人教版数学八年级上册第一次周测试题
人教版八年级上册数学入学考试测试题

人教版八年级上册数学入学考试测试题一.选择题(共12小题36分)1.一个正六边形的内角和的度数为()A.1080°B.720°C.540°D.360°2.如图,为估计池塘岸边A、B两点的距离,小明在池塘的一侧选取一点O,测得OA=10米,OB=8米,A、B间的距离不可能是()A.12米B.10米C.20米D.8米3.如图,∠1,∠2,∠3是五边形ABCDE的三个外角,边CD,AE的延长线交于点F,如果∠1+∠2+∠3=225°,那么∠DFE的度数是()A.45°B.55°C.65°D.75°4.如图,△ABC≌△DEC,点E在线段AB上,∠B=75°,则∠ACD的度数为()A.30°B.25°C.20°D.15°5.如图,若△ABC≌△DEF,BD=22,AE=8,则BE等于()A.6B.7C.8D.106.如图,BD为∠ABC的角平分线,DE⊥BC于点E,AB=5,DE=2,则△ABD的面积是()A.5B.7C.7.5D.107.如图,已知∠DAB=∠CBA,添加下列条件不一定使△ABD与△BAC全等的是()A.BD=AC B.AD=BC C.∠D=∠C D.∠DBA=∠CAB 8.下列说法不正确的是()A.两条直角边对应相等的两个直角三角形全等B.一锐角和斜边对应相等的两个直角三角形全等C.斜边和一直角边对应相等的两个直角三角形全等D.有两边相等的两个直角三角形全等9.小桐利用最近学习的数学知识,给同伴出了这样一道题:假如从点A出发,沿直线走5米后向左转θ,接着沿直线前进5米后,再向左转θ…如此下去,当他第一次回到A点时,发现自己走了90米,θ的度数为()A.28°B.20°C.30°D.36°10.如图,在△ABC中,BF平分∠ABC,CF平分∠ACB,∠BFC=125°,则∠A的度数为()A.60°B.80°C.70°D.45°11.如图,已知∠BAC=32°,点D、E分别在AB、AC边上,将△ADE沿DE折叠,点A 落在∠BAC外部的点A处,此时测得∠1=106°,则∠2的度数为()A.34°B.37°C.40°D.42°12.如图,在△ABC中,AB=AC,点D为线段BC上一动点(不与点B,C重合),连接AD,作∠ADE=∠B=40°,DE交线段AC于点E.下列结论:①∠DEC=∠BDA;②若AD=DE,则BD=CE;③当DE⊥AC时,则D为BC中点;④当△ADE为等腰三角形时,∠BAD=40°.其中正确的有()个.A.1个B.2个C.3个D.4个二.填空题(共6小题18分)13.下列生产和生活实例:①用人字架来建筑房屋;②用窗钩来固定窗扇;③在栅栏门上斜钉着一根木条;④商店的推拉活动防盗门等.其中,用到三角形的稳定性的有(填写序号).14.如图的平面图形由多条线段首尾相连构成,已知∠A=90°,则∠D+∠E+∠F+∠G =.15.如图,BO平分∠ABC,OD⊥BC于点D,点E为射线BA上一动点,若OD=5,则OE 的最小值为.16.如图,将四边形纸片ABCD沿EF折叠,点A落在A1处,若∠1+∠2=88°,则∠A的度数是.17.如图,在正方形方格中,各正方形的顶点叫做格点,三个顶点都在格点上的三角形称为格点三角形.图中△ABC是格点三角形,请你找出方格中所有与△ABC全等,且以A为顶点的格点三角形.这样的三角形共有个(△ABC除外).18.如图,AE是∠BAD的平分线,CE是∠BCD的平分线,且AE与CE相交于点E.若∠D=40°,∠B=30°,则∠E的度数为.三.解答题(共6小题46分)19(5分).请将下面的说理过程和理由补充完整.已知:如图,AD是△ABC的平分线,过点D作DE∥AC,交AB于点E,若∠B=85°,∠ADE=33°,求∠C的度数.解:∵DE∥AC,∴∠DAC=①.(②)∵∠ADE=33°,∴∠DAC=33°.∵AD是△ABC的平分线,∴∠BAC=2∠DAC.(③)∴∠BAC=66°.∵∠B+④+∠C=180°,(三角形的内角和为180°)∠B=85°,∴∠C=⑤°.20.(8分)如图,点B,E,F,D在同一直线上,AF∥CE,AF=CE,BE=DF.(1)△ABF与△CDE全等吗?请说明理由;(2)线段AB与线段CD有什么关系?请说明理由.21.(7分)如图,OC平分∠AOB,点P是OC上的一点,PM⊥OA,PN⊥OB,垂足分别为M、N,点D是OC上的另一点,连结DM,DN.求证:DM=DN.22.(8分)已知△ABC,点A在射线CE上,把△ABC沿AB翻折得△ABD,∠CBD=70°.(1)若AC⊥BC,则∠BAE的度数为°;(2)设∠C=x°,∠DAE=y°,①如图1,当点D在直线CE左侧时,求y与x的数量关系,并写出x的取值范围;②如图2,当点D在直线CE右侧时,直接写出y与x的数量关系是.(3)过点D作DF∥BC交CE于点F,当∠EFD=3∠DAE时,求∠BAD的度数.23.(9分)如图,已知点E在四边形ABCD的边BC的延长线上,BM、CN分别是∠ABC、∠DCE的角平分线,设∠BAD=α,∠ADC=β.(1)如图1,若α+β=180°,判断BM、CN的位置关系,并说明理由;(2)如图2,若α+β>180°,BM、CN相交于点O.①当α=70°,β=150°时,则∠BOC=;②∠BOC与α、β有怎样的数量关系?说明理由;(3)如图3,若α+β<180°,BM、CN的反向延长线相交于点O,则∠BOC=.(用含α、β的代数式表示)24.(9分)如图,Rt△ACB中,∠ACB=90°,∠CAB与∠ABC的角平分线BE,AD相交于点G,过G作AD垂线交BC的延长线于点F,交AC于点H.(1)求∠DGB的大小;(2)若AD=10,GF=6,求GH长度;(3)若S△ABG=5,求四边形ABDE的面积.。
人教版数学八年级上册第一年级测试试卷(含答案)

人教版数学8年级上册第1单元·时间:120分钟满分:120分班级__________姓名__________得分__________一、选择题(共10小题,满分30分,每小题3分)1.(3分)若一个多边形的一个内角为144°,则这个图形为正( )边形.A.十一B.十C.九D.八2.(3分)下列长度的三条线段中,能组成三角形的是( )A.1cm,2cm,3cm B.2cm,3cm,4cmC.4cm,6cm,10cm D.5cm,8cm,14cm3.(3分)某三角形的三边长分别为3,6,x,则x可能是( )A.3B.9C.6D.104.(3分)有下列两种图示均表示三角形分类,则正确的是( )A.①对,②不对B.②对,①不对C.①、②都不对D.①、②都对5.(3分)一个正六边形的内角和的度数为( )A.1080°B.720°C.540°D.360°6.(3分)如图,为估计池塘岸边A、B两点的距离,小明在池塘的一侧选取一点O,测得OA=10米,OB=8米,A、B间的距离不可能是( )A.12米B.10米C.20米D.8米7.(3分)如图,窗户打开后,用窗钩AB可将其固定,其所运用的几何原理是( )A.两点之间,线段最短B.两点确定一条直线C.垂线段最短D.三角形具有稳定性8.(3分)在△ABC中,且满足∠A+∠B=90°,则△ABC一定是( )A.锐角三角形B.直角三角形C.钝角三角形D.不能确定9.(3分)若一个正多边形的每一个外角都等于36°,则它是( )A.正九边形B.正十边形C.正十一边形D.正十二边形10.(3分)如图,∠1=40°,则∠C的度数为( )A.30°B.40°C.50°D.60°二、填空题(共5小题,满分15分,每小题3分)11.(3分)如图,BD是△ABC的中线,AB=8,BC=5,△ABD和△BCD的周长的差是 .12.(3分)在△ABC中,AC=3,BC=4,若∠C是锐角,那么AB长的取值范围是 .13.(3分)在一个各内角都相等的多边形中,每一个内角都比相邻外角的3倍还大20°,则这个多边形的内角和为 .14.(3分)如图,△ABC中,∠B=40°,∠C=30°,点D为边BC上一点,将△ADC 沿直线AD折叠后,点C落到点E处,若∠BAE=50°,则∠DAC的度数为 °.15.(3分)如图所示,在△ABC中,∠A=60°,∠B=40°,DE∥BC,则∠AED的度数是 .三、解答题(共10小题,满分75分)16.(7分)已知a,b,c是△ABC的三边,a=4,b=6,若三角形的周长是小于18的偶数.(1)求c边的长;(2)判断△ABC的形状.17.(7分)若a、b、c是△ABC的三边,化简:|a﹣b+c|﹣|c﹣a﹣b|+|a+b+c|.18.(7分)如图,五边形ABCDE的每个内角都相等,已知EF⊥BC,求证:EF平分∠AED.19.(7分)如图,四边形ABCD中,AB⊥AC.(1)若AB∥CD,且∠D=60°,求∠1的度数;(2)若∠1+∠B=90°,求证:AD∥BC.20.(7分)如图,∠ABE是四边形ABCD的外角,已知∠ABE=∠D.求证:∠A+∠C=180°.21.(7分)如图,在四边形ABCD中,BE平分∠ABC,交AD于点G,交CD的延长线于点E,F为DC延长线上一点,∠ADE+∠BCF=180°.(1)求证:AD∥BC;(2)若∠DGE=30°,求∠A的度数.22.(7分)如图,在△ABC中,∠B=30°,∠C=65°,AE⊥BC于E,AD平分∠BAC,(1)求∠DAE的度数;(2)如图②,若把“AE⊥BC”变成“点F在DA的延长线上,FE⊥BC”,其它条件不变,求∠DFE的度数.23.(8分)已知:如图,点D、E、F、G都在△ABC的边上,EF∥AC,且∠1+∠2=180°.(1)求证:AE∥DG;(2)若EF平分∠AEB,∠C=35°,求∠BDG的度数.24.(9分)如图,在△ABC中,∠CAE=18°,∠C=42°,∠CBD=27°.(1)求∠AFB的度数;(2)若∠BAF=2∠ABF,求∠BAF的度数.25.(9分)如图,在△ABC中,CD平分∠ACB,AE⊥CD,垂足为F,交BC于点E,若∠BAE=33°,∠B=37°,求∠EAC的度数.参考答案一、选择题(共10小题,满分30分,每小题3分)1.B;2.B;3.C;4.B;5.B;6.C;7.D;8.B;9.B;10.C;二、填空题(共5小题,满分15分,每小题3分)11.3;12.1<AB<5;13.1260°;14.30;15.80°;三、解答题(共10小题,满分75分)16.解:(1)∵a,b,c是△ABC的三边,a=4,b=6,∴2<c<10,∵三角形的周长是小于18的偶数,∴2<c<8,∴c=4或6;(2)当c=4或6时,△ABC的形状都是等腰三角形.17.解:∵a、b、c是△ABC的三边,∴a﹣b+c>0,c﹣a﹣b<0,a+b+c>0,∴原式=a﹣b+c+c﹣a﹣b+a+b+c=a﹣b+3c.18.证明:∵五边形内角和为(5﹣2)×180°=540°且五边形ABCDE的5个内角都相等,∴∠A=∠B=∠AED=540°5=108°.∵EF⊥BC,∴∠3=90°.又∵四边形的内角和为360°,∴在四边形ABFE中,∠1=360°﹣(108°+108°+90°)=54°,又∵∠AED=108°,∴∠1=∠2=54°,∴EF平分∠AED.19.(1)解:∵AB⊥AC,∴∠BAC=90°,∵AB∥CD,∴∠BAC=∠ACD=90°,∵∠D=60°,∴∠1=30°;(2)证明:∵∠B+∠BCA=90°,∠1+∠B=90°,∴∠1=∠BCA,∴AD∥BC.20.证明:∵∠ABE=∠D,∠ABE+∠ABC=180°,∴∠ABC+∠D=180°,又∵四边形内角和等于360°,∴∠A+∠C=180°.21.(1)证明:∵∠ADE+∠BCF=180°,∠BCE+∠BCF=180°,∴∠ADE=∠BCE,∴AD∥BC;(2)解:由(1)得,AD∥BC,∴∠AGB=∠EBC,∵∠AGB=∠DGE,∴∠AGB=∠EBC=∠DGE=30°,∵BE平分∠ABC,∴∠AGB=∠EBC,∴∠A=180°﹣30°﹣30°=120°.22.解:(1)∵∠B=30°,∠C=65°,∴∠BAC=85°,∵AD平分∠BAC,∴∠CAD=42.5°,∵AE⊥BC,∴∠CAE=25°,∴∠DAE=∠CAD﹣∠CAE=17.5°;(2)如图,∵∠B=30°,∠C=65°,∴∠BAC=85°,∵AD平分∠BAC,∴∠CAD=42.5°,∴∠FAG=180°﹣∠CAD=137.5°,∵EF⊥BC,∴∠CGE=25°,∴∠AGF=25°,∴∠DFE=180°﹣∠AGF﹣∠FAG=17.5°.23.(1)证明:∵EF∥AC,∴∠1=∠CAE.∵∠1+∠2=180°,∴∠2+∠CAE=180°.∴AE∥DG.(2)解:∵EF∥AC,∠C=35°,∴∠BEF=∠C=35°.∵EF平分∠AEB,∴∠1=∠BEF=35°.∴∠AEB=70°.由(1)知AE∥DG,∴∠BDG=∠AEB=70°.24.解:(1)∵∠AEB=∠C+∠CAE,∠C=42°,∠CAE=18°,∴∠AEB=60°,∵∠CBD=27°,∴∠BFE=180°﹣27°﹣60°=93°,∴∠AFB=180°﹣∠BFE=87°;(2)∵∠BAF=2∠ABF,∠BFE=93°,∴3∠ABF=93°,∴∠ABF=31°,∴∠BAF=62°.25.解:∵AE⊥CD交CD于点F,∴∠AFC=∠EFC=90°,∵CD平分∠ACB,∴∠ACF=∠ECF,∵∠AFC+∠EAC+∠ACF=180°,∠EFC+∠CEA+∠ECF=180°,∴∠EAC=∠CEA,∵∠CEA=∠B+∠BAE,∠B=37°,∠BAE=33°,∴∠CEA=70°,∴∠EAC=70°.。
人教版八年级数学上册单元测试题及答案全套

人教版八年级数学上册单元测试题及答案全套一、选择题(每小题2分,共20分)1. 下列运算中,结果是有理数的是()。
A. √7 + √5B. √8 + √16C. √11 + 5D. √3 + 2√72. 已知a、b为正有理数,且a > b,下列不等式中正确的是()。
A. a√2 > b√2B. a√3 < b√3C. a√5 > b√5D. a√6 < b√63. 下列数中,不能化成√10 形式的无理数是()。
A. √10 –√5B. (√15 + √5) –√10C. √10 + √5D. (√15 –√5) + √104. 已知√3 + √2 > x,下列结论错误的是()。
A. √2 < xB. √6 > xC. 2 < xD. 1 < x5. 若(a+b)√2 = a√3 + b√6,那么a:b等于()。
A. 1:2B. 2:1C. 1:1D. 1:36. 已知数集A = {x | x = 2k – 1,k∈Z},则集合A的元素个数是()。
A. 0B. 3C. 4D. 57. 过已知点P(a,b),不与直线y = 2x + 1平行的直线的个数是()。
A. 0B. 1C. ∞D. 28. 两直线k1∶-2x + y = 4,k2∶ 6x – 3y = 1,那么k1和k2的关系是()。
A. 相交B. 平行C. 重合D. 垂直9. 若线段AB的中点坐标是(2,1),A的坐标是(5,3),则B的坐标是()。
A. (-1,-1)B. (4,1)C. (3,5)D. (1,4)10. 在平面直角坐标系xOy中,点A(7,3)关于y轴的对称点是()。
A. (7,3)B. (3,7)C. (-7,3)D. (7,-3)二、填空题(每小题2分,共20分)11. 设√a = √2 + √3,则a等于填空。
12. 若x∈R 且√(x+1) = 2,则x的值为填空。
人教版八年级上册数学《第一次月考》测试卷(含答案)

人教版八年级上册数学《第一次月考》测试卷(含答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.4的算术平方根为( )A .2±B .2C .2±D .2 2.若12x y x -=有意义,则x 的取值范围是( ) A .1x 2≤且x 0≠ B .1x 2≠ C .1x 2≤ D .x 0≠ 3.语句“x 的18与x 的和不超过5”可以表示为( ) A .58x x +≤ B .58x x +≥ C .855x ≤+ D .58x x += 4.如果23a b -=,那么代数式22()2a b a b a a b+-⋅-的值为( ) A .3 B .23 C .33 D .435.在平面直角坐标系中,将点A (1,﹣2)向上平移3个单位长度,再向左平移2个单位长度,得到点A ′,则点A ′的坐标是( )A .(﹣1,1)B .(﹣1,﹣2)C .(﹣1,2)D .(1,2)6.如果分式||11x x -+的值为0,那么x 的值为( ) A .-1 B .1 C .-1或1 D .1或07.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°8.已知直线m ∥n ,将一块含30°角的直角三角板ABC 按如图方式放置(∠ABC=30°),其中A ,B 两点分别落在直线m ,n 上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°9.如图,将正方形OABC放在平面直角坐标系中,O是原点,点A的坐标为(1,3),则点C的坐标为()A.(-3,1) B.(-1,3) C.(3,1) D.(-3,-1) 10.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C.2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.2.已知34(1)(2)xx x---=1Ax-+2Bx-,则实数A=__________.3.4的平方根是.4.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为_____________.5.如图:在△ABC中,AB=13,BC=12,点D,E分别是AB,BC的中点,连接DE,CD,如果DE=2.5,那么△ACD的周长是________.6.如图所示,每个小正方形的边长为1,A、B、C是小正方形的顶点,则ABC∠的度数为________.三、解答题(本大题共6小题,共72分)1.解方程:(1)12111xx x-=--(2)31523162x x-=--2.先化简,再求值:3x4x2xx1x1--⎛⎫-÷⎪--⎝⎭,其中1x2=.3.若关于x、y的二元一次方程组2133x y mx y-=+⎧⎨+=⎩的解满足x+y>0,求m的取值范围.4.已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.5.如图,四边形ABCD的四个顶点分别在反比例函数myx=与nyx=(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.①若点P的纵坐标为2,求直线AB的函数表达式.②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.6.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.(1)求甲、乙两种树苗每棵的价格各是多少元?(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、A4、A5、A6、B7、B8、D9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、82、13、±2.4、10.5、186、45°三、解答题(本大题共6小题,共72分)1、(1)2x 3=;(2)10x 9=. 2、x 2-,32-. 3、m >﹣24、(1)略;(2)结论:四边形ACDF 是矩形.理由见解析.5、(1)①132y x =-+;②四边形ABCD 是菱形,理由略;(2)四边形ABCD 能是正方形,理由略,m+n=32.6、(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.。
人教版八年级上册数学《第一次月考》测试卷(完美版)

人教版八年级上册数学《第一次月考》测试卷(完美版) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.已知25523y x x =-+--,则2xy 的值为( )A .15-B .15C .152-D .1522.平行四边形一边的长是10cm ,那么这个平行四边形的两条对角线长可以是( )A .4cm ,6cmB .6cm ,8cmC .8cm ,12cmD .20cm ,30cm3.设42-的整数部分为a ,小数部分为b ,则1a b-的值为( ) A .2- B .2 C .212+ D .212- 4.已知三角形两边的长分别是3和7,则此三角形第三边的长可能是( )A .1B .2C .8D .115.将下列多项式因式分解,结果中不含有因式(a+1)的是( )A .a 2-1B .a 2+aC .a 2+a-2D .(a+2)2-2(a+2)+16.欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC ∆,使90ACB ∠=,2a BC =,AC b =,再在斜边AB 上截取2a BD =.则该方程的一个正根是( )A .AC 的长B .AD 的长C .BC 的长D .CD 的长7.如下图,下列条件中:①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5,能判定AB ∥CD 的条件为( )A .①②③④B .①②④C .①③④D .①②③8.某排球队6名场上队员的身高(单位:cm )是:180,184,188,190,192,194.现用一名身高为186cm 的队员换下场上身高为192cm 的队员,与换人前相比,场上队员的身高( )A .平均数变小,方差变小B .平均数变小,方差变大C .平均数变大,方差变小D .平均数变大,方差变大9.如图在正方形网格中,若A (1,1),B (2,0),则C 点的坐标为( )A .(-3,-2)B .(3,-2)C .(-2,-3)D .(2,-3)10.如图,AD ,CE 分别是△ABC 的中线和角平分线.若AB=AC ,∠CAD=20°,则∠ACE 的度数是( )A .20°B .35°C .40°D .70°二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:3222x x y xy +=﹣__________. 2.若最简二次根式1a +与8能合并成一项,则a =__________.3.设m ,n 是一元二次方程x 2+2x -7=0的两个根,则m 2+3m +n =_______.4.如图,将Rt ABC 绕直角顶点C 顺时针旋转90,得到DEC ,连接AD ,若25BAC ∠=,则BAD ∠=________.5.如图,在□ABCD中,BE平分∠ABC,BC=6,DE=2,则□ABCD的周长等于__________.6.如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为________.三、解答题(本大题共6小题,共72分)1.解方程组:25 342 x yx y-=⎧⎨+=⎩2.先化简,再求值:2282442xxx x x⎛⎫÷--⎪-+-⎝⎭,其中2x=.3.解不等式组513(1)131722x xx x+>-⎧⎪⎨-≤-⎪⎩,并把它的解集在数轴上表示出来.4.如图,在▱ABCD中,AE⊥BC,AF⊥CD,垂足分别为E,F,且BE=DF (1)求证:▱ABCD是菱形;(2)若AB=5,AC=6,求▱ABCD的面积.5.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、D4、C5、C6、B7、C8、A9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、()2x x y -2、13、54、705、206、7三、解答题(本大题共6小题,共72分)1、21x y =⎧⎨=-⎩2、22x -,12-.3、24x -<≤,数轴见解析.4、(1)略;(2)S 平行四边形ABCD =245、24°.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
新部编人教版八年级数学上册第一次月考测试卷及完整答案

新部编人教版八年级数学上册第一次月考测试卷及完整答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.4的算术平方根为( )A .2±B .2C .2±D .22.已知35a =+,35b =-,则代数式22a ab b -+的值是( )A .24B .±26C .26D .253.已知x+y =﹣5,xy =3,则x 2+y 2=( )A .25B .﹣25C .19D .﹣194.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或55.已知1x 、2x 是一元二次方程220x x -=的两个实数根,下列结论错误..的是( )A .12x x ≠B .21120x x -=C .122x x +=D .122x x ⋅=6.欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC ∆,使90ACB ∠=,2a BC =,AC b =,再在斜边AB 上截取2a BD =.则该方程的一个正根是( )A .AC 的长B .AD 的长C .BC 的长D .CD 的长7.下列四个图形中,线段BE 是△ABC 的高的是( )A .B .C .D .8.如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为30海里的A 处,轮船沿正南方向航行一段时间后,到达位于灯塔P 的南偏东30°方向上的B 处,则此时轮船所在位置B 与灯塔P 之间的距离为( )A .60海里B .45海里C .203海里D .303海里9.如图,在正方形ABCD 中,AB =9,点E 在CD 边上,且DE =2CE ,点P 是对角线AC 上的一个动点,则PE +PD 的最小值是( )A .310B .103C .9D .9210.已知:如图,∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是 ( )A .AB =AC B .BD =CD C .∠B =∠C D .∠BDA =∠CDA二、填空题(本大题共6小题,每小题3分,共18分)1.分解因式:29a -=__________.2.若关于x 的方程2134416x m m x x ++=-+-无解,则m 的值为__________. 3.一个正多边形的每个外角为60°,那么这个正多边形的内角和是______.4.如图,直线y=x+b 与直线y=kx+6交于点P (3,5),则关于x 的不等式x+b >kx+6的解集是_________.5.如图,已知△ABC 是等边三角形,点B 、C 、D 、E 在同一直线上,且CG=CD ,DF=DE ,则∠E=________度.6.如图,ABCD 的周长为36,对角线AC ,BD 相交于点O .点E 是CD 的中点,BD=12,则△DOE 的周长为________.三、解答题(本大题共6小题,共72分)1.解方程:(1)2(1)30x +-= (2)4(2)3(2)x x x +=+2.先化简,再求值:3x 4x 2x x 1x 1--⎛⎫-÷ ⎪--⎝⎭,其中1x 2=.3.已知,a 、b 互为倒数,c 、d 互为相反数,求31ab c d +的值.4.如图,△ABC 与△DCB 中,AC 与BD 交于点E ,且∠A=∠D ,AB=DC(1)求证:△ABE≌DCE;(2)当∠AEB=50°,求∠EBC的度数.5.我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)6.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、D6、B7、D8、D9、A10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、()()33a a +-2、-1或5或13-3、720°.4、x >3.5、:略6、15.三、解答题(本大题共6小题,共72分)1、(1)11x =,21x =;(2)12x =-,243x =.2、x 2-,32-. 3、0.4、略(2)∠EBC=25°5、(1)略;(2)四边形EFGH 是菱形,略;(3)四边形EFGH 是正方形.6、(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元.。
人教版八年级数学上册第一次阶段试题含答案

人教版八年级数学试题南通市2017~2018学年度第一学期第一次阶段测试卷八年级数学试卷共4页 总分:120分 时间:100分钟一、选择题(本大题共有9小题,每小题3分,共27分.) 1. 计算23()a 的结果是( )A .a 6B .a 5C .a 8D .3 a 22. 下列“表情图”中,属于轴对称图形的是( )A .B .C .D .3. 10x 不可能写出如下式子( ) A.()2242x x x⋅⋅ B. ()55xC.()()()352x x x -⋅-⋅- D. 33()x x ⋅4. 等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为( ) A.12B . 12或15C . 15D . 185. 下列运算结果正确的是( ) A . 2a 3•a 4b =2a 12b B .(a 4)3=a7C .(3a )3=3a 3D . a (a +1)=a 2+a6. 下列尺规作图,能判断AD 是△ABC 边上的高是( )7. 如图,把长方形纸片ABCD 纸沿对角线折叠,设重叠部分为△EBD ,那么,有下列说法: ①△EBD 是等腰三角形,EB =ED ,②折叠后∠ABE 和∠CBD 一定相等,③折叠后得到的图形是轴对称图形 ,④△EBA 和△EDC 一定是全等三角形,其中正确的有( ) A .1个; B .2个; C .3个; D .4个EAB CD第9题图第7题图 第8题图8. 如图,C 为线段AE 上一动点(不与点A 、E 重合),在AE 同侧分别作等边△ABC 和等边△CDE ,AD 与BC 相交于点P ,BE 与CD 相交于点Q ,连接PQ ,则∠CPQ 度数为( ) A .75° B .60° C.55° D .45°9.如图,在△ABC 中,AB =AC ,D 、E 是△ABC 内两点,AD 平分∠BAC ,∠EBC =∠E =60°,若BE =6cm ,DE =2cm ,则BC 长为( )cmA. 8B.9C.10D. 12 二、填空题(本大题共有6小题,每小题3分,共18分.)10.在平面直角坐标系中,点(4,-5)关于x 轴对称点的坐标为_________ 11. 已知m4x =,3nx =,则m nx+的值为_____________.12. 如图,在△ABC 中,090C ∠=,AD 平分∠CAB ,交CB 于点D ,过点D 作DE ⊥AB 于点E ;若030B ∠=,CD =1,则BD 的长为 .13. 在平面镜里看到背后墙上,电子钟示数如图所示,这时的实际时间应该是 .14. 如图,已知25ABC S m ∆=,AD 平分∠BAC ,且AD ⊥BD 于点D ,则ADC S ∆= _________2m .15. 如图,等边△ABC 的边长为3,点E 在BA 的延长线上,点D 在BC 边上,且ED =EC ,AE =2,则CD 的长为 .三、解答题(本大题共有9小题,共75分)16.(本题20分)计算:(1) 92()()b b -⋅- (2) 523()c c c -⋅+(3) 3223(3)[(2)]x x -+- (4)232223(2)8()()()x y x x y +⋅-⋅-17.(本题5分) 已知2(3)310a b -++= ,求20172018()a b-⋅的值第12题ADE第14题图第13题第15题图18.(本题5分)已知:如图,AE 是△ABC 外角的平分线,且AE ∥BC . 求证:△ABC 是等腰三角形。
人教版八年级上册数学《第一次月考》测试卷(完整版)

人教版八年级上册数学《第一次月考》测试卷(完整版)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知(x-2015)2+(x-2017)2=34,则(x-2016)2的值是()A.4 B.8 C.12 D.162.已知:将直线y=x﹣1向上平移2个单位长度后得到直线y=kx+b,则下列关于直线y=kx+b的说法正确的是()A.经过第一、二、四象限B.与x轴交于(1,0)C.与y轴交于(0,1)D.y随x的增大而减小3.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.24.式子:①2>0;②4x+y≤1;③x+3=0;④y-7;⑤m-2.5>3.其中不等式有()A.1个B.2个C.3个D.4个5.已知点P(a+5,a-1)在第四象限,且到x轴的距离为2,则点P的坐标为()A.(4,-2) B.(-4,2) C.(-2,4) D.(2,-4)6.已知关于x的不等式组320x ax->⎧⎨->⎩的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3 B.﹣4≤a<﹣3 C.a<﹣3 D.﹣4<a<3 27.下列四个图形中,线段BE是△ABC的高的是()A. B.C. D.8.如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线D′处.若AB=3,AD=4,则ED的长为()A.32B.3 C.1 D.439.如图,把一个矩形纸片ABCD沿EF折叠后,点D、C分别落在D′、C′的位置,若∠EFB=65°,则∠AED′为().A.70°B.65°C.50°D.25°10.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C2D.2二、填空题(本大题共6小题,每小题3分,共18分)116的平方根是.2.因式分解:22ab ab a-+=__________.3.若关于x的一元二次方程x2+mx+2n=0有一个根是2,则m+n=________.4.如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=a ,OE=b ,则a+2b 的取值范围是________.5.如图,平行四边形ABCD 中,60BAD ∠=︒,2AD =,点E 是对角线AC 上一动点,点F 是边CD 上一动点,连接BE 、EF ,则BE EF +的最小值是____________.6.已知:如图,OAD ≌OBC ,且∠O =70°,∠C =25°,则∠AEB =______度.三、解答题(本大题共6小题,共72分)1.解方程(1)240x -= (2)2(3)(21)(3)x x x +=-+2.先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭.3.若关于x 、y 的二元一次方程组2133x y m x y -=+⎧⎨+=⎩的解满足x +y >0,求m 的取值范围.4.如图,将矩形ABCD沿对角线AC翻折,点B落在点E处,FC交AD于F.(1)求证:△AFE≌△CDF;(2)若AB=4,BC=8,求图中阴影部分的面积.5.如图所示,在△ABC中,D是BC边上一点,∠1=∠2,∠3=∠4,∠BAC=63°,求∠DAC的度数.6.某超市计划购进甲、乙两种商品,两种商品的进价、售价如下表:商品甲乙进价(元/件)60x+x售价(元/件)200 100若用360元购进甲种商品的件数与用180元购进乙种商品的件数相同.(1)求甲、乙两种商品的进价是多少元?(2)若超市销售甲、乙两种商品共50件,其中销售甲种商品为a件(30a≥),设销售完50件甲、乙两种商品的总利润为w元,求w与a之间的函数关系式,并求出w的最小值.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、C3、B4、C5、A6、B7、D8、A9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、()21a b -3、﹣24、2≤a+2b ≤5.56、120三、解答题(本大题共6小题,共72分)1、(1)12x =-,22x =;(2)13x =-,24x =2、x+2;当1x =-时,原式=1.3、m >﹣24、(1)略;(2)10.5、24°.6、(1)分别是120元,60元;(2)402000w a =+(30)a ≥,当a=30件时,w 最小值=3200元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
E
A A
B C D
第一次周测试题
(45分钟,共100分)
班级:姓名:
一、选择题(每题4分,共36分)
1.已知三角形的两边长分别是4cm和9cm,则下列长度的四条线段中能作为第三边的是() A.13cm B.6cm C.5cm D.4cm
2、生活中,我们经常会看到如图1所示的情况,在电线杆上拉两条钢筋,来加固电线杆,这是利用了三角形的()
A、稳定性
B、不稳定性
C、灵活性
D、对称性
3、如图2,在△ABC中,∠BAC=80°,∠B=35°,AD平分∠BAC,则∠ADC的度数为()
A.90° B.95° C.75° D.55°
4、如果一个三角形三边上的高的交点在三角形的外部,那么这个三角形是()
A、锐角三角形
B、直角三角形
C、钝角三角形
D、任意三角形
5、四边形的内角和与外角和的和是( )
A.360°
B.180°
C.540°
D.720°
6、七边形有( )条对角线。
A.11
B.12
C.13
D.14
7、等腰三角形的一边为3,另一边为7.则此三角形的周长为()
A.13
B.17
C.13 或17
D.无法确定
8.下列四组图形中,BE是△ABC的高线的图是()
9.如图3,已知直线AB∥CD,∠C=115°,∠A=25°,则∠E=()
10、已知
a、b、c为三角形的三边,化简│a+b-c│-│b-a-c│的结果是()
A. 0
B.2a
C.2(b-c)
D.2(a+c)
11.某人到瓷砖店去购买一种多边形形状的瓷砖,用来铺设无缝地板,•他购买的瓷砖形状不可以是().
A.正三角形 B.矩形(长方形) C.正八边形 D.正六边形
12、如图4,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于()A.315° B.270° C.180° D.135°
13.我们常见的晾衣服的伸缩晾衣架,是利用了四边形的
14.已知在△ABC 中,∠A=40°,∠B-∠C=40°,则∠B=_____,∠C=______.
15.如图5,⊿ABC 中,∠A = 40°,∠B = 72°,CE 平分∠ACB ,CD ⊥AB 于D ,DF ⊥CE , 则∠CDF = __________ 度。
16.如图6,把一副三角板按如图方式放置,则两条斜边所形成的钝角
度.
D C
B
A
F
三、解答题
17、如图,CD 是Rt △ABC 斜边上的高。
(1)求证:B ACD ∠=∠(4分)
(2)若5,4,3===AB BC AC ,则求CD 的长。
(3分)
18、如图,AF 是△ABC 的高,AD 是△ABC 的角平分线,且∠B =36°,∠C =76°,求∠DAF 的度数。
(10分)
F D C B A
19、已知如图1,线段AB 、CD 相交于点O,连接AD 、CB ,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB 和∠BCD 的平分线AP 和CP 相交于点P ,并且与CD 、AB 分别相交于M 、N.试解答下列问题:
(1) 在图1中,请直接写出∠A 、∠B 、∠C 、∠D 之间的数量关系: (3分)
(2)仔细观察,在图2中“8字形”,猜想P D B ∠∠∠,,之间的数量关系,并证明。
(4分)
(3)在图2中,若∠D=400,∠B=360,试求∠P 的度数;(
3分)。