Fibonacci
斐波那契数列fibonacci及其在外汇交易中的应用

斐波那契数列fibonacci及其在外汇交易
中的应用
斐波那契数列(Fibonacci Sequence)是一个数学上无限序列,其定义如下:
F(n)=F(n−1)+F(n−2),其中F(0)=0,F(1)=1.
这意味着斐波那契数列的第 n 个元素是其前两个元素的和。
数列的开始部分如下:0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ...
斐波那契数列在外汇交易中的应用:
1.Fibonacci 重要比率:斐波那契数列的比率,如黄金分割比率(0.618)和黄金分割的倒数(1.618),被广泛应用于外汇交易中的技术分析。
交易员使用这些比率来确定支撑和阻力水平,以及可能的市场反转点。
2.Fibonacci retracement(斐波那契回撤):交易员使用斐波那契回撤来分析价格走势的调整水平。
通过绘制从趋势起始点到高点的水平线,可以确定潜在的支撑水平,这有助于预测价格的下跌幅度。
3.Fibonacci extension(斐波那契扩展):与回撤相反,扩展用于预测价格的上涨目标。
通过绘制从趋势起始点到低点的水平线,可以识别潜在的阻力水平。
4.Fibonacci 时间周期:一些交易员使用斐波那契时间周期来预测市场趋势的变化。
他们认为,特定的时间周期可能与价格走势的反转点相关联。
5.Fibonacci 扇形:扇形是以斐波那契数列的比率绘制的,用于显示可能的支撑和阻力区域。
需要注意的是,斐波那契在外汇交易中的应用主要是基于技术分析的一部分,而且这些方法的有效性仍然是一个有争议的话题。
外汇交易涉及风险,投资者应该谨慎并在实践中验证任何技术分析工具的有效性。
波菲纳切数列

波菲纳切数列
波菲纳切数列(Fibonacci sequence)是指以下这个数列:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765, 10946, 17711, 28657, 46368, 75025, 121393, 196418, 317811, …
其中第一个和第二个数为0 和1,后续每个数均为其前两个数之和。
波菲纳切数列因为其独特的数学性质而备受关注。
它的应用涉及金融、编程、自然科学等多个领域。
以下是波菲纳切数列的一些性质:
1.黄金比例:相邻两个数的比例越来越接近黄金比例
1.61803398875...。
这个比例在自然界中广泛存在,如金字塔、
贝壳等。
2.数学规律:波菲纳切数列有许多有趣的数学规律。
例如,任意
相邻三个数的最大公约数都是1;任意两个相邻的数的平方差
等于前后两个数的乘积减一等。
3.斐波那契螺旋:将相邻两个数作为长和宽,可以得到一系列矩
形,这些矩形按顺序拼接起来,形成了一个「斐波那契螺旋」。
这个螺旋也在自然界中广泛存在,如旋涡状的贝壳。
4.应用:波菲纳切数列的应用非常广泛。
例如,在金融领域中,
可以用波菲纳切数列来预测股价波动;在编程中,可以将波菲纳切数列应用于算法设计等。
总之,波菲纳切数列是一个十分特殊和有趣的数列,其数学性质和应用价值令人着迷。
斐波那契

斐波那契数列斐波那契“斐波那契数列(Fibonacci)”的发明者,是意大利数学家列昂纳多·斐波那契(Leonardo Fibonacci,生于公元1170年,卒于1240年,籍贯大概是比萨)。
他被人称作“比萨的列昂纳多”。
1202年,他撰写了《珠算原理》(Liber Abaci)一书。
他是第一个研究了印度和阿拉伯数学理论的欧洲人。
他的父亲被比萨的一家商业团体聘任为外交领事,派驻地点相当于今日的阿尔及利亚地区,列昂纳多因此得以在一个阿拉伯老师的指导下研究数学。
他还曾在埃及、叙利亚、希腊、西西里和普罗旺斯研究数学。
斐波那契数列通项公式斐波那契数列指的是这样一个数列:1、1、2、3、5、8、13、21、……这个数列从第三项开始,每一项都等于前两项之和。
它的通项公式为:(见图)(又叫“比内公式”,是用无理数表示有理数的一个范例。
)有趣的是:这样一个完全是自然数的数列,通项公式居然是用无理数来表达的。
编辑本段奇妙的属性随着数列项数的增加,前一项与后一项之比越来越逼近黄金分割的数值0.6180339887……从第二项开始,每个奇数项的平方都比前后两项之积多1,每个偶数项的平方都比前后两项之积少1。
(注:奇数项和偶数项是指项数的奇偶,而并不是指数列的数字本身的奇偶,比如第四项3是奇数,但它是偶数项,第五项5是奇数,它是奇数项,如果认为数字3和5都是奇数项,那就误解题意,怎么都说不通)如果你看到有这样一个题目:某人把一个8*8的方格切成四块,拼成一个5*13的长方形,故作惊讶地问你:为什么64=65?其实就是利用了斐波那契数列的这个性质:5、8、13正是数列中相邻的三项,事实上前后两块的面积确实差1,只不过后面那个图中有一条细长的狭缝,一般人不容易注意到。
斐波那契数列的第n项同时也代表了集合{1,2,...,n}中所有不包含相邻正整数的子集个数。
斐波那契数列(f(n),f(0)=0,f(1)=1,f(2)=1,f(3)=2……)的其他性质:1.f(0)+f(1)+f(2)+…+f(n)=f(n+2)-12.f(1)+f(3)+f(5)+…+f(2n-1)=f(2n)3.f(2)+f(4)+f(6)+…+f(2n) =f(2n+1)-14.[f(0)]^2+[f(1)]^2+…+[f(n)]^2=f(n)·f(n+1)5.f(0)-f(1)+f(2)-…+(-1)^n·f(n)=(-1)^n·[f(n+1)-f(n)]+16.f(m+n)=f(m-1)·f(n-1)+f(m)·f(n)利用这一点,可以用程序编出时间复杂度仅为O(log n)的程序。
斐波那契数列及其性质

斐波那契数列及其性质斐波那契数列是一个重要的著名数列,它出现在许多自然现象以及数学等领域中,在数学上有着深远意义,它也是有关组合数学等方面研究的基础。
斐波那契数列的构成和特点是什么?下面是给出斐波那契数列及其性质的详细说明:一、斐波那契数列的定义斐波那契数列是一个紧密排列的数字系列,按照规律由第三项等于前两项之和而形成,它又被称为Fibonacci序列,也就是经典的Fibonacci数列,它也是一种递归算法,其公式为:F(n) = F(n-1)+F(n-2) (n>=3, F(1)=1, F(2)=1)它是一类递推算法,以如下数列为例:1、1、2、3、5、8、13、21、34、55…上述的数列满足:1、斐波那契数列满足以下性质:每一项均等于其前两项之和;2、斐波那契数列与自然界有密切关系,它不仅涉及到数学,还涉及到建筑、园林、设计等领域;3、斐波那契数列可以用于解决许多算法题,如计算汉诺塔问题;4、斐波那契数列也是递推式,每一项都是前两项的和,所以它的数列必定存在规律;5、斐波那契数列的解不一定唯一,由于该数列与动态规划有关,所以,不同的算法可以得到不同的解,这也使其变得更加强大。
斐波那契数列的应用主要有:1、斐波那契数列可以用来分析空间、时间、财务等问题;3、斐波那契数列也可以用来解决像最短路径、最大优先级调度等问题;4、斐波那契数列也可以用作证明一些数学定理的实用工具;5、斐波那契数列不仅在数学中,在建筑、园林、设计等方面也发挥重要作用。
总之,斐波那契数列是一类重要而经典的数列,它不仅仅被用来分析数学问题,也被广泛用于其他领域,给数学家们带来了许多新思想。
Fibonacci数列(斐波那契数列)

1 5 1 5 f n C1 C 2 2 2
n
n
3.Fibonacci数列的通项公式
根据初始条件 f1 f 2 1 ,可能确定常数
c1 , c2 ,
[c1,c2]=solve('c1*(1+sqrt(5))/2+c2* (1sqrt(5))/2=1','c1*((1+sqrt(5))/2)^2+ c2*((1-sqrt(5))/2)^2=1')
4.自然界中的斐波那契数列
科学家发现,很多植物的花瓣、萼片、果实 的数目以及排列的方式上,都有一个神奇的 规律,它们都非常符合著名的斐波那契数列。
4.自然界中的斐波那契数列
现代科学研究表明,0.618在养生中起重要作 用。注意了这些黄金分割点,对养生健体大 有好处。现在发现此比值和医学保健、健康 长寿有着千丝万缕的联系,亦可称为健康的 黄金分割律。在人体结构上,0.618更是无处 不在。脐至脚底与头顶至脐之比;躯干长度 与臀宽之比;下肢长度与上肢长度之比,均 近似于0.618。
4.自然界中的斐波那契数列
另外,也确实因为它具有悦目的性质,所以 有时人们在时间中并非注意到这个比例,而 特意去运用它,但往往就不自觉中,进入了 这个法则之中。这也说明了,黄金分割的本 身就存在有美的性质。
5.练习
借助计算机,求解下列线性差分方程(即求 出数列的通项公式)。
an2 2an1 2an a1 3, a2 8
得到
fn2 fn1 fn n2 n 1 n
3.Fibonacci数列的通项公式
消去因子有
解得
1
Fibonacci数列(斐波那契数列)PPT课件

指数形式。不妨设为 f n n 进行尝试。将
n 代入差分方程:
fn2 fn1fn
得到 n2 n1 n
-
11
3.Fibonacci数列的通项公式
消去因子有 2 1
解得
1
1
2
5
2
1 2
5
由此可知这两个都是差分方程的解。
-
12
3.Fibonacci数列的通项公式
-
6
2.观察Fabonacci数列
如何求它的通项呢?(粗略地求) 拟合法
利用excel拟合 先绘制散点图 利用拟合方法拟合
-
7
2.观察Fabonacci数列
利用matlab拟合
直接拟合有点难!
把数列的前20个数取对数,然后再绘散点图, 看看有什么规律?
取对数后散点图 为直线,可以利 用线性回归知识 拟合直线了!
-
2
1. 提出问题
-
3
1. 提出问题
越往后就越复杂,最后归纳得
数列{Fn}称为Fibonacci数列.直到1634年, 才有数学家奇拉特发现此数列具有非常简单的 递推关系:
F1=F2=1, Fn=Fn-2+Fn-1.
由于这一发现,此问题引起了人们的极大兴趣, 后来又发现了该数列的更多性质
2an 8
-
26
-
21
4.自然界中的斐波那契数列
医学研究已表明,秋季是人的免疫力最佳的 黄金季节。因为7月至8月时人体血液中淋巴 细胞最多,能生成大量的抵抗各种微生物的 淋巴因子,此时人的免疫力强.
-
22
4.自然界中的斐波那契数列
在我们的生活环境中,就随处可见了,如建 处门窗、橱柜、书桌;我们常接触的书本、 报纸、杂志;现代的电影银幕。电视屏幕, 以及许多家用器物都是近似这个数比关系构 成的。它特别表现艺术中,在美术史上曾经 把它作为经典法则来应用。有许多美术家运 用它创造了不少不朽列
斐波那契数列

斐波那契数列一、简介斐波那契数列(Fibonacci),又称黄金分割数列,由数学家斐波那契最早以“兔子繁殖问题”引入,推动了数学得发展。
故斐波那契数列又称“兔子数列”。
斐波那契数列指这样得数列:1,1,2,3,5,8,13,……,前两个数得与等于后面一个数字。
这样我们可以得到一个递推式,记斐波那契数列得第i项为F i,则F i=F i—1+F i-2、兔子繁殖问题指设有一对新生得兔子,从第三个月开始她们每个月都生一对兔子,新生得兔子从第三个月开始又每个月生一对兔子。
按此规律,并假定兔子没有死亡,10个月后共有多少个兔子?这道题目通过找规律发现答案就就是斐波那契数列,第n个月兔子得数量就是斐波那契数列得第n项。
二、性质如果要了解斐波那契数列得性质,必然要先知道它得通项公式才能更简单得推导出一些定理。
那么下面我们就通过初等代数得待定系数法计算出通项公式。
令常数p,q满足F n-pF n—1=q(Fn-1-pFn—2)。
则可得:Fn—pFn—1=q(Fn—1—pF n—2)=q2(F n-2-pFn—3。
)=…=qn—2(F2—pF1)又∵F n—pF n-1=q(Fn—1-pF n-2)∴F n-pF n-1=qF n-1-pqF n—2F n-1+Fn—2-pF n—1—qFn—1+pqFn—2=0(1-p—q)F n—1+(1+pq)Fn-2=0∴p+q=1,pq=—1就是其中得一种方程组∴Fn-pFn-1=q n-2(F2-pF1)=q n-2(1—p)=qn—1Fn=qn—1+pF n—1=q n-1+p(qn—2+p(q n-3+…))=qn-1+pqn-2+p2qn—3+…+p n—1不难瞧出,上式就是一个以p/q为公比得等比数列。
将它用求与公式求与可以得到:F n=q n−1[(pq)n−1]pq−1=p n−q np−q而上面出现了方程组p+q=1,pq=-1,可以得到p(1—p)=-1,p2—p—1=0,这样就得到了一个标准得一元二次方程,配方得p2-p+0。
用递归的方法编写函数求fibonacci 级数。

用递归的方法编写函数求fibonacci 级数。
Fibonacci级数是一个非常经典的数列,它的每一项都是前两项的和。
具体来说,Fibonacci 级数的定义如下:
F(0) = 0
F(1) = 1
F(n) = F(n-1) + F(n-2) (n >= 2)
其中,F(n) 表示第 n 项。
要编写一个函数来求 Fibonacci 级数,可以考虑使用递归的方法。
具体来说,我们可以定义一个函数 fib(n),它的返回值是第 n 项的值。
然后根据定义,可以得到以下递归式:
fib(n) = 0 (n = 0)
fib(n) = 1 (n = 1)
fib(n) = fib(n-1) + fib(n-2) (n >= 2)
这个递归式可以直接转化为代码。
具体来说,我们可以使用以下Python 代码来实现 fib(n) 函数:
def fib(n):
if n == 0:
return 0
elif n == 1:
return 1
else:
return fib(n-1) + fib(n-2)
这个函数的实现非常简单,它首先检查 n 是否为 0 或 1,如果是,则直接返回相应的值;否则,它使用递归调用来计算 fib(n-1) 和fib(n-2),然后将它们相加并返回结果。
需要注意的是,由于 fib(n) 的计算依赖于 fib(n-1) 和
fib(n-2),因此这个函数的时间复杂度是指数级别的,即 O(2^n)。
因此,当 n 很大时,这个函数的性能可能会非常差。
在实际应用中,可以考虑使用其他更高效的算法来计算 Fibonacci 级数。