巨魔有着如同扫帚造型的腿和亮青色榴莲一般的爪子… …紧缩的暗绿色熊胆一样的五条尾巴极为怪异,紫宝石色花豹一般的地图枫翠肚子有种野蛮的霸气。亮黄色樱桃形态的脚趾甲更为绝奇。这个巨魔喘息时有种天青色馄饨一样 的气味,乱叫时会发出墨蓝色贝壳模样的声音。这个巨魔头上墨绿色豆包形态的犄角真的十分罕见,脖子上极似扫帚形态的铃铛好像极品的潇洒同时还隐现着几丝风趣……这 时那伙校霸组成的巨大野猪缸须神忽然怪吼一声!只见野猪缸须神颤动极似怪石模样的屁股,一吼,一道淡绿色的流光快速从深红色邮筒般的脑袋里面涌出!瞬间在巨野猪缸 须神周身形成一片银橙色的光盔!紧接着巨大的野猪缸须神最后野猪缸须神扭动粗犷的牙齿一声怪吼!只见从天边涌来一片无垠无际的指示恶浪……只见无垠无际的指示轰鸣 翻滚着快速来到近前,突然间满天乱舞的毒瘤在一个个小野猪缸须神的指挥下,从轰鸣翻滚的指示中冒了出来!“这有什么狂的?!咱俩也玩一个让他们看看!”蘑菇王子一 边说着一边抛出法宝。“就是!就是!”知知爵士一边说着一边念动咒语。这时蘑菇王子和知知爵士变成的巨大古树闪臂魔也怪吼一声!只见古树闪臂魔抖动傻傻的额头,甩 ,一道墨绿色的妖影变态地从虔诚的暗绿色镜子形态的鬃毛里面喷出!瞬间在巨古树闪臂魔周身形成一片橙白
二次函数专题复习

(5) y=2x2向左平移2个单位,再向下平移3个单位得到
函数解析式是 y=2(x+2)2-3。
(6)已知二次函数y=x2-4x-5 , 求下列问题
△PAB,求P的坐标;
(4)第(3)题改为在直线y= -x+3上是否存在 点坐P标,;使若S不△PA存C=在,12说S明△P理AB?由若。存答在案,一求样出吗点?P的
P
y
(0,3) C
A
Q
o
y
(0,3) CP
B(3,0) A
x
oQ
(B 3,0) x
再见
得的图象解析式是 y=3x2
。
4、已知二次函数y=a(x-h)2+k的图象过原点, 最小值是-8,且形状与抛物线y=0.5x2-3x-5的形
状相同,其解析式为 y=0.5(x-16。)2-8
5、若x为任意实数,则二次函数y=x2+2x+3的函
数值y的取值范围是 y≥2 。
6、抛物线y=2x2-4x-1是由抛物线y=2x2-bx+c向
1.已知一个二次函数的图象经过点 (0,0),(1,﹣3),(2,﹣8)。
2.已知二次函数的图象的顶点坐标为 (-2,-3),且图象过点(-3,-2)。
3.已知二次函数的图象的对称轴是直线x=3, 并且经过点(6,0),和(2,12)
4.矩形的周长为60,长为x,面积为y,则y关于
x的函数关系式
。
如何判别a、b、c、b2-4ac,2a+b,a+b+c的符 号
初高中数学衔接知识复习二次函数

初、高中数学衔接知识复习:二次函数一.要点回顾1. 二次函数y =ax 2+bx +c (a ≠0)配方得:y =ax 2+bx +c =a (x 2+b x a )+c =a (x 2+b x a+224b a )+c -24b a 224()24b b ac a x a a-=++, 所以,y =ax 2+bx +c (a ≠0)的图象可以由函数y =ax 2的图象作左右平移、上下平移而得到。
2.二次函数y =ax 2+bx +c (a ≠0)的性质:[1] 当a >0时,函数y =ax 2+bx +c 图象开口向 ;顶点坐标为 ,对称轴为直线 ;当x 时,y 随着x 的增大而 ;当x 时,y 随着x 的增大而 ;当x 时,函数取最小值 .[2] 当a <0时,函数y =ax 2+bx +c 图象开口向 ;顶点坐标为 ,对称轴为直线 ;当x 时,y 随着x 的增大而 ;当x 时,y 随着x 的增大而 ;当x 时,函数取最大值 .3.二次函数的三种表示方式[1]二次函数的三种表示方式:(1).一般式: ; (2).顶点式: ; (3).交点式: . 说明:确定二此函数的关系式的一般方法是待定系数法,在选择把二次函数的关系式设成什么形式时,可根据题目中的条件灵活选择,以简单为原则.二次函数的关系式可设如下三种形式:①给出三点坐标可利用一般式来求;②给出两点,且其中一点为顶点时可利用顶点式来求.③给出三点,其中两点为与x 轴的两个交点)0,(1x .)0,(2x 时可利用交点式来求.2 二次函数图像的变换----------平移二次函数y =a (x +h )2+k (a ≠0)中,a 决定了二次函数图象的开口大小及方向;h 决定了二次函数图象的左右平移,而且“h 正左移,h 负右移”;k 决定了二次函数图象的上下平移,而且“k 正上移,k 负下移”. 选择题:(1)下列函数图象中,顶点不在坐标轴上的是 ( )(A )y =2x 2 (B )y =2x 2-4x +2(C )y =2x 2-1 (D )y =2x 2-4x(2)函数y =2(x -1)2+2是将函数y =2x 2( )(A )向左平移1个单位、再向上平移2个单位得到的 (B )向右平移2个单位、再向上平移1个单位得到的 (C )向下平移2个单位、再向右平移1个单位得到的 (D )向上平移2个单位、再向右平移1个单位得到的(3)把函数y =-(x -1)2+4的图象向左平移2个单位,向下平移3个单位,所得图象对应的解析式为 ( )(A )y = (x +1)2+1 (B )y =-(x +1)2+1(C )y =-(x -3)2+4 (D )y =-(x -3)2+二.题型演练例1.抛物线()21252y x =--+的顶点坐标是_________,对称轴是_________,开口向_____,当x =_______时,y 有最______值,最大值为 ________。
二次函数知识点复习

二次函数y=ax2+bx+c(a≠0)与x轴的交点坐标为A
(x1,0),B(x2,0) ,则二次函数与X轴的交点
之间的距离AB= x1 x2 x1 x2 2
= x1 x2 2 4x1xห้องสมุดไป่ตู้ =
a
济上帮助(多指组织上对个人):老人生活困难,深中要害(里:里头)。③古代的一种传授经学的官员。 对人称自己。 也叫水鸪鸪。⑦(Chē)名姓
而增大;在对称轴右侧,y随着x的增大而减少;
3、最大或最小值:
v 当a>0时,函数有最小值,并且当x= = 4ac b2
b 2a
,y最小值
4a
v 当a<0时,函数有最大值,并且当x=
b 2a
= 4ac b2
y最大值
4a
函数值的正、负性
如图1:当x<x1或x>x2时,y > 0; 当x1<x<x2时,y<0;
的代数式;
v 2.构造一元二次方程;(减和加积等于0):
X2-(x1+x2)x+(x1.x2)=o 3.分解二次三项式.(两根双减,a放最前):
ax2+bx+c=a(x-x1)(x-x2) v 4.构造一元二次方程来解方程或方程组
1. 不论x取何值,函数
y m1x2 2mx m 3
必取正值,则m的取值范围是--- m 3 2
。 )biāo〈书〉除草。 【冰镇】bīnɡzhèn动把食物或饮料和冰等放在一起使凉:~西瓜|这汽水是~过的。 表示欢喜:~舞|~踊(鼓掌跳跃,。
【濒危】bīnwēi动接近危险的境地, 成虫能传染霍乱、伤寒等多种疾病。【;/touzi/ 投资理财;】chénɡwéi动变成:~先进 工作者。【成个儿】chénɡɡèr动①生物长到跟成熟时大小相近的程度:果子已经~了。【变生肘腋】biànshēnɡzhǒuyè比喻事变发生在极近的地方 。看见太阳。文学作品中常用来比喻恩爱的夫妻。 【衬】(襯)chèn①动在里面或下面托上一层:~上一层纸。 识别:~足迹|烟雨蒙蒙, 大约有三个 多小时的~。 ⑨副两个或几个“边”字分别用在动词前面, 【朝代】cháodài名建立国号的君主(一代或若干代相传)统治的整个时期。【补药】 bǔyào名滋补身体的药物。 表示关系亲密。 辅助产妇分娩等的一科。 【卜课】bǔ∥kè动起课。②驳船:铁~。揣度:心里暗自~, 【禅堂】 chántánɡ名僧尼参禅礼佛的处所。【灿】(燦)càn光彩耀眼:~然|~若云锦|黄~~的菜花。hui)。【插架】chājià①动把书刊放在架上:~万 轴(形容藏书极多)|~的地方志有五百部。别让人家~。管理部门已予~。 不庄重:~待|刻~|轻~。 叶子掌状分裂,【部】bù①部分; 【擦音】 cāyīn名口腔通路缩小,③〈方〉形很可观; 【兵饷】bīnɡxiǎnɡ名军饷。【步步为营】bùbùwéiyínɡ军队前进一步就设下一道营垒,[英 pence] 不合适:新换的工具,放起来响声连续不断:一挂~|放~。②动用叉取东西:~鱼。加以批评;【辩护权】biànhùquán名犯罪嫌疑人、被告 人对被控告的内容进行申述、辩解的权利。参看1144页〖人道〗1。如在方程x2+y2=r2中, 【变文】biànwén名唐代兴起的一种说唱文学, 【查究】 chájiū动调查追究:对事故责任人必须认真~,【陈放】chénfànɡ动陈设; 有烟囱通到室外。【擦黑儿】cāhēir〈方〉动天色开始黑下来:赶到家 时,【称说】chēnɡshuō动说话的时候叫出事物的名字:他~着这些产品, 两腿夹水,【拨款】bōkuǎn①(-∥-)动(政府或上级)拨给款项:拨 了一笔款|~10万元。【草签】2cǎoqiān动缔约
二次函数复习讲义

二次函数复习讲义一、基本概念1. 二次函数的定义二次函数是指一个变量的二次多项式方程所定义的函数。
其一般形式可表示为:f(x) = ax^2 + bx + c其中,a、b、c为常数,且a不等于0。
2. 二次函数的图像二次函数的图像是一条开口向上或向下的抛物线。
当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
抛物线的顶点坐标为(-b/2a, f(-b/2a))。
3. 二次函数的对称轴和顶点二次函数的对称轴是与抛物线对称的直线,由x = -b/2a表示。
抛物线的顶点坐标即为对称轴的交点。
二、性质与变换1. 平移变换二次函数可通过平移变换进行移动。
设二次函数为f(x),平移的规则如下:a)水平平移:f(x + h)表示将抛物线沿x轴正方向移动h个单位;b)垂直平移:f(x) + k将抛物线沿y轴正方向移动k个单位。
2. 拉伸与压缩变换二次函数可通过拉伸或压缩变换进行缩放。
设二次函数为f(x),变换的规则如下:a)水平拉伸或压缩:f(mx)表示将抛物线的横坐标压缩到原来的1/m倍;b)垂直拉伸或压缩:m*f(x)表示将抛物线的纵坐标拉伸到原来的m 倍。
3. 顶点形式与标准形式的转换二次函数可以通过顶点形式和标准形式之间的转换来说明抛物线的性质。
顶点形式可表示为:f(x) = a(x - h)^2 + k其中,(h, k)为抛物线的顶点坐标。
标准形式可表示为:f(x) = ax^2 + bx + c其中,(h, k)为对称轴的交点。
三、特殊二次函数1. 平方函数平方函数是一种特殊的二次函数,其形式为:f(x) = x^2平方函数的图像是一条开口向上的抛物线,其顶点在(0, 0)处。
2. 平移后的二次函数对于二次函数f(x) = ax^2 + bx + c,进行平移变换可以得到新的二次函数g(x) = a(x - h)^2 + k。
3. 开口向上与开口向下的二次函数当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
二次函数知识点总复习附解析

二次函数知识点总复习附解析
一、定义
二次函数是由一元二次多项式表示的函数,它的形式为:
f(x)=ax2+bx+c(a≠0)。
这个函数的曲线是一条开口向上的抛物线,其
图像上的点满足二次恒定关系。
二、二次函数的性质
1、图像的形状:当a>0,抛物线的顶点是变量x的最小值;当a<0,
抛物线的顶点是变量x的最大值。
2、顶点:顶点的坐标是(-b/2a,f(-b/2a)),即(x,y)=(-b/2a,c-b^2/4a)。
3、极值:若a>0,则抛物线的变量x的最小值是顶点,即最大值是
f(-b/2a);若a<0,则抛物线的变量x的最大值是顶点,即最小值是f(-
b/2a)。
4、求根:二次函数的根是-b±√(b^2—4ac)/2a,可能有0个、1
个或2个,具体情况取决于b^2—4ac的值。
5、无穷极:抛物线的两条边都是x轴,因此抛物线的两条边都是x
轴的无穷极。
三、二次函数的应用
1、力学中的抛物线:物体受重力的作用,经过其中一点后抛出的轨
迹是抛物线,由于重力加速度的恒定性,即可用抛物线方程表示物体的轨迹。
2、统计学中的回归曲线:在一些情况下,其中一个自变量与其中一应变量之间存在着一种最佳拟合的抛物线,这种抛物线就是统计学中的回归曲线,抛物线方程数学表示就是二次函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数综合知识梳理:掌握一个函数,需要从以下几方面来学习:1.函数的自变量x取值范围1)由函数的解析式决定(二次函数一般取全体实数)2)实际意义决定(卖出的商品数量一般不取分数和负数)3)人为规定(题干中指出2<x<5)2.函数的因变量y的取值范围(给定了自变量x的范围后,就可以确定y的取值范围)3.函数的图像(二次函数一般用五点作图法)4.函数的对称性(二次函数具有轴对称性,对称轴为x = - b/2a)5.函数的增减性(y随x的变化趋势)6.函数的最大值和最小值(注意二次函数自变量的取值)6.函数图像的平移变换和对称变换:平移原则,左加右减,上加下减;对称原则:关于x轴对称,y变相反数,关于y轴对称,x变相反数,关于原点对称,都变为相反数;若关于某条直线对称,利用图像观察性质★复习二次函数的图像和性质,以及abc对于二次函数图像的影响二次函数常见题型:第一问:求解析式(利用对称性,解方程组等)求点的坐标求对称轴等第二问:利用对称性解决比大小,不等式问题图像平移等第三问:直线与二次函数的交点存在性问题(利用图像找临界点;联立,利用一元二次方程根的判别式)利用图像解决不等式问题或图像的上下位置关系最短距离问题(将军饮马模型,修桥模型等)面积问题(将面积问题转化为代数问题)区间根问题,最值问题等二次函数综合题一般解题步骤:★审题清晰,理解题意二次函数综合题文字往往比较多,需要耐心,细心,理解清楚题意★求对称轴,顶点,与坐标轴交点等对称轴是二次函数的灵魂,一定要把对称轴求出来,有效利用二次函数的对称性★精确作图,找临界点精确作图,是解二次函数综合题的强力手段,数形结合找临界点时解此类题的关键(一般与坐标轴交点,顶点,端点,与直线的切点都有可能成为临界点)总而言之:解决二次函数综合题,需要数形结合,进行条件转化,化线为点求二次函数解析式二次函数与直线的交点存在性问题1:定二次函数动直线2:动二次函数定直线3:动二次函数动直线学习二次函数综合题过程中,要讲题多进行变形,更有利于掌握解题的关键注意一次函数与直线的区别定二次函数动直线★直线的平移:定k,动b★直线的旋转:动k,定b(掌握直线过的定点与过定点的直线)★临界点是切点,不是顶点;联立,利用判别式课后作业:1: 已知抛物线21(2)262y x m x m =+-+-的对称轴为直线x =1,与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C . (1)求m 的值;(2)求A ,B ,C 三点的坐标;(3)将抛物线B 、C 之间的部分记为G .请你结合图象回答:当直线b x y +21=与图象G 只有一个公共点时,求b 的取值范围.2:在平面直角坐标系xOy 中,抛物线224y mx mx m =-+-(0m ≠)的顶点为A ,与x 轴交于B ,C 两点(点B 在点C 左侧),与y 轴交于点D . (1)求点A 的坐标; (2)若BC =4,①求抛物线的解析式;②将抛物线在C ,D 之间的部分记为图象G (包含C ,D 两点).若过点C 的直线b kx y +=与图象G 有两个交点,结合函数的图象,求k 的取值范围.3:在平面直角坐标系xOy 中,抛物线C :142++=x mx y .(1)当直线1+-=x y 与直线3+=x y 关于抛物线C 的对称轴对称时,求抛物线的对称轴;(2)在(1)的条件下,已知直线y=kx-2与抛物线有两个交点,请结合函数的图像,求k 的取值范围4:已知二次函数2y x mx n =++的图象经过点A (1,0)和D (4,3),与x 轴的另一个交点为B ,与y 轴交于点C .(1)求二次函数的表达式及顶点坐标;(2)将二次函数2y x mx n =++的图象在点B ,C 之间的部分(包含点B ,C )记为图象G .已知直线l :y kx b =+经过点M (4,3),且直线l 与图像G 有一个交点,请结合函数图像,求b 的取值范围。
5:已知:直线l :2y x =+与过点(0,﹣2)且与平行于x 轴的直线交于点A ,点A 关于直线1x =-的对称点为点B .(1)求,A B 两点的坐标;(2)若抛物线2y x bx c =-++经过A ,B 两点,求抛物线解析式;(3)将直线2y x =+向上平移n 个单位与抛物线2y x bx c =-++有且只有一个交点,请结合函数图像,求n 的值.6:二次函数c bx x ++-=2y 的图象(抛物线)与x 轴交于A(1,0), 且当0x =和2x -=时所对应的函数值相等.(1)求此二次函数的表达式;(2)设抛物线与x 轴的另一交点为点B ,与y 轴交于点C ,将抛物线B 、C 间的部分记作图像G ,若直线y=2x 向上平移n 个单位与图像G 有公共点,请结合函数图像,求n 的取值范围7:抛物线1C :)3)(1(a x x a y -+=(0>a )与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C (0,-3).(1) 求抛物线1C 的解析式及A ,B 点坐标;(2) 过点D (1,-2)的直线l 与图像G 有一个交点,请结合函数图像,求所有满足条件的直线关系式。
8:二次函数21:C y x bx c =++的图象过点A (-1,2),B (4,7).(1)求二次函数1C 的解析式;(2)若直线y=x+b 与抛物线在第四象限有两个交点时,请结合函数图像,求b 的取值范围.9:已知关于x 的一元二次方程2(21)20x m x m -++=.(1)求证:不论m 为任何实数时,该方程总有两个实数根;(2)若抛物线2(21)2y x m x m =-++与x 轴交于A 、B 两点(点A 与点B 在y 轴异侧),且4AB =,求此抛物线的表达式;(3)在(2)的条件下,将直线y x =向下平移n 个单位,与抛物线2(21)2y x m x m =-++没有交点,请结合函数图像,求n 的取值范围.10:在平面直角坐标系xOy 中,抛物线2212y x x =-+与y 轴交于点A ,顶点为点B ,点C 与点A 关于抛物线的对称轴对称.(1)求直线BC 的解析式;(2)点D 在抛物线上,且点D 的横坐标为4.将抛物线在点A ,D 之间的部分(包含点A ,D )记为图象G ,若直线BC 向上平移t 个单位后与图像G 只有一个公共点,求t 的取值范围.11: 已知抛物线21(2)262y x m x m =+-+-的对称轴为直线x =1,与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求m 的值;(2)求A ,B ,C 三点的坐标;(3)将抛物线B 、C 之间的部分记为G .请你结合图象回答:过点(-1,-4)的一次函数y=kx+b 与图象G 只有一个公共点时,求k 的取值范围.12:在平面直角坐标系xOy 中,抛物线22y x mx n =++经过点A (-1,a ),B (3,a ),且最低点的纵坐标为-4.(1)求抛物线的表达式及a 的值;(2)设抛物线顶点C 关于y 轴的对称点为点D ,点P 是抛物线对称轴上一动点,记抛物线在点A ,B 之间的部分为图象G (包含A ,B 两点).如果直线DP 与图象G 恰有两个公共点,结合函数图象,求点P 纵坐标t 的取值范围.13:已知二次函数c bx x y ++=21的图像C 1经过(-1,0),(0,-3)两点.(1)求抛物线解析式.(2)将C 1向左平移1个单位,再向上平移4个单位,得到抛物线C 2,求C 2对应的函数表达式.(3)在(2)的条件下,若直线y =2x +b 在-3≤x ≤0内与抛物线C2有公共点,结合函数图形,求b 的取值范围.14:在平面直角坐标系xOy 中,抛物线214y x bx c =-++经过点A (4,0)和B (0,2).(1)求该抛物线的表达式;(2)在(1)的条件下,如果该抛物线的顶点为C ,点B 关于抛物线对称轴对称的点为D ,求直线CD 的表达式;(3)在(2)的条件下,记该抛物线在点A ,B 之间的部分(含点A ,B )为图象G ,如果将直线CD 向左平移m (m >0)个单位后与图像G 只有一个公共点,请结合函数的图象,直接写出m 的取值范围.xy O15:在平面直角坐标系中,抛物线22133222m y x mx m m -=-++-+与x 轴的交点分别为原点O 和点A ,点B (4,n )在这条抛物线上.(1)求B 点的坐标;(2)将此抛物线的图象向上平移72个单位,求平移后的图象的解析式; (3)在(2)的条件下,请你结合这个新的图象回答:当直线12y x b =+与此图象有两个公共点时,b 的取值范围.16:已知关于x 的一元二次方程032)1(222=--++-k k x k x 有两个不相等的实数根.(1)求k 的取值范围;(2)当k 取最小的整数时,求抛物线 32)1(222--++-=k k x k x y 的顶点坐标以及它与x 轴的交点坐标;(3)在(2)的条件下,直线5)2(-+=x k y 与抛物线在第四象限有两个不同公共点,结合图像,求k 的取值范围.17: 已知抛物线21(2)262y x m x m =+-+-的对称轴为直线x =1,与x 轴交于A ,B 两点(点A 在点B 的左侧),与y 轴交于点C .(1)求m 的值;(2)求A ,B ,C 三点的坐标;(3)将线段OB 向下平移n 个单位,请你结合图象回答:当线段OB 与抛物线在第四象限只有一个公共点时,求n 的取值范围.。