第六章 序列相关性
序列相关性

5.滞后效应 在经济中,因变量受到自身或另一解释变量的前几期值影响的现象称为 滞后效应。在一个消费支出对收入的时间序列回归中,人们常常发现当前时 期的消费支出除了依赖于其他变量外,还依赖于前期的消有效 因为,在有效性证明中利用了 E(NN’)=2I 即同方差性和互相独立性条件。而且,在大样本情况下,参数估计量 虽然具有一致性,但仍然不具有渐近有效性。 2、变量的显著性检验失去意义 在变量的显著性检验中,统计量是建立在参数方差正确估计基础之 上的,这只有当随机误差项具有同方差性和互相独立性时才能成立。如果存 在序列相关,估计的参数方差 S ˆ ,出现偏误(偏大或偏小) ,t 检验就失去
~ e ~ e t t 1 t
,
~ e ~ ~ e t 1 t 1 2 et 2 t
3
, 。 。 。
醉客天涯之计量经济学
如果存在某一种函数形式,使得方程显著成立,则说明原模型存在序列相关性。 回归检验法的优点是: (1)能够确定序列相关的形式 (2)适用于任何类型序列相关性问题的检验。 3、杜宾-瓦森(Durbin-Watson)检验法(最常用) (1)方法使用条件: ①解释变量 X 非随机; ②随机误差项 i 为一阶自回归形式: i=i-1+i ③回归模型中不应含有滞后应变量作为解释变量,即不应出现下列形式: Yi=0+1X1i+kXki+Yi-1+i ④回归含有截距项 ⑤误差项被假定为正态分布 (2)D.W.统计量: 杜宾和瓦森针对原假设:H0: =0, 即不存在一阶自回归,构如下造统计量:
D.W .
~ (e
t 2
n
t
~ )2 e t 1
2 t
《序列相关性》课件

序列相关性的类型
01
02
03
正相关
当一个观测值增加时,另 一个观测值也增加,反之 亦然。
负相关
当一个观测值增加时,另 一个观测值减少,反之亦 然。
无相关性
两个观测值之间不存在明 显的依赖关系。
序列相关性产生的原因
01
02
03
04
季节性影响
某些时间序列数据会受到季节 性因素的影响,导致观测值之
间存在周期性依赖关系。
偏相关系数检验
总结词
偏相关系数检验是一种用于检验时间序列数据之间是否存在长期均衡关系的统计方法。
详细描述
偏相关系数检验基于时间序列数据的偏相关图,通过计算偏相关系数,判断时间序列数 据之间是否存在长期均衡关系。如果存在长期均衡关系,则说明时间序列数据之间存在
某种稳定的关联性,可能存在协整关系。
04 序列相关性对模型的影响
个体差异性和时间趋势性。
02 03
序列相关性分析
面板数据的序列相关性分析是对不同个体或区域上的时间序列数据进行 相关性检验和建模的过程,主要考察不同个体或区域在同一时间点上的 数据是否具有相关性。
总结
面板数据的序列相关性分析是研究面板数据的重要手段,有助于揭示不 同个体或区域在同一时间点上的数据关联和动态变化。
经济因素
经济活动中的各种因素可能导 ຫໍສະໝຸດ 时间序列数据之间存在相关性。
政策因素
政策变动或干预可能对时间序 列数据产生影响,导致观测值
之间存在相关性。
其他因素
如气候变化、人口增长等也可 能对时间序列数据产生影响, 导致观测值之间存在相关性。
02 序列相关性在统计学中的 应用
线性回归模型中的序列相关性
统计学计量经济学课件 4.2 序列相关性

序列相关性的应用
相关性的实际意义
序列相关性可以帮助我们分析经济数据、预测未来 变动、制定政策和投资策略。
序列相关性的应用案例
例如,我们可以利用股票价格与宏观经济指标的相 关性来制定股票投资策略。
总结
序列相关性的重要性
了解序列相关性对于理解经 济现象、预测未来变动和制 定决策至关重要。
序列相关性的局限性
统计学计量经济学课件 4.2 序列相关 性
# 统计学计量经济学课件 4.2 序列相关性 ## 1. 前言 - 序列相关性简介 - 为什么需要了解序列相关性 ## 2. 什么是序列相关性 - 相关性定义 - 序列相关性和相关系数 ## 3. 序列相关性的性质 - 线性相关 - 相关性的方向 - 相关性的强弱 ## 4. 序列相关性的度量 - 协方差和相关系数 - 样本系数计算公式 - 相关性的范围
3 相关性的强弱
相关性的强度取决于相关 系数的值,接近-1或1表示 强相关,接近0表示弱相 关。
序列相关性的度量
1
协方差和相关系数
协方差是衡量变量之间关系强弱的指标。相关系数是标准化的协方差值,用于比较不同变量 之间的相关性。
2
样本系数计算公式
样本相关系数通过对样本数据进行计算得出,它可以估计总体相关系数。
2 序列相关性和相关系数
相关系数是衡量序列相关性强度的指标。它的取值范围在-1和1之间,负值表示负相关, 正值表示正相关。
序列相关性的性质
1 线性相关
2 相关性的方向
序列相关性通常是线性的, 即变量之间的关系可以用 一条直线表示。
相关性可以是正相关(变 量同时增加或减少)或负 相关(一个变量增加时, 另一个变量减少)。
3
统计学计量经济学课件4.2序列相关性

对于长期趋势的数据,如果只使 用部分样本数据进行分析,可能 会导致残差序列相关。
03
序列相关性对回归分析的 影响
估计量的偏误
偏误类型
序列相关性会导致回归系数的估计量 产生偏误,即估计的系数不再等于真 实系数。
偏误原因
解决方法
采用适当的统计方法,如广义最小二 乘法(GLS)或广义差分法(GDM) ,以消除序列相关性对估计量的影响 。
统计学计量经济学课 件4.2序列相关性
xx年xx月xx日
• 序列相关性的定义 • 序列相关性产生的原因 • 序列相关性对回归分析的影响 • 检验序列相关性的方法 • 解决序列相关性的方法
目录
01
序列相关性的定义
什么是序列相关性
序列相关性是指时间序列数据之间存在某种相关性,即一个 时间点的数值可能与下一个时间点的数值之间存在一定的依 赖关系。
用于检验时间序列数据是否存 在序列相关性,如杜宾瓦森检
验和LM检验。
02
序列相关性产生的原因
模型设定误差
模型遗漏重要变量
在计量经济学模型中,如果遗漏了重 要的解释变量,会导致残差序列相关 ,从而产生序列相关性。
错误地设定滞后变量
在模型中错误地引入滞后变量,会导 致模型残差出现序列相关性。
数据生成过程
在回归分析中,应充分考虑序列相关性对 检验和推断的影响,采用适当的统计方法 和模型进行修正,以提高推断的准确性。
04
检验序列相关性的方法
图检验法
散点图
通过绘制时间序列数据的散点图,观察数据点是否呈现出某种趋势或模式,从而 判断是否存在序列相关性。
自相关图
利用自相关系数或偏自相关系数来绘制自相关图,通过观察自相关系数或偏自相 关系数的变化趋势,判断是否存在序列相关性。
4.2序列相关性

又如:模型本应为:
Yt = 0 +1 Xt +2 Xt2 + t
但建模时设立模型如下:
Yt = 0 +1 Xt + vt
由于vt = 2 Xt2 +t ,解释变量的平方对随机误 差项产生系统性影响,从而使随机误差项呈现出 序列相关性。
三、序列相关性的后果
计量经济学模型一旦出现序列相关性,如果仍 采用OLS估计模型参数,会产生下列不良后果:
§4.2
序列相关性
一、序列相关性的概念 二、序列相关性的产生原因 三、序列相关性的后果 四、序列相关性的检验 五、序列相关性的克服办法 六、实例
一、序列相关性的概念
0 1 X1i 2 X 2i k X k i i 基本假设要求随机误差项之间互不相关:
对于模型 Yi
-4 -4 -2 0 2
U (-1) 4
正自相关的序列图和散点图
4 X
6 X 4
2
2
0
0 -2
-2
-4
-4 10 20 30 40 50 60 70 80 90 100
-6 -6 -4 -2 0 2
X(-1) 4 6
负自相关的序列图和散点图
6 X 4 2 0 -2 -4 -6 10 20 30 40 50 60 70 80 90 100
n
~ et 2
t 1
n
如果存在完全正自相关,则
n
~ ~ ~~ et2 et21 2 et et 1
t 2 t 2 t 2
n
n
1,D.W . 0
如果存在完全负自相关,则
~ et2
t 1
序列相关性的理论研究与实证检验

序列相关性的理论研究与实证检验1 序列相关性多元线性回归模型的基本假设之一是模型的随机干扰项相互独立或不相关。
如果模型的随机干扰项违背了相互独立的基本假设,称为存在序列相关性。
序列相关性,在计量经济学中指对于不同的样本值,随机干扰之间不再是完全相互独立的,而是存在某种相关性。
又称自相关,是指总体回归模型的随机误差项之间存在相关关系。
对于线性回归模型:i 01122i i k ik i Y X X X u ββββ=+++++ 1,2,,i n =在其他假设仍然成立的条件下,随机干扰项序列相关意味着(,)()0i j i j Cov u u E u u =≠或者2211222211()()()()n n n n E u u Var u E u u I E u u σσσσσσσσ⎛⎫⎛⎫ ⎪ ⎪'====Ω≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭如果仅存在1()0i i E u u +≠1,2,,n 1i =-则称存在一阶序列相关或者自相关,这是最常见的一种序列相关问题。
自相关往往可以写成如下形式:1i i i u u ρε-=+其中ρ自协方差系数或者一阶自相关系数,i ε是满足以下OLS 的随机干扰项:()0i E ε=,2()i Var εσ=,(,)0i i s Cov εε-=(0)s ≠序列相关性经常出现在以时间数列为样本的模型中,故在处理时间序列问题时注意序列相关性的检验。
2 序列相关性产生的原因实际问题中,序列相关性产生的原因主要来自于下面三个方面:1、 经济变量固有的惯性大多数经济时间数据都有一个明显的特点:惯性,表现在时间序列不同时间的前后关联上。
2、 模型设定的偏误所谓模型设定偏误是指所设定的模型“不正确”。
主要表现在模型中丢掉了重要的解释变量或模型函数形式有偏误。
例如,本来应该估计的模型为:0112233t t t t t X X X Y u ββββ++++=但在模型设定中做了下述回归:01122t t t t Y X X v βββ+++=因此,33t t t v X u β=+,如果确实影响Y ,则出现序列相关,于是在3X 确实影响了Y 的情况下,这种模型设定的偏误往往是导致随机干扰项中的一个重要的系统性影响因素,使其呈现序列相关性。
第六章 自相关(序列相关)

可以证明: 1- 2 - 1 C= 0 2 1- 0
2
0 0 1 0 0 - 0 0 0 - 1 0
1- 2 Cy 以 1- C左乘原模型,并定义y 1- 2 CX, 1- 2 C X
则变换后的扰动项 满足球型扰动项的假设, 故高斯-马尔可夫定理成立(因为这种变换是 GLS的一个特例)
1- 2 - 1- 2 Cy= 0 y 0
0 0 y1 1 0 0 y2 - 0 0 yn 0 - 1 0
第六章 自相关(序列相关)
一、自相关的后果 违反球型扰动项假定的另一情形是自相关。若存在 i j使得E i j X 0,即扰动项的协方差阵Var X 的非主对角线元素不全为0,则称存在“自相关” (autocorrelation)或“序列相关”(serial correlation)
其中, Var u t ,而1= ,
2 u 2
1 2 故一阶自相关系数 = 2 = 0
由课件第三章p21, 2= , , n-1= ,故
2 2 n-1 2
1 2 Var X = n-1
1
1- 2 y1= 1- 2 1+ 1- 2 2 x12++ 1- 2 k x1k+1 y 2- y1=1- 1+ 2 x 22- x12 ++ k x 2k- x1k + 2 y n- y n-1=1- 1+ 2 x n 2- x n-1, ++ k x nk- x n-1,k 2 + 2
因此辅助回归的解释变量e t-1, ,e t-p必与扰动项相 关,导致不一致的估计。这就是所谓的随机解释变 量问题,后面会介绍。若引入解释变量x t1, ,x tk 将使BG检验更加稳健 由于使用了滞后残差值e t-p,损失了p个样本值,故
计量经济学-序列相关性

PART 03
序列相关性检验方法
杜宾-瓦特森检验
检验原理
通过计算残差序列的一阶自相关系数来检验序列相关性。
检验步骤
首先估计回归模型,计算残差;然后计算残差的自相关系数;最后 根据自相关系数和样本量确定临界值,判断序列相关性。
优缺点
简单易行,但仅适用于一阶自相关的情况,对于高阶自相关检验效 果较差。
将检验结果以表格或图形形式展示出 来,包括检验统计量、P值等。若存 在序列相关性,可采用差分法、 ARIMA模型等方法进行处理,并重新 进行参数估计和检验。
根据检验结果和处理结果,对模型的 适用性和可靠性进行评估。若模型存 在严重序列相关性问题,则需要重新 考虑模型设定和估计方法。
PART 06
总结与展望
检验步骤
在原始回归模型中添加滞后项作为解释变量;然后估计辅 助回归模型,得到回归系数的估计值;最后根据回归系数 的估计值构造统计量,进行假设检验。
优缺点
可以检验任意阶数的自相关,但需要注意滞后项的选择和 模型的设定。
PART 04
序列相关性处理方法
差分法
一阶差分法
通过计算相邻两个时期的数据差值来消除序列相 关性。
运用最小二乘法(OLS)或其他估计方法,对模型参数进行估计。在 EViews中,可通过"Quick"菜单选择"Estimate Equation"选项进行参数估 计。
序列相关性检验及处理结果展示
01
序列相关性检验
02
处理结果展示
03
结果解读
采用Durbin-Wu-Hausman检验、 Breusch-Godfrey检验等方法,检验 模型是否存在序列相关性。在EViews 中,可通过"View"菜单选择 "Residual Diagnostics"选项进行检 验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图5.3.4 负自相关
2、回归检验法
~ ~ e 以 et 为被解释变量, 以各种可能的相关量, 诸如以t 1 、 ~ ~ et 2 、et 2 等为解释变量,建立各种方程:
~ ~ et et 1 t
~ ~ ~ et 1et 1 2 et 2 t
……
D.W检验步骤:
(1)计算DW值 (2)给定,由n和k的大小查DW分布表,得临界值dL和dU (3)比较、判断 若 0<D.W.<dL 存在正自相关 dL<D.W.<dU dU <D.W.<4-dU 4-dL <D.W.<4
正 相 关 不 能 确 定 无自相关
不能确定 无自相关 存在负自相关
不 能 确 定
如果存在某一种函数形式,使得方程显著成 立,则说明原模型存在序列相关性。 回归检验法的优点是:(1)能够确定序列相 关的形式,(2)适用于任何类型序列相关性问 题的检验。
3、杜宾-瓦森(Durbin-Watson)检验法
D-W 检 验 是 杜 宾 ( J.Durbin ) 和 瓦 森 (G.S. Watson)于1951年提出的一种检验序列自相关的方法, 该方法的假定条件是:
但建模时设立了如下模型:
Yt= 0+1Xt+vt
因此,由于vt= 2Xt2+t, ,包含了产出的平方对随 机项的系统性影响,随机项也呈现序列相关性。
3、观测数据的处理引起的
在实际经济问题中,有些数据是通过已知数据 生成的。 因此,新生成的数据与原数据间就有了内在的 联系,表现出序列相关性。 例如:季度数据来自月度数据的简单平均,这 种平均的计算减弱了每月数据的波动性,从而使 随机干扰项出现序列相关。
Ct=0+1Yt+t t=1,2,…,n
由于消费习惯的影响被包含在随机误差项中,则 可能出现序列相关性(往往是正相关 )。
2、模型设定的偏误
所谓模型设定偏误(Specification error)是指 所设定的模型“不正确”。主要表现在模型中丢掉 了重要的解释变量或模型函数形式有偏误。 例如,本来应该估计的模型为
第六章 序列相关性
一、序列相关性的含义 二、序列相关性产生的原因 三、序列相关性的后果 四、序列相关性的检验 五、序列相关性的处理 六、案例
一、序列相关性的含义
对于模型
Yi=0+1X1i+2X2i+…+kXki+i i=1,2, …,n
随机项互不相关的基本假设表现为
Cov(i , j)=0
其他检验也是如此。
3、模型的预测失效
区间预测与参数估计量的方差有关,在 方差有偏误的情况下,使得预测估计不准 确,预测精度降低。 所以,当模型出现序列相关性时,它的 预测功能失效。
三、序列相关性的检验
三、序列相关性的检验
基本思路:
序列相关性检验方法有多种,但基本思路相同:
首先, 采用 OLS 法估计模型, 以求得随机误差项的
Yt = 1 (1- ) + 2 X t - 2 X t -1 + Yt -1 + vt
34
第一步,把上式作为一个多元回归模型,使用 普通最小二乘法估计参数。把 Yt 1 的回归系数
ˆ 看作
的一个估计值 。
ˆ 第二步,求得 后,使用 进行广义差分, ˆ
D.W . ~ (e
t 2 n t
~ et 1 ) 2
2 t
~ e
t 1
n
该统计量的分布与出现在给定样本中的X值有复杂 的关系,因此其精确的分布很难得到。
但是,他们成功地导出了临界值的下限dL和 上限dU ,且这些上下限只与样本的容量n和解 释变量的个数k有关,而与解释变量X的取值无 关。
(1)解释变量X非随机;
(2)随机误差项i为一阶自回归形式: i=i-1+i (3)回归模型中不应含有滞后应变量作为解释变 量,即不应出现下列形式:
Yi=0+1X1i+kXki+Yi-1+i
(4)回归含有截距项
D.W. 统计量:
杜宾和瓦森针对原假设:H0: =0, 即不存在一 阶自回归,构如下造统计量:
Yt=0+1X1t+ 2X2t + 3X3t + t
但在模型设定中做了下述回归:
Yt=0+1X1t+ 1X2t + vt
因此, vt=3X3t + t,如果X3确实影响Y,则出 现序列相关。
又如:如果真实的边际成本回归模型应为:
Yt= 0+1Xt+2Xt2+t
其中:Y=边际成本,X=产出,
4-dU <D.W.<4- dL 不能确定
负 相 关
0
dL
dU
2
4-dU 4-dL
当D.W.值在2左右时,模型不存在一阶自相关。
证明: 展开D.W.统计量:
D.W . ~ ~ ~~ et 2 et 21 2 et et 1
t 2 t 2 t 2 n n n
(*)
et 2 ~
三、序列相关性的后果
计量经济学模型一旦出现序列相关性,如果仍 采用OLS法估计模型参数,将会造成严重后果:
1、参数估计量非有效(不具有最小方差性)
如果随机误差项 t 存在序列相关性,我们仍然 用普通最小二乘法估计参数,就很有可能低估了 参数估计值的真实方差。
2、变量的显著性检验失去意义
在变量的显著性检验中,统计量是建立在参 数方差正确估计基础之上的,这只有当随机误差 项具有同方差性和互相独立性时才能成立。
E ( i ) 0 ,
var( i ) 2 ,
cov( i , i s ) 0
s0
由于序列相关性经常出现在以时间序列为样本的模型中, 因此,通常描述序列相关的模型用下标t代表i。
二、序列相关性产生的原因
1、经济变量自身的特点引起的
大多数经济时间数据都有一个明显的特点:惯性, 表现在时间序列不同时间的前后关联上。 例如,绝对收入假设下居民总消费函数模型:
Yt = 2 X t + ut - ut -1
如果原模型存在完全一阶正自相关,即 1 则 ut = ut -1 + vt
其中,vt 为经典误差项。则随机误差项为经典误
差项,无自相关问题。使用普通最小二乘法估计
参数,可得到最佳线性无偏估计量。
33
(二)德宾两步法
当自相关系数未知时,也可采用德宾提出的两 步法,消除自相关。将广义差分方程表示为:
ij, i,j=1,2, …,n
如果对于不同的样本点,随机误差项之间不再 是不相关的,而是存在某种相关性,则认为出现 了序列相关性。
因为通常假定随机误差项均值为零,且同方差。
在其他假设仍成立的条件下,序列相关即意味着 E ( i j ) 0
如果仅存在
E(i i+1)0 i=1,2, …,n
~ ei “近似估计量” ,用
表示:
~ ˆ ei Yi (Yi ) 0ls
然后,通过分析这些“近似估计量”之间的相 关性,以判断随机误差项是否具有序列相关性。
1.图示法
(1)按时间顺序绘制残差图
图5.3.1 正自相关
图5.3.2 负自相关
e (2)绘制 et ,t 1 的散点图
t
图5.3.3 正自相关
ˆ 令 Yt* = Yt - (1)Yt -1
ˆ = 1 (1- (1) )
ˆ X t* = X t - (1) X t -1
使用普通最小二乘法,可得样本回归函数为:
ˆ ˆ* ˆ Yt* = 1* + 2 X t* + et(2)
30
ˆ 4. 因为 (1) 并不是对 的最佳估计,进一步 迭代,寻求最佳估计。由前一步估计的结果有:
23
对于一元线性回归模型
Yt = 1 + 2 X t + ut
将模型滞后一期可得
Yt -1 = 1 + β2Xt -1 + = 1 + 2 X t + ut -1
24
两式相减,可得
Yt - Yt -1 = 1 (1- ) + 2 ( X t - X t -1 ) + ut - ut -1
估计 。由DW 与 的关系可知 : DW ˆ 12 ˆ 但是,这 是一个粗略的结果, 是对 精度不高的估
计。其根本原因在于我们对有自相关的回归模型使 用了普通最小二乘法 。为了得到 的精确的估计 值 , 通 常 采 用 科 克 伦 - 奥 克 特 ( Cochrane - ˆ Orcutt)迭代法。
2.利用残差
e
(1) 做如下的回归 t
ˆ et(1) = (1)et(1) + vt -1
29
3. 利用 (1) ,对模型进行广义差分,即 ˆ
ˆ (1)Yt -1 = 1 (1- (1) ) + 2 ( X t - (1) X t -1 ) + ut - (1)ut -1 ˆ ˆ ˆ Yt -
称为一阶列相关,或自相关(autocorrelation) 自相关往往可写成如下形式:
i=i-1+i
-1<<1
其 中 : 被 称 为 一 阶 自 相 关 系 数 ( first-order coefficient of autocorrelation)
i是满足以下标准的OLS假定的随机干扰项:
25
对模型使用普通最小二乘估计就会得到参数估
计的最佳线性无偏估计量。
这称为广义差分方程,因为被解释变量与解释 变量均为现期值减去前期值的一部分,由此而 得名。