动能定理-平抛与圆周

合集下载

动能定理_精品文档

动能定理_精品文档

动能定理及其应用考点一对动能定理的理解和应用1.动能(1)定义:物体由于□01运动而具有的能叫动能。

(2)公式:E k=□0212mv2。

(3)单位:□03焦耳,1 J=1 N·m=1 kg·m2/s2。

(4)性质:动能是状态量,是□04标量。

2.动能定理(1)内容:在一个过程中合力对物体做的功,等于物体在这个过程中□05动能的变化量。

(2)表达式:W=□06ΔE k=E k2-E k1=□0712mv22-12mv21。

(3)物理意义:□08合外力的功是物体动能变化的量度。

(4)适用条件①动能定理既适用于直线运动,也适用于□09曲线运动。

②既适用于恒力做功,也适用于□10变力做功。

③力可以是各种性质的力,既可以同时作用,也可以□11分阶段作用。

3.对动能定理的理解(1)动能定理表明了“三个关系”①数量关系:合外力做的功与物体动能的变化具有等量代换关系,但并不是说动能变化就是合外力做的功。

②因果关系:合外力做功是引起物体动能变化的原因。

③量纲关系:单位相同,国际单位都是焦耳。

(2)标量性动能是标量,功也是标量,所以动能定理是一个标量式,不存在方向的选取问题。

当然动能定理也就不存在分量的表达式。

(3)相对性动能定理中的位移和速度必须是相对于同一个参考系的,一般以地面或相对地面静止的物体为参考系。

(多选)如图所示,电梯质量为M,在它的水平地板上放置一质量为m的物体。

电梯在钢索的拉力作用下竖直向上加速运动,当电梯的速度由v1增加到v2时,上升高度为H,则在这个过程中,下列说法或表达式正确的是()A .对物体,动能定理的表达式为W N =12mv 22,其中W N 为支持力的功B .对物体,动能定理的表达式为W 合=0,其中W 合为合力的功C .对物体,动能定理的表达式为W N -mgH =12mv 22-12mv 21,其中W N 为支持力的功D .对电梯,其所受合力做功为12Mv 22-12Mv 211.(人教版必修2 P 74·T 1改编)改变汽车的质量和速度,都能使汽车的动能发生变化,在下面几种情况中,汽车的动能是原来的2倍的是( )A .质量不变,速度变为原来的2倍B .质量和速度都变为原来的2倍C .质量变为原来的2倍,速度减半D .质量减半,速度变为原来的2倍2.(人教版必修2 P 74·T 3改编)子弹的速度为v ,打穿一块固定的木块后速度刚好变为零。

考点03 平抛运动与圆周运动-2021年高考物理核心考点总动员(原卷版)【高考物理专题】

考点03 平抛运动与圆周运动-2021年高考物理核心考点总动员(原卷版)【高考物理专题】

2021届高考复习之核心考点系列之物理考点总动员【名师精品】考点03平抛运动与圆周运动【命题意图】考查平抛运动规律,摩擦力、向心力的来源、圆周运动的规律以及离心运动等知识点,意在考查考生对圆周运动知识的理解能力和综合分析能力。

【专题定位】本专题解决的是物体(或带电体)在力的作用下的曲线运动的问题.高考对本专题的考查以运动的组合为线索,进而从力和能的角度进行命题,题目情景新,过程复杂,具有一定的综合性.考查的主要内容有:①曲线运动的条件和运动的合成与分解;②平抛运动规律;③圆周运动规律;④平抛运动与圆周运动的多过程组合问题;⑤应用万有引力定律解决天体运动问题;⑥带电粒子在电场中的类平抛运动问题;⑦带电粒子在磁场内的匀速圆周运动问题;⑧带电粒子在简单组合场内的运动问题等.用到的主要物理思想和方法有:运动的合成与分解思想、应用临界条件处理临界问题的方法、建立类平抛运动模型方法、等效代替的思想方法等。

【考试方向】高考对平抛运动与圆周运动知识的考查,命题多集中在考查平抛运动与圆周运动规律的应用及与生活、生产相联系的命题,多涉及有关物理量的临界和极限状态求解或考查有关平抛运动与圆周运动自身固有的特征物理量。

竖直平面内的圆周运动结合能量知识命题,匀速圆周运动结合磁场相关知识命题是考试重点,历年均有相关选择题或计算题出现。

单独命题常以选择题的形式出现;与牛顿运动定律、功能关系、电磁学知识相综合常以计算题的形式出现。

平抛运动的规律及其研究方法、近年考试的热点,且多数与电场、磁场、机械能等知识结合制成综合类试题。

圆周运动的角速度、线速度及加速度是近年高考的热点,且多数与电场、磁场、机械能等知识结合制成综合类试题,这样的题目往往难度较大。

【应考策略】熟练掌握平抛、圆周运动的规律,对平抛运动和圆周运动的组合问题,要善于由转折点的速度进行突破;熟悉解决天体运动问题的两条思路;灵活应用运动的合成与分解的思想,解决带电粒子在电场中的类平抛运动问题;对带电粒子在磁场内的匀速圆周运动问题,掌握找圆心、求半径的方法。

动能定理专题

动能定理专题

动能定理—圆周、平抛1.如图所示,光滑水平面AB与竖直面内的半圆形导轨在B点相切,半圆形导轨的半径为R.一个质量为m的物体将弹簧压缩至A点后由静止释放,在弹力作用下物体获得某一向右的速度后脱离弹簧,当它经过B点进入导轨的瞬间对轨道的压力为其重力的8倍,之后向上运动恰能到达最高点C.(不计空气阻力)试求:(1)物体在A点时弹簧的弹性势能;(2)物体从B点运动至C点的过程中产生的内能.2.如图所示,倾角θ=37°的光滑斜面底端B平滑连接着半径R=0.40m的竖直光滑圆轨道.质量m=0.50kg的小物块,从距地面h=1.8m处沿斜面由静止开始下滑,求:(sin37°=0.6,cos37°=0.8,g=10m/s2)(1)物块滑到斜面底端B时的速度大小?(2)物块运动到圆轨道的最高点A时速度大小?(3)物块运动到圆轨道的最高点A时对圆轨道的压力?3.如图所示,位于竖直平面内的圆弧光滑轨道,半径为R,轨道的最低点B的切线沿水平方向,轨道上端A距水平地面高度为H.质量为m的小球(可视为质点)从轨道最上端A 点由静止释放,经轨道最下端B点水平飞出,最后落在水平地面上的C点处,若空气阻力可忽略不计,重力加速度为g.求:(1)小球运动到B点时,轨道对它的支持力多大;(2)小球落地点C与B点的水平距离x为多少.4.如图所示,竖直平面内的圆弧形光滑管道半径略大于小球半径,管道中心到圆心距离为R,A端与圆心O等高,AD为水平面,B点在O点的正下方,一小球自A点正上方由静止释放,自由下落至A点进入管道,当小球到达B点时,管壁对小球的弹力大小为小球重力的9倍.求:(1)小球到B点时的速度;(2)释放点距A的竖直高度;(3)落点C与A的水平距离.5.如图所示,AB为固定在竖直平面内的光滑圆弧轨道,轨道的B点与水平地面相切,其半径为R.质量为m的小球由A点静止释放,求:(1)小球滑到最低点B时,小球速度v的大小;(2)小球刚到达最低点B时,轨道对小球支持力F N的大小;(3)小球通过光滑的水平面BC滑上固定曲面,恰达最高点D,D到地面的高度为h(已知h<R),则小球在曲面上克服摩擦力所做的功W f.6.如图所示,一质量为m=1kg的小物块轻轻放在水平匀速运动的传送带上的A点,随传送带运动到B点,小物块从C点沿圆弧切线进入竖直光滑的半圆轨道恰能做圆周运动.已知圆弧半径R=0.9m,轨道最低点为D,D点距水平面的高度h=0.8m.小物块离开D点后恰好垂直碰击放在水平面上E点的固定倾斜挡板.已知物块与传送带间的动摩擦因数μ=0.3,传送带以5m/s恒定速率顺时针转动(g取10m/s2),试求:(1)传送带AB两端的距离;(2)小物块经过D点时对轨道的压力的大小;(3)倾斜挡板与水平面间的夹角θ的正切值.7.如图所示,一个质量为0.6kg的小球以某一初速度从P点水平抛出,恰好从光滑圆弧ABC的A点的切线方向进入圆弧(不计空气阻力).已知圆弧的半径R=0.3m,θ=60°,小球到达A点时的速度v=4m/s,取g=10m/s2.试求:(1)P点与A点的水平距离和竖直高度;(2)小球到达圆弧最高点C时,对轨道的压力.8.如图所示,半径R=1.0m的光滑圆弧轨道固定在竖直平面内,其圆心角θ=106°,两端点A、B连线水平,质量为1㎏的小球自左侧平台上平抛后恰能无碰撞地从A点进入圆形轨道并沿轨道下滑.已知平台与AB连线高度差为h=0.8m(已知sin53°=0.8)求:(1)小球平抛的初速度v0;(2)小球运动到圆弧最低点O时对轨道的压力.。

重难点04 平抛运动与圆周运动(教师版含解析)

重难点04 平抛运动与圆周运动(教师版含解析)

2021年高考物理【热点·重点·难点】专练(新高考专用)重难点04 平抛运动与圆周运动【知识梳理】考点一 平抛运动基本规律的理解 1.飞行时间:由ght 2=知,时间取决于下落高度h ,与初速度v 0无关. 2.水平射程:x =v 0t =v 0 gh 2,即水平射程由初速度v 0和下落高度h 共同决定,与其他因素无关. 3.落地速度:gh v v v v x y x 2222+=+=,以θ表示落地速度与x 轴正方向的夹角,有2tan v ghv v xy ==θ,所以落地速度也只与初速度v 0和下落高度h 有关. 4.速度改变量:因为平抛运动的加速度为恒定的重力加速度g ,所以做平抛运动的物体在任意相等时间间隔Δt 内的速度改变量Δv =g Δt ;相同,方向恒为竖直向下,如图所示.5.两个重要推论(1)做平抛(或类平抛)运动的物体任一时刻的瞬时速度的反向延长线一定通过此时水平位移的中点,如图中A 点和B 点所示.(2)做平抛(或类平抛)运动的物体在任意时刻任一位置处,设其末速度方向与水平方向的夹角为α,位移与水平方向的夹角为θ,则tan α=2tan θ. 【重点归纳】1.在研究平抛运动问题时,根据运动效果的等效性,利用运动分解的方法,将其转化为我们所熟悉的两个方向上的直线运动,即水平方向的匀速直线运动和竖直方向的自由落体运动.再运用运动合成的方法求出平抛运动的规律.这种处理问题的方法可以变曲线运动为直线运动,变复杂运动为简单运动,是处理曲线运动问题的一种重要的思想方法. 2.常见平抛运动模型的运动时间的计算方法 (1)在水平地面上空h 处平抛: 由221gt h =知ght 2=,即t 由高度h 决定. (2)在半圆内的平抛运动(如图),由半径和几何关系制约时间t :221gt h =t v h R R 022=-+联立两方程可求t . (3)斜面上的平抛问题: ①顺着斜面平抛(如图)方法:分解位移 x =v 0t221gt y =x y=θtan可求得gv t θtan 20=②对着斜面平抛(如图)方法:分解速度 v x =v 0 v y =gttan v gt v v xy ==θ 可求得gv t θtan 0=(4)对着竖直墙壁平抛(如图)水平初速度v 0不同时,虽然落点不同,但水平位移相同.vd t =3.求解多体平抛问题的三点注意(1)若两物体同时从同一高度(或同一点)抛出,则两物体始终在同一高度,二者间距只取决于两物体的水平分运动.(2)若两物体同时从不同高度抛出,则两物体高度差始终与抛出点高度差相同,二者间距由两物体的水平分运动和竖直高度差决定.(3)若两物体从同一点先后抛出,两物体竖直高度差随时间均匀增大,二者间距取决于两物体的水平分运动和竖直分运动.考点二 圆周运动中的运动学分析描述圆周运动的物理量主要有线速度、角速度、周期、频率、转速、向心加速度、向心力等,现比较如下表:1.传动装置(1)高中阶段所接触的传动主要有:①皮带传动(线速度大小相等);②同轴传动(角速度相等);③齿轮传动(线速度大小相等);④摩擦传动(线速度大小相等).(2)传动装置的特点:(1)同轴传动:固定在一起共轴转动的物体上各点角速度相同;(2)皮带传动、齿轮传动和摩擦传动:皮带(或齿轮)传动和不打滑的摩擦传动的两轮边缘上各点线速度大小相等.2.圆周运动各物理量间的关系(1)对公式v =ωr 的理解 当r 一定时,v 与ω成正比. 当ω一定时,v 与r 成正比. 当v 一定时,ω与r 成反比.(2)对a =rv 2=ω2r =ωv 的理解在v 一定时,a 与r 成反比;在ω一定时,a 与r 成正比. 考点三 竖直平面内圆周运动的绳模型与杆模型问题1.在竖直平面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“绳(环)约束模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管道)约束模型”. 2.绳、杆模型涉及的临界问题均是没有支撑的小球均是有支撑的小球竖直面内圆周运动的求解思路(1)定模型:首先判断是轻绳模型还是轻杆模型,两种模型过最高点的临界条件不同. (2)确定临界点:gr v =临,对轻绳模型来说是能否通过最高点的临界点,而对轻杆模型来说是F N表现为支持力还是拉力的临界点.(3)研究状态:通常情况下竖直平面内的圆周运动只涉及最高点和最低点的运动情况.(4)受力分析:对物体在最高点或最低点时进行受力分析,根据牛顿第二定律列出方程,F 合=F 向. (5)过程分析:应用动能定理或机械能守恒定律将初、末两个状态联系起来列方程. 【限时检测】(建议用时:30分钟) 一、单项选择题:本题共4小题。

高考物理一轮复习专题应用力学两大观点分析平抛运动与圆周运动组合问题练含解析

高考物理一轮复习专题应用力学两大观点分析平抛运动与圆周运动组合问题练含解析

专题22 应用力学两大观点分析平抛运动与圆周运动组合问题(练)1.一个质量为m 的小铁块沿半径为R 的固定半圆轨道上边缘由静止滑下,到半圆底部时,小铁块所受向心力为铁块重力的1.5倍,则此过程中铁块损失的机械能为: ( )A .18mgRB .14mgR C .12mgR D .34mgR 【答案】B 【名师点睛】当滑到半球底部时,半圆轨道底部所受压力为铁块重力的1.5倍,根据牛顿第二定律可以求出铁块的速度;铁块下滑过程中,只有重力和摩擦力做功,重力做功不影响机械能的减小,损失的机械能等于克服摩擦力做的功,根据动能定理可以求出铁块克服摩擦力做的功。

2.如图所示,在水平桌面上的A 点有一个质量为m 的物体,以初速度v 0被抛出,不计空气阻力,当它到达B 点时,其动能为: ( )A .mgH mv +2021B .12021mgh mv +C .2mgh mgH -D .22021mgh mv +【答案】B【解析】不计空气阻力,只有重力做功,从A 到B 过程,由动能定理可得:E kB -12021mgh mv =,故E kB =12021mgh mv +,选项B 正确。

【名师点睛】以物体为研究对象,由动能定理或机械能守恒定律可以求出在B 点的动能.3.(多选)如图所示,半径为R 的光滑圆环固定在竖直平面内,AB 、CD 是圆环相互垂直的两条直径,C 、D 两点与圆心O 等高.一个质量为m 的光滑小球套在圆环上,一根轻质弹簧一端连在小球上,另一端固定在P 点,P 点在圆心O 的正下方2R 处.小球从最高点A 由静止开始沿逆时针方向下滑,已知弹簧的原长为R ,弹簧始终处于弹性限度内,重力加速度为g .下列说法正确的有: ( )A .弹簧长度等于R 时,小球的动能最大B .小球运动到B 点时的速度大小为gR 2C .小球在A 、B 两点时对圆环的压力差为4mgD .小球从A 到C 的过程中,弹簧对小球做的功等于小球机械能的增加量【答案】CD【名师点睛】此题是对功能关系的考查;解题时要认真分析小球的受力情况及运动情况;尤其要知道在最高点和最低点弹簧的伸长量等于压缩量,故在两位置的弹力相同,弹性势能也相同;同时要知道机械能的变化量等于除重力以外的其它力做功。

高考物理动能定理及其应用考点总结

高考物理动能定理及其应用考点总结

如图5-2-3所示,一质量为m=1 kg的物块静止 在粗糙水平面上的A点,从t=0时刻开始,物块受到按如 图5-2-4所示规律变化的水平力F作用并向右运动,第3 s 末物块运动到B点时速度刚好为0,第5 s末物块刚好回到A 点,已知物块与粗糙水平面之间的动摩擦因数μ=0.2,求 (g取10 m/s2):
在牵引力不变的条件下行驶45 m
的坡路到达B点时,司机立即关
图5-2-9
掉油门,以后汽车又向前滑行15 m停在C点,汽车的
质量为5×103 kg,行驶中受到的摩擦阻力是车重的
0.25倍,取g=10 m/s2,求汽车的牵引力做的功和它
经过B点时的速率.
解析:汽车从A到C的过程中,汽车的发动机牵引力做正 功,重力做负功,摩擦力做负功,动能的变化量为零, 由动能定理可得WF-WG-W阻=0,由于G、F阻已知, 汽车的位移也知道,所以有 WF=WG+W阻=mgh+0.25mgl=2.25×106 J.
2.如图5-2-1所示,ABCD是一个盆式容器,盆内 侧
壁与盆底BC的连接处都是一段与BC相切的圆弧, BC是水平的,其长度d=0.50 m.盆边缘的高度为 h=0.30 m.在A处放一个质量为m的小物块并让其 从静止下滑.已知盆内侧壁是光滑的,而盆底BC 面与小物块间的动摩擦因数为μ=0.10.小物块在盆 内来回滑动,最后停下来,则停的地点到B的距离 为( )
1.质量为m的物体在水平力F的作用下由静止开始在光滑
地面上运动,前进一段距离之后速度大小为v,再前进一
段距离使物体的速度增大为2v,则
()
A.第二过程的速度增量等于第一过程的速度增量
B.第二过程的动能增量是第一过程的动能增量的3倍
C.第二过程合外力做的功等于第一过程合外力做的功

高中物理必修二 第四章 专题强化13 动能定理的应用(二)

高中物理必修二 第四章 专题强化13 动能定理的应用(二)

道BD平滑连接,A与圆心O的连线与竖直方向成37°角.MN是一段粗糙的 水平轨道,滑冰运动员与MN间的动摩擦因数μ=0.08,水平轨道其他部 分光滑.最右侧是一个半径为r=2 m的半圆弧光滑轨道,C点是半圆弧光 滑轨道的最高点,半圆弧光滑轨道与水平轨道BD在D点平滑连接.取重 力加速度g=10 m/s2,sin 37°=0.6,cos 37°=0.8.整个运动过程中将运 动员简化为一个质点.
答案 0.15 m
设木块沿弧形槽上升的最大高度为h,木块在最高点时的速度为零. 从木块开始运动到沿弧形槽上升到最大高度处,由动能定理得: FL-fL-mgh=0 其中f=μFN=μmg=0.2×0.5×10 N=1.0 N
FL-fL 1.5-1.0×1.5 所以 h= mg = 0.5×10 m=0.15 m
√A.小球通过圆轨道最高点时的速度大小为 2gR
B.小球在轨道最低点的动能为2D.小球在轨道最低点对轨道压力的大小为6mg
123456789
小球经过圆轨道最高点时,由牛顿第三定律知轨 道对小球的支持力为 mg,根据牛顿第二定律有 mg+mg=mvR2,解得 v= 2gR,故 A 正确; 小球自弧形轨道下滑至圆轨道最高点的过程,根据动能定理有 mg(h -2R)=12mv2,解得 h=3R,故 C 正确.
答案 3 m/s
在A点,由平抛运动规律得: vA=cosv053°=53v0 小球由桌面到A点的过程中,由动能定理得 mg(R+Rcos θ)=12mvA2-12mv02 联立解得:v0=3 m/s;
(2)若小球恰好能通过最高点C,求在圆弧轨道 上摩擦力对小球做的功. 答案 -4 J
若小球恰好能通过最高点 C,在最高点 C 处有 mg=mRvC2, 小球从桌面运动到 C 点的过程中,由动能定理得 Wf=12mvC2-12mv02 代入数据解得Wf=-4 J.

2020高中物理必修二同步第七章 习题课2 动能定理的应用

2020高中物理必修二同步第七章 习题课2  动能定理的应用

习题课2 动能定理的应用[学习目标] 1.进一步理解动能定理,领会应用动能定理解题的优越性.2.会利用动能定理分析变力做功、曲线运动以及多过程问题.一、利用动能定理求变力的功1.动能定理不仅适用于求恒力做功,也适用于求变力做功,同时因为不涉及变力作用的过程分析,应用非常方便.2.利用动能定理求变力的功是最常用的方法,当物体受到一个变力和几个恒力作用时,可以用动能定理间接求变力做的功,即W 变+W 其他=ΔE k .例1 如图1所示,质量为m 的小球自由下落d 后,沿竖直面内的固定轨道ABC 运动,AB 是半径为d 的14光滑圆弧,BC 是直径为d 的粗糙半圆弧(B 是轨道的最低点).小球恰能通过圆弧轨道的最高点C .重力加速度为g ,求:图1(1)小球运动到B 处时对轨道的压力大小. (2)小球在BC 运动过程中,摩擦力对小球做的功. 答案 (1)5mg (2)-34mgd解析 (1)小球下落到B 点的过程由动能定理得2mgd =12m v 2,在B 点:F N -mg =m v 2d ,得:F N =5mg ,根据牛顿第三定律:F N ′= F N =5mg .(2)在C 点,mg =m v C2d 2.小球从B 运动到C 的过程:12m v C 2-12m v 2=-mgd +W f ,得W f =-34mgd . 针对训练 如图2所示,某人利用跨过定滑轮的轻绳拉质量为10 kg 的物体.定滑轮的位置比A 点高3 m.若此人缓慢地将绳从A 点拉到B 点,且A 、B 两点处绳与水平方向的夹角分别为37°和30°,则此人拉绳的力做了多少功?(g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8,不计滑轮的摩擦)图2答案 100 J解析 取物体为研究对象,设绳的拉力对物体做的功为W .根据题意有h =3 m. 物体升高的高度Δh =h sin 30°-h sin 37°.①对全过程应用动能定理W -mg Δh =0.② 由①②两式联立并代入数据解得W =100 J. 则人拉绳的力所做的功W 人=W =100 J. 二、利用动能定理分析多过程问题一个物体的运动如果包含多个运动阶段,可以选择分段或全程应用动能定理.(1)分段应用动能定理时,将复杂的过程分割成一个个子过程,对每个子过程的做功情况和初、末动能进行分析,然后针对每个子过程应用动能定理列式,然后联立求解.(2)全程应用动能定理时,分析整个过程中出现过的各力的做功情况,分析每个力做的功,确定整个过程中合外力做的总功,然后确定整个过程的初、末动能,针对整个过程利用动能定理列式求解.当题目不涉及中间量时,选择全程应用动能定理更简单,更方便.注意:当物体运动过程中涉及多个力做功时,各力对应的位移可能不相同,计算各力做功时,应注意各力对应的位移.计算总功时,应计算整个过程中出现过的各力做功的代数和. 例2 如图3所示,右端连有一个光滑弧形槽的水平桌面AB 长L =1.5 m ,一个质量为m =0.5 kg 的木块在F =1.5 N 的水平拉力作用下,从桌面上的A 端由静止开始向右运动,木块到达B 端时撤去拉力F ,木块与水平桌面间的动摩擦因数μ=0.2,取g =10 m/s 2.求:图3(1)木块沿弧形槽上升的最大高度(木块未离开弧形槽); (2)木块沿弧形槽滑回B 端后,在水平桌面上滑动的最大距离.答案 (1)0.15 m (2)0.75 m解析 (1)设木块沿弧形槽上升的最大高度为h ,木块在最高点时的速度为零.从木块开始运动到沿弧形槽上升的最大高度处,由动能定理得: FL -F f L -mgh =0其中F f =μF N =μmg =0.2×0.5×10 N =1.0 N 所以h =FL -F f Lmg=(1.5-1.0)×1.50.5×10m =0.15 m(2)设木块离开B 点后沿桌面滑动的最大距离为x .由动能定理得: mgh -F f x =0所以:x =mgh F f =0.5×10×0.151.0 m =0.75 m三、动能定理在平抛、圆周运动中的应用动能定理常与平抛运动、圆周运动相结合,解决这类问题要特别注意:(1)与平抛运动相结合时,要注意应用运动的合成与分解的方法,如分解位移或分解速度求平抛运动的有关物理量.(2)与竖直平面内的圆周运动相结合时,应特别注意隐藏的临界条件:①有支撑效果的竖直平面内的圆周运动,物体能通过最高点的临界条件为v min =0. ②没有支撑效果的竖直平面内的圆周运动,物体能通过最高点的临界条件为v min =gR . 例3 如图4所示,一可以看成质点的质量m =2 kg 的小球以初速度v 0沿光滑的水平桌面飞出后,恰好从A 点沿切线方向进入圆弧轨道,其中B 为轨道的最低点,C 为最高点且与水平桌面等高,圆弧AB 对应的圆心角θ=53°,轨道半径R =0.5 m.已知sin 53°=0.8,cos 53°=0.6,不计空气阻力,g 取10 m/s 2.图4(1)求小球的初速度v 0的大小;(2)若小球恰好能通过最高点C ,求在圆弧轨道上摩擦力对小球做的功. 答案 (1)3 m/s (2)-4 J解析 (1)在A 点由平抛运动规律得: v A =v 0cos 53°=53v 0.①小球由桌面到A 点的过程中,由动能定理得 mg (R +R cos θ)=12m v A 2-12m v 0 2②由①②得:v 0=3 m/s.(2)在最高点C 处有mg =m v C2R ,小球从桌面到C 点,由动能定理得W f =12m v C 2-12m v 02,代入数据解得W f =-4 J.1.(用动能定理求变力的功) 如图5所示,质量为m 的物体与水平转台间的动摩擦因数为μ,物体与转轴相距R ,物体随转台由静止开始转动.当转速增至某一值时,物体即将在转台上滑动,此时转台开始匀速转动.设物体的最大静摩擦力近似等于滑动摩擦力,则在整个过程中摩擦力对物体做的功是( )图5A.0B.2μmgRC.2πμmgRD.μmgR2答案 D解析 物体即将在转台上滑动但还未滑动时,转台对物体的最大静摩擦力恰好提供向心力,设此时物体做圆周运动的线速度为v ,则有μmg =m v 2R.①在物体由静止到获得速度v 的过程中,物体受到的重力和支持力不做功,只有摩擦力对物体做功,由动能定理得:W =12m v 2-0.②联立①②解得W =12μmgR .2.(利用动能定理分析多过程问题)滑板运动是极限运动的鼻祖,许多极限运动项目均由滑板项目延伸而来.如图6是滑板运动的轨道,BC 和DE 是两段光滑圆弧形轨道,BC 段的圆心为O点,圆心角为60°,半径OC 与水平轨道CD 垂直,水平轨道CD 段粗糙且长8 m.某运动员从轨道上的A 点以3 m /s 的速度水平滑出,在B 点刚好沿轨道的切线方向滑入圆弧形轨道BC ,经CD 轨道后冲上DE 轨道,到达E 点时速度减为零,然后返回.已知运动员和滑板的总质量为60 kg ,B 、E 两点到水平轨道CD 的竖直高度分别为h 和H ,且h =2 m ,H =2.8 m ,g 取10 m/s 2.求:图6(1)运动员从A 点运动到达B 点时的速度大小v B ; (2)轨道CD 段的动摩擦因数μ;(3)通过计算说明,第一次返回时,运动员能否回到B 点?如能,请求出回到B 点时速度的大小;如不能,则最后停在何处?答案 (1)6 m/s (2)0.125 (3)不能回到B 处,最后停在D 点左侧6.4 m 处(或C 点右侧1.6 m 处) 解析 (1)由题意可知:v B =v 0cos 60°解得:v B =6 m/s.(2)从B 点到E 点,由动能定理可得: mgh -μmgx CD -mgH =0-12m v B 2代入数据可得:μ=0.125.(3)设运动员能到达左侧的最大高度为h ′,从B 到第一次返回左侧最高处,根据动能定理得: mgh -mgh ′-μmg ·2x CD =0-12m v B 2解得h ′=1.8 m<h =2 m所以第一次返回时,运动员不能回到B 点设运动员从B 点运动到停止,在CD 段的总路程为s ,由动能定理可得: mgh -μmgs =0-12m v B 2④解得:s =30.4 m因为s =3x CD +6.4 m ,所以运动员最后停在D 点左侧6.4 m 处或C 点右侧1.6 m 处. 3.(动能定理在平抛、圆周运动中的应用) 如图7所示,一个质量为m =0.6 kg 的小球以初速度v 0=2 m /s 从P 点水平抛出,从粗糙圆弧ABC 的A 点沿切线方向进入(不计空气阻力,进入圆弧时无动能损失)且恰好沿圆弧通过最高点C ,已知圆弧的圆心为O ,半径R =0.3 m ,θ=60°,g =10 m/s 2.求:图7(1)小球到达A 点的速度v A 的大小; (2)P 点到A 点的竖直高度H ;(3)小球从圆弧A 点运动到最高点C 的过程中克服摩擦力所做的功W . 答案 (1)4 m/s (2)0.6 m (3)1.2 J解析 (1)在A 点由速度的合成得v A =v 0cos θ,代入数据解得v A =4 m/s(2)从P 点到A 点小球做平抛运动,竖直分速度v y =v 0tan θ① 由运动学规律有v y 2=2gH ② 联立①②解得H =0.6 m (3)恰好过C 点满足mg =m v C 2R由A 点到C 点由动能定理得 -mgR (1+cos θ)-W =12m v C 2-12m v A 2代入数据解得W =1.2 J.课时作业一、选择题(1~7为单项选择题,8~9为多项选择题)1.在离地面高为h 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速度为v ,用g 表示重力加速度,则在此过程中物块克服空气阻力所做的功等于( ) A.mgh -12m v 2-12m v 0 2B.12m v 2-12m v 0 2-mghC.mgh +12m v 0 2-12m v 2D.mgh +12m v 2-12m v 0 2答案 C解析 选取物块从刚抛出到正好落地时的过程,由动能定理可得: mgh -W f 克=12m v 2-12m v 0 2解得:W f 克=mgh +12m v 0 2-12m v 2.2.如图1所示,AB 为14圆弧轨道,BC 为水平直轨道,圆弧的半径为R ,BC 的长度也是R ,一质量为m 的物体,与两个轨道间的动摩擦因数都为μ,当它由轨道顶端A 从静止开始下落,恰好运动到C 处停止,那么物体在AB 段克服摩擦力所做的功为( )图1A.12μmgR B.12mgR C.-mgR D.(1-μ)mgR答案 D解析 设物体在AB 段克服摩擦力所做的功为W AB ,物体从A 运动到C 的全过程,根据动能定理,有mgR -W AB -μmgR =0.所以有W AB =mgR -μmgR =(1-μ)mgR .3.一质量为m 的小球,用长为l 的轻绳悬挂于O 点,小球在水平拉力F 作用下,从平衡位置P 点很缓慢地移动到Q 点,如图2所示,则拉力F 所做的功为( )图2A.mgl cos θB.mgl (1-cos θ)D.Fl sin θ 答案 B解析 小球缓慢移动,时时都处于平衡状态,由平衡条件可知,F =mg tan θ,随着θ的增大,F 也在增大,是一个变化的力,不能直接用功的公式求它所做的功,所以这道题要考虑用动能定理求解.由于物体缓慢移动,动能保持不变,由动能定理得:-mgl (1-cos θ)+W =0,所以W =mgl (1-cos θ).4.质量为m 的物体以初速度v 0沿水平面向左开始运动,起始点A 与一轻弹簧最右端O 相距s ,如图3所示.已知物体与水平面间的动摩擦因数为μ,物体与弹簧相碰后,弹簧的最大压缩量为x ,则从开始碰撞到弹簧被压缩至最短,物体克服弹簧弹力所做的功为(不计空气阻力)( )图3A.12m v 0 2-μmg (s +x )B.12m v 0 2-μmgxC.μmgsD.μmgx答案 A解析 设物体克服弹簧弹力所做的功为W ,则物体向左压缩弹簧过程中,弹簧弹力对物体做功为-W ,摩擦力对物体做功为-μmg (s +x ),根据动能定理有-W -μmg (s +x )=0-12m v 0 2,所以W =12m v 0 2-μmg (s +x ).5.质量为m 的小球被系在轻绳一端,在竖直平面内做半径为R 的圆周运动,如图4所示,运动过程中小球受到空气阻力的作用.设某一时刻小球通过轨道的最低点,此时绳子的张力为7mg ,在此后小球继续做圆周运动,经过半个圆周恰好能通过最高点,则在此过程中小球克服空气阻力所做的功是( )图4A.14mgR B.13mgR C.12mgR D.mgR解析 小球通过最低点时,设绳的张力为F T ,则 F T -mg =m v 1 2R ,6mg =m v 1 2R①小球恰好过最高点,绳子拉力为零,这时mg =m v 2 2R ②小球从最低点运动到最高点的过程中,由动能定理得 -mg ·2R -W f =12m v 2 2-12m v 1 2③由①②③式联立解得W f =12mgR ,选C.6.如图5所示,假设在某次比赛中运动员从10 m 高处的跳台跳下,设水的平均阻力约为其体重的3倍,在粗略估算中,把运动员当作质点处理,为了保证运动员的人身安全,池水深度至少为(不计空气阻力)( )图5A.5 mB.3 mC.7 mD.1 m答案 A解析 设水深为h ,对运动全程运用动能定理可得: mg (H +h )-F f h =0,mg (H +h )=3mgh .所以h =5 m.7.如图6所示,小球以初速度v 0从A 点沿粗糙的轨道运动到高为h 的B 点后自动返回,其返回途中仍经过A 点,则经过A 点的速度大小为( )图6A.v 0 2-4ghB.4gh -v 0 2C.v 0 2-2ghD.2gh -v 0 2答案 B解析 从A 到B 运动过程中,重力和摩擦力都做负功,根据动能定理可得mgh +W f =12m v 0 2,从B 到A 过程中,重力做正功,摩擦力做负功(因为是沿原路返回,所以两种情况摩擦力做功大小相等),根据动能定理可得mgh -W f =12m v 2,两式联立得再次经过A 点的速度为4gh -v 0 2,故B 正确.8.在平直公路上,汽车由静止开始做匀加速直线运动,当速度达到v max 后,立即关闭发动机直至静止,v -t 图象如图7所示,设汽车的牵引力为F ,受到的摩擦力为F f ,全程中牵引力做功为W 1,克服摩擦力做功为W 2,则( )图7A.F ∶F f =1∶3B.W 1∶W 2=1∶1C.F ∶F f =4∶1D.W 1∶W 2=1∶3答案 BC解析 对汽车运动的全过程,由动能定理得:W 1-W 2=ΔE k =0,所以W 1=W 2,选项B 正确,选项D 错误;由动能定理得Fx 1-F f x 2=0,由图象知x 1∶x 2=1∶4.所以 F ∶F f =4∶1,选项A 错误,选项C 正确.9.如图8所示,一个小环沿竖直放置的光滑圆环形轨道做圆周运动.小环从最高点A 滑到最低点B 的过程中,线速度大小的平方v 2随下落高度h 的变化图象可能是图中的( )图8答案 AB解析 对小环由动能定理得mgh =12m v 2-12m v 02,则v 2=2gh +v 0 2.当v 0=0时,B 正确.当v 0≠0时,A 正确.二、非选择题10.如图9所示,光滑水平面AB 与一半圆形轨道在B 点相连,轨道位于竖直面内,其半径为R ,一个质量为m 的物块静止在水平面上,现向左推物块使其压紧弹簧,然后放手,物块在弹力作用下获得一速度,当它经B 点进入半圆形轨道瞬间,对轨道的压力为其重力的7倍,之后向上运动恰能完成半圆周运动到达C 点,重力加速度为g .求:图9(1)弹簧弹力对物块做的功;(2)物块从B 到C 克服阻力所做的功;(3)物块离开C 点后,再落回到水平面上时的动能.答案 (1)3mgR (2)12mgR (3)52mgR 解析 (1)由动能定理得W =12m v B 2 在B 点由牛顿第二定律得7mg -mg =m v B 2R解得W =3mgR(2)物块从B 到C 由动能定理得12m v C 2-12m v B2=-2mgR +W ′ 物块在C 点时mg =m v C 2R解得W ′=-12mgR ,即物块从B 到C 克服阻力做功为12mgR . (3)物块从C 点平抛到水平面的过程中,由动能定理得2mgR =E k -12m v C 2,解得E k =52mgR . 11.如图10所示,绷紧的传送带在电动机带动下,始终保持v 0=2 m/s 的速度匀速运行,传送带与水平地面的夹角θ=30°,现把一质量m =10 kg 的工件轻轻地放在传送带底端,由传送带传送至h =2 m 的高处.已知工件与传送带间的动摩擦因数μ=32,g 取10 m/s 2.图10(1)通过计算分析工件在传送带上做怎样的运动?(2)工件从传送带底端运动至h =2 m 高处的过程中摩擦力对工件做了多少功?答案 (1)工件先以2.5 m /s 2的加速度做匀加速直线运动,运动0.8 m 与传送带达到共同速度2 m/s 后做匀速直线运动 (2)220 J解析 (1)工件刚放上传送带时受滑动摩擦力:F f =μmg cos θ,工件开始做匀加速直线运动,由牛顿运动定律:F f -mg sin θ=ma 可得:a =F f m-g sin θ =g (μcos θ-sin θ)=10×⎝⎛⎭⎫32cos 30°-sin 30° m/s 2 =2.5 m/s 2.设工件经过位移x 与传送带达到共同速度,由匀变速直线运动规律可得:x =v 0 22a =222×2.5 m =0.8 m <h sin θ=4 m 故工件先以2.5 m /s 2的加速度做匀加速直线运动,运动0.8 m 与传送带达到共同速度2 m/s 后做匀速直线运动.(2)在工件从传送带底端运动至h =2 m 高处的过程中,设摩擦力对工件做功为W f ,由动能定理得W f -mgh =12m v 0 2, 可得:W f =mgh +12m v 0 2=10×10×2 J +12×10×22 J =220 J. 12.如图11所示,光滑斜面AB 的倾角θ=53°,BC 为水平面,BC 长度l BC =1.1 m ,CD 为光滑的14圆弧,半径R =0.6 m.一个质量m =2 kg 的物体,从斜面上A 点由静止开始下滑,物体与水平面BC间的动摩擦因数μ=0.2,轨道在B、C两点光滑连接.当物体到达D点时,继续竖直向上运动,最高点距离D点的高度h=0.2 m.sin 53°=0.8,cos 53°=0.6.g取10 m/s2.求:图11(1)物体运动到C点时的速度大小v C;(2)A点距离水平面的高度H;(3)物体最终停止的位置到C点的距离s.答案(1)4 m/s(2)1.02 m(3)0.4 m解析(1)物体由C点运动到最高点,根据动能定理得:-mg(h+R)=0-122m v C代入数据解得:v C=4 m/s(2)物体由A点运动到C点,根据动能定理得:12-0=mgH-μmgl BC2m v C代入数据解得:H=1.02 m(3)从物体开始下滑到停下,根据动能定理得:mgH-μmgs1=0代入数据,解得s1=5.1 m由于s1=4l BC+0.7 m所以,物体最终停止的位置到C点的距离为:s=0.4 m.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、一根内壁光滑的细圆管,形状如下图所示,半径为R ,放在竖直平面内,一个小球自A 的正上方高h 1处自由落下,第一次小球恰能抵达B 点,;第二次从高h 2落入A 口后,自B 射出,恰能再进入A ,则:
(1)h 1等于多少?
(2)第二次到达B 点的速度多大?
(3)h 2等于多少?
(4)两次小球下落的高度之比h 1:h 2是多少?
2、如图所示,竖直平面内的3/4圆弧形光滑轨道半径为R ,A 端与圆心O 等高,AD 为水平面,B 端在O 的正上方,一个小球在A 点正上方由静止释放,自由下落至A 点进入圆轨道并恰能到达B 点.
求:(1)释放点距A 点的竖直高度;
(2)落点C 与O 点的水平距离.
3、如图所示,位于竖直平面内的1/4圆弧光滑轨道,半径为R ,轨道的最低点B 的切线沿水平方向,轨道上端A 距水平地面高度为H 。

质量为m 的小球(可视为质点)从轨道最上端A 点由静止释放,经轨道最下端B 点水平飞出,最后落在水平地面上的C 点处,若空气阻力可忽略不计,重力加速度为g 。

求:
(1)小球运动到B 点时,轨道对它的支持力多大; (2)小球落地点C 与B 点的水平距离x 为多少; (3)比值R /H 为多少时,小球落地点C 与B 点水平距离x 最远;该水平距离最大值是多少。

4、如图所示,用长为L 的细绳把质量为m 的小球系于O 点,把细绳拉直至水平后无初速度地释放,小球运动至O 点正下方的B 点时速度为 gl v 2 ,绳子恰好被拉断,B 点距地面的高度也为L .设绳子被拉断时小球没有机械能损失,小球抛出后落到水平地面上的
C
点求:
(1)绳子被拉断前瞬间受到的拉力大小;
(2)B、C两点间的水平距离x.
5、某校物理兴趣小组决定举行遥控赛车比赛。

比赛路径如图所示,赛车从起点A出发,沿水平直线轨道运动L后,由B点进入半径为R的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直轨道上运动到C点,并能越过壕沟。

已知赛车质量m=0.1kg,通电后以额定功率P=1.5w工作,进入竖直轨道前受到阻力恒为0.3N,随后在运动中受到的阻力均可不记。

图中L=10.00m,R=0.32m,h=1.25m,S=1.50m。

问:要使赛车完成比赛,电动机至少工作多长时间?(取g=10m/s2)。

相关文档
最新文档