确定二次函数的表达式--教后反思
《确定二次函数的表达式》(优秀教案)

4.逐步培养学生观察、比较、分析、概括等逻辑思维能力引导学生探索、发现,以培养学生独立思考的能力、勇于创新的精神,以及良好的学习习惯。
重点
难点
1.学会用特定系数法确定二次函数的表达式。
2.灵活选用三种表达形式来确定二次函数的表达式,解决实际问题。
关键
问题
1.掌握二次函数解析式的三种不同表达形式。
2.学生能够在小组内畅所欲言,进行有序有效的交流,并在同伴交流时认真倾听,做好记录;
3.学科长组织组员围绕任务目标热烈讨论,及时进行修改,统一认识,做好展示准备
展示交流
规范评价
15---20
min
创设展示交流情境
1.每个小组上台,按问题顺序进行展示交流,解决问题;
2.要求学生规范上台讲解展示的语言,强调生生互动,激发学生质疑的热情;
《确定二次函数的表达式》课堂学习过程设计
上课
年级
九年级
学科:数学
主题
确定二次函数的表达式
指导教师
学生主持
第几
课时
1
课型
问题综合解决评价课
学习日期
学习
目标
知识技能:
1.掌握二次函数解析式的三种不同表达形式。
2.学会用特定系数法确定二次函数的表达式。
过程方法:
3.经历确定二次函数表达式的过程,体会求二次函数表达式的思想方法,培养数学应用意识。
1.学生主持呈现学习目标,学生展读学习目标;
2.学生主持呈现学生生成问题;
3.希望学生能积极进入状态,准备讨论问题。
自主学习
合作讨论
8---12
min
创设讨论
学习情境
1.教师巡回检查指导;
二次函数的教学反思

二次函数的教学反思二次函数的教学反思11.肯定要留足时间让学生自己作出二次函数的图象可能在教学过程中,有些教师会觉得作图象是上一节课的重点,这一节主要是学生观看、分析图象,从而不让学生画图象或者只是简洁的画一两个。
这种做法看上去似乎更加突出了重点、难点,却没有给学生探究与发觉的过程,造成学生对于二次函数性质的理解停留在外表,学问迁移相对薄弱,不利于培育学生自主讨论二次函数的力量。
2. 信任学生并为学生供应充分展现自己的时机在归纳二次函数性质的时候,也要充分的信任学生,鼓舞学生大胆的用自己的语言进展归纳,由于学生自己的发觉远远比教师直接讲解要深刻得多。
在教学过程中,要注意为学生供应展现自己聪慧才智的时机,这样也利于教师发觉学生分析问题解决问题的独到见解,以及思维的误区,以便指导今后的教学。
课堂上要把激发学生学习热忱和获得学习力量放在教学首位,通过运用各种启发、鼓励的语言,以及组织小组合作学习,帮忙学生形成积极主动的求知态度。
3.留意改良的方面在让学生归纳二次函数性质的时候,学生可能会归纳得比拟片面或者没有找出关键点,教师肯定要留意引导学生从多个角度进展考虑,而且要组织学生绽开充分的争论,把大家的观点集中考虑,这样特别有利于训练学生的归纳力量。
二次函数的教学反思2昨天我们学习了用函数的观念看一元二次方程,我通过类比引出二次函数与一元二次方程之间的关系,并结合详细的实例争论了一元二次方程的实根与二次函数图象之间的联系,然后介绍了用图象法求一元二次方程近似解的过程。
这一节是反映函数与方程这两个重要数学概念之间的联系的内容。
由于九年级学生已经具备肯定的抽象思维力量,再者,在八年级时已经学习了一次函数与一元一次方程的关系,因而,采纳类比的方法在学生预习自学的根底上放手让学生大胆地猜测、沟通,分组合作,同时设定肯定的问题环境来引导学生的探究过程,最终在教师的释疑、归纳、拓展、总结的过程中完毕本节课的教学。
在学问把握上,学生对二次函数的图象及其性质和一元二次方程的解的状况都有所了解,对于本节所要学习的二次函数与一元二次方程之间的关系利用类比的方法让学生在自学的根底上进展沟通合作学习应当不是难题。
二次函数教学反思

二次函数教学反思我们已经学习过了正、反比例、一次函数的性质和图像,并且学习过了一元二次方程之后,现在要学习二次函数的图像和性质,从课本和教学大纲的体系来看,二次函数是初中数学的重中重,怎样让学生们学好二次函数?掌握好二次函数的图像和性质?让学生明白什么是二次函数,能区别二次函数与其他函数的不同,能深刻理解二次函数的一般形式,并能初步理解实际问题中对定义域的限制。
为此我们三年级数学组把李进有李校长请到数学组里,李校长说要想教好二次函数开始时一定要让学生们动手画图,画不同情况的图形,通过画图让学生观察、理解、掌握所学的内容,并能总结出各个图像的相同点和不同点,通过李校长指点,我们在学习=a2的图像和性质时,首先让同学们开始画=x2 、=2 、和=2 .通过对比,观察发现它们之间是通过=x2向左或向右平移得到=2 、和=2 ,但是好多同学对着图形还是不理解加2为什么向左平移??这时我想到李校长说的不要害怕费时间,一定要让同学画图,我又让同学画一组,终于同学们在学习二次函数=a(x-h)2的图象和二次函数=ax2的图象的关系时,解决了向左或向右平移引出了加减问题,解决了学生在此容易混淆的难点,让学生结合图象十分明确地看到在x后面如果是加上h就是向左平移h个单位,反之就是向右平移h个单位,其次就是在看如何平移时关键是看顶点的平移,顶点如何平移那么图象就如何平移。
先由解析式求出顶点从标,再看平移的问题。
通过本节课的讲解我感到要想教好数学,一定要让同学动起了,既能引起学生兴趣,又能对前面所学的二次函数的知识加深印象,适应学生的最近发展区,今后要及时反思自己教学中存在的不足,在每一节课前充分预想到课堂的每一个细节,想好对应的措施,不断提高自己的教学水平。
篇二:二次函数教学反思在二次函数教学中,根据它在初中数学函数在教学中的地位,细心地准备《二次函数》的教学,教学重点为二次函数的图象性质及应用,教学难点为a、b、与二次函数的图象的关系。
初中数学_确定二次函数的表达式教学设计学情分析教材分析课后反思

2.3(1)确定二次函数的表达式教学设计一、教学目标经历用待定系数法求二次函数关系式的过程,加深对二次函数的理解,二、教学重点和难点重点:根据问题灵活选用二次函数表达式的不同形式,用待定系数法确定二次函数表达式. 难点:根据问题灵活选用二次函数表达式的不同形式,用待定系数法确定二次函数表达式.三、教学过程(一)复习回顾:1.二次函数表达式的一般形式是什么?2.二次函数表达式的顶点式是什么?3.若二次函数y=ax ²+bx+c(a ≠0)与x 轴两交点为(1x ,0),( 2x ,0)则其函数表达式可以表示成什么形式?4.我们在用待定系数法确定一次函数y=kx+b (k,b 为常数,k ≠0)的关系式时,通常需要 个独立的条件;确定反比例函数xk y =(k ≠0)的关系式时,通常只需要 个条件. 如果要确定二次函数的关系式y=ax ²+bx+c (a,b,c 为常数,a ≠0),通常又需要几个条件 ?(二)初步探索1、已知二次函数2ax y =的图象经过点A (2,-3)、B (3,m )(1)求a 与m 的值;(2)写出该图象上点B 的对称点的坐标:_________(3)当x_________时,y 随x 的增大而减小(4)当x_________时,y 有最_________值,是_________。
2.已知二次函数c ax y +=2的图象经过点(2,3)和(-1,-3),求二次函数的表达式3.已知二次函数bx ax y +=2的图象经过点(1,2)、(2,3),求二次函数的表达式.4.已知二次函数c bx x y ++=2图象经过点M (1,—2)、N(—1,6),求二次函数的表达式.探索1:在什么情况下,一个二次函数只知道其中两点就可以确定它的表达式?小结:用一般式y=ax ²+bx+c 确定二次函数时,如果系数a,b,c 中有两个是未知的,知道图象上两个点的坐标,也可以确定二次函数的表达式.如果系数a,b,c 中三个都是未知的,这个我们将在下节课中进行研究.(三)深入探索5.如图是一名学生推铅球时,铅球行进高度y(m)与水平距离x(m)的图象,你能求出其 表达式吗?6.已知二次函数的图象与y 轴的交点的横纵坐标是为1,且经过点M(2,5)、N(-2,13),(1)求这个二次函数的解析式;(2)写出抛物线的开口方向,对称轴和顶点坐标.(3)求这个二次函数的最大值或最小值。
《二次函数》教学反思范文(通用10篇)

《二次函数》教学反思《二次函数》教学反思范文(通用10篇)《二次函数》教学反思篇1二次函数是初中阶段的重要知识点,如何让学生学得好,也是困扰我很久的问题。
通过画图,在观察图形中总结出图形的性质,对学生来说不是难点。
重点和难点在准确灵活地应用性质。
但是要想准确应用,熟记图形与性质是前提,于是我重点放在对“性质的记忆”和“对学生高要求上”。
强化记忆,功夫在平时。
每节课上课一开始,我在黑板上板书上节学过的有代表性的函数,为防止出错,开始以小组或者同为相互检查快速说性质:包括图形、对称轴、顶点坐标、增减性、最值六个方面。
每节课都将前几节课学过的函数式板书,学生自然形成习惯。
直到学习顶点式的一般形式这节课,共出示六个代表性的函数,尽管多,但是在前几节课的基础上,学生已经达到熟练快速准确。
我和学生开玩笑说,必须将函数性质记忆到说梦话都说函数性质的地步。
深化理解。
学生对着自己曾经画过函数说性质,不知不觉中将图像和性质有机的结合在了一起。
并逐步的将说具体函数的性质过渡到说一般表达式的函数性质。
y=ax2y=ax2+k,y=a(x—h)2+k。
提高要求。
因为手中没有合适的材料供学生练习使用,因此我们每节课印制了两份随堂练习,因为刚学完性质,对学生来说训练题难度不大,开始对学生的要求是最多错一个题,结果发现学生的错误很少,后期发现自己的要求低了,于是我改变要求,必须一个不错方可得A等级。
结果发现,学生自然对自己的要求也提高了。
当发现自己错一个时,就会反思自己那里没学好。
一班的学生平时反映灵活,但是缺少深入细致,必须提高要求,方可让他们耐下心来认真学习。
同时从学生的答题中,及时发现学生存在的问题,及时提醒学生反思改进。
上节课讲过的下次再考照样错,如:李萌。
在她的反思中,分析到自己不是智力问题,而是心态和习惯问题,遇到问题不深入细致,导致基础知识的应用出问题。
他月考和期中检测均是等级B。
“就按这样的习惯学下去,不能考A”“老师,下次我一定考A”我试图在平时的学习中发现她的问题,多么希望她保持好的等级。
初中数学_确定二次函数的解析式教学设计学情分析教材分析课后反思

3.5确定二次函数的解析式一、教材内容分析本节内容是义务教育课程标准实验教科书数学(鲁教版)九年级下册第三章第5节《确定二次函数的表达式》. 本节课是在学习二次函数的表达式和图像性质的基础上展现,目的为二次函数的的实际应用奠基,是本章学习的关键点.本节课既要承接上一节课的数形结合的数学思想,又要能够根据实际问题抽象数学模型,用待定系数法求解二次函数表达式,学生能够根据条件灵活应用二次函数的三种形式:一般式,顶点式,交点式,以便在用待定系数法求解二次函数表达式时减少未知数的个数,简化运算过程.二、教学目标本节课的教学目标知识与技能:能够根据二次函数的图像和性质建立合适的直角坐标系,确定函数关系式,并会根据条件利用待定系数法求二次函数的表达式.过程与方法:经历确定适当的直角坐标系以及根据点的坐标确定二次函数表达式的思维过程,类比求一次函数的表达式的方法,体会求二次函数表达式的思想方法.情感、态度与价值观:能把实际问题抽象为数学问题,也能把所学知识运用于实践,培养学生积极参与的意识,加深学生在生活中学数学,将数学知识服务于生活的学习理念,养成学生善于主动学习、乐于合作交流、学会总结提升的学习习惯,激发和调动学生学习的积极性和主动性,培养数学的应用意识.三.教学重难点:根据问题灵活选用二次函数表达式的不同形式,用待定系数法确定二次函数表达式.四、教学过程设计本节课设计了六个教学环节:五、教学过程教师:欢迎大家走进今天的数学课堂。
这节课我们来学习确定二次函数的解析式,首先来看我们的学习目标。
(出示学习目标)第一环节 复习引入一.我们在用待定系数法确定一次函数y=kx+b (k,b 为常数,k ≠0)的关系式时,通常需要 个独立的条件;确定反比例函数xky (k ≠0)的关系式时,通常只需要 个条件. 如果要确定二次函数的关系式y=ax ²+bx+c (a,b,c 为常数,a ≠0),通常又需要几个条件 ?(学生思考讨论后,回答)二.待定系数法求二次函数表达式常见的三种形式1.二次函数表达式的一般形式是什么?y=ax ²+bx+c (a,b,c 为常数,a ≠0)2.二次函数表达式的顶点式是什么?k h x a y +-=2)( (a ≠0).3.若二次函数y=ax ²+bx+c(a ≠0)与x 轴两交点为(1x ,0),( 2x ,0)则其函数表达式可以表示成什么形式?)x -x (x -x 21)(a y = (a ≠0).第二环节 初步探究(出示课件)1、 已知抛物线y=ax 2+bx+c (a ≠0)若经过点(1,0),则_____若经过点(-1,0),则___________若经过点(0,-3),则___________2、已知抛物线y=a(x-h)2+k (a ≠0)(h,k )若顶点坐标是(-3,4), 则h=_____,k=______,若对称轴为直线x =1,则___________代入得y=______________3、求出下表中抛物线与x 轴的交点坐标,看看你有什么发现? 分析:通过引入1、2、3让学生进一步理解二次函数常见的三种表达式形式,为下一步抽象实际问题打好基础.总结:用待定系数法确定二次函数的解析式时,应该根据条件的特点,恰当地选用一种函数表达式。
二次函数教学反思

二次函数教学反思二次函数教学反思1这周二听了代老师的一节数学课---二次函数的图像,收获颇多。
上课一开始,就对所学过的函数进行了总结复习,使学生在画二次函数图象时列表、描点、连线找得很快、很准确。
在讲解抛物线的概念时,利用多媒体直观展示了抛物线的特征,激发了学生的学习兴趣。
引导学生自主进行观察、发现、归纳、反思等数学活动,得出二次函数的图象和性质,在教学中,由学生自己动手,通过列表、描点、连线绘制出二次函数的`图象,培养了学生动手动脑的习惯和综合分析归纳的能力。
小组合作学习,发现其中的规律。
鼓励学生相互交流自己的想法,并说明理由。
如在画出图象后,提问学生“我们可以从图中观察到什么”。
渗透了数形结合的思想,培养了学生观察、综合分析的能力,增加了学习的自信心和学习的能力。
老师适时地总结、深化,提高认识水平。
老师在不断地总结中渗透数学思想方法,抓住时机培养学生思维的深刻性。
如本节课由函数的解析式画出函数的图象,总结出函数的性质,再利用所学知识解决有关问题。
在师生的共同讨论中,深化所学知识,培养学生具备反省思维的能力。
二次函数教学反思2教材分析:本节课在二次函数y=ax2和y=ax2+c的基础上,进一步研究y=a(x-h)2和y=a(x-h)2+k的图象,并探索它们之间的关系和各自性质。
旨在全面掌握所有二次函数的图象和性质的变化情况。
同时对二次函数的研究,经历了从简单到复杂,从特殊到一般的过程:先从y=x2开始,然后是y=ax2,y=ax2+c,最后是y=a(x-h)2,y=a(x-h)2+k,y=ax2+bx+c。
符合学生的认知规律,体会建立二次函数对称轴和顶点坐标公式的必要性。
教学片段:本节课我是这样设计引入的。
[师] y=3x2的图象有何特点?[生]很快能说出函数图象以及相关的性质。
[师]y=3x2+5的图象有何特点? y=3x2+5和y=3x2的图象有何关系?此处的安排是为了让学生明确加上5会使函数图象向上平移5个单位,为本节教学y=a(x-h)2和y=a(x-h)2+k的位置关系埋下伏笔。
初中数学教学课例《确定二次函数的表达式》教学设计及总结反思

述
型,是初中阶段数学学习的一个重要内容.在本节教学
设计中,利用已经学习过的知识,进一步探究待定系数
法解决二次函数表达式的确定,同时通过对给出条件的 分析,选择合适的二次函数表达式和方法来解决问题。
(2)突出重点、突破难点的策略 本节课是在学生已经掌握了二次函数的有关性质 和表达式的基础上,对有关知识进行应用和拓展.在教 学过程中,教师应通过问题情境的创设,激发学生的学 习兴趣,并注意通过有层次的问题串的精心设计,引导 学生进行探究活动.在师生互动、生生互动的探究活动 中,提高学生解决实际问题的能力
分别代入表达式,得
பைடு நூலகம்
解这个方程组,得
∴所求函数表达式为
方法二
解:A(0,1)与 C(2,1)的纵坐标相同
∴A,C 两点关于二次函数的对称轴对称
根据对称轴性质可得对称轴的横坐标
∴所以 B(1,2)为二次函数的顶点
∴可设,将 A(0,1)代入
解得
(1)设计理念
课例研究综
二次函数是研究现实世界变化规律的一个重要模
达式的一般方法------待定系数法,此问题解决后及时
引导学生总结解法.
探究活动:一个二次函数的图象经过点 A(0,1),
B(1,2),C(2,1),你能确定这个二次函数的表达
式吗?你有几种方法?与同伴进行交流.
方法一
解:设所求的二次函数的表达式为
由已知,将三点(0,1),(1,2),(2,1),
初中数学教学课例《确定二次函数的表达式》教学设计及总 结反思
学科
初中数学
教学课例名
《确定二次函数的表达式》
称
本节课是北师大版义务教育教科书九年级(下)第
二章《二次函数》第三节的第 2 课时,主要是通过对用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
确定二次函数的表达式教后反思
《确定二次函数表达式》是二次函数中重要的知识点之一,主要是让学生灵活的选用适当的方法来确定函数表达式。
上课教师精心设计了教学课件,使教学变得形象直观,调动了学生学习的积极性。
贴近学生生活,做到学数学用数学。
体现了数学来源于生活,运用到生活中。
课件整体设计思路好。
在教学中有的采用了小组合作的学习方式,让学生通过明确分工,协调配合,对学习内容进行充分的实践和探究,让学生自己找出答案或规律,培养了学生的合作探究能力。
体现了探索性的教学过程。
一、优点
1.在教师的精心设计下,教学内容、教学环节、教学方法都算完美,在教学目标的制定和教学重点、难点的把握上也很准确,在课堂的实施上,由于采用激励的方法调动学生的积极性和
主动性,所以整节课非常流畅,效果不错,目标的达成度较高,可以说本人、学生都较满意。
2.一题多解:让学生充分理解哪一种方法更简单,如何确定用哪一种表达式。
3.小组讨论到位。
二、不足之处
1.少数学生的学习热情还有待于进一步调动。
2.个别学生的计算能力不强,需要在日常教学中进一步加强。
3.问题的梯度应该再降低一些,使学生的参与面更大一些,为学习的进一步学习打好基础。
三、反思之处
反思一:教材的内涵是无尽的,一定要挖掘到一定的深广度。
反思二:教师的经验是宝贵的,一定要虚心的请教其他教师。