关于计算极限的几种方法

关于计算极限的几种方法
关于计算极限的几种方法

目录

摘要 (1)

引言 (2)

一.利用导数定义求极限 (2)

二.利用中值定理求极限 (2)

三.利用定积分定义求极限 (3)

四.利用施笃兹公式 (4)

五.利用泰勒公式 (5)

六.级数法 (5)

七.结论 (6)

参考文献 (6)

内容摘要

引言:

极限是分析数学中最基本的概念之一,用以描述变量在一定的变化过程中的终极状态。早在中国古代,极限的朴素思想和应用就已在文献中有记载。例如,3世纪中国数学家刘徽的割圆术,就是用圆内接正多边形周长的极限是圆周长这一思想来近似地计算圆周率 的。随着微积分学的诞生,极限作为数学中的一个概念也就明确提出。但最初提出的这一概念是含糊不清的,因此在数学界引起不少争论甚至怀疑。直到19世纪,由A.-L.柯西、K. (T.W.)外尔斯特拉斯等人的工作,才将其置于严密的理论基础之上,从而得到举世一致的公认。

数学分析中的基本概念的表述,都可以用极限来描述。如函数()x f y =在

0x x =处导数的定义,定积分的定义,偏导数的定义,二重积分,三重积分的定义,无穷级数收敛的定义,都是用极限来定义的。极限是研究数学分析的基本公具。极限是贯穿数学分析的一条主线。

一.利用导数定义求极限

据文[]1定理1导数的定义:函数)(x f 在0x 附近有定义,对于任意的x ?,

则)()(00x f x x f y -?+=? 如果x

x f x x f x x ?-?+=→?→?

)

()(lim lim 000

0存在,则此极限值就

称函数)(x f 在点0x 的导数记为 )('0x f .即x x f x x f x f x ?-?+=→?)

()(lim )('0000在这

种方法的运用过程中。首先要选好)(x f ,然后把所求极限。表示成)(x f 在定点0x 的导数。

例1:求a

x x

a a x x a a a a

x

--→lim

解:原式0)(lim lim 1lim 0---?=---=-→→→a x x a a x a a x a x x a a

a

x x a a a a x

a a a a a

x x a x x

,令a x x a y -=, 当a x →时,0→y ,故原式a a a a a

a

a y y a ln |)'(0=?==

一般地,能直接运用导数定义求的极限就直接用导数定义来求,值得注意的是许

多从表面看起来,不能直接用导数定义但经过恒等变形后,都可以利用导数定义来求,如上述例题。

二.利用中值定理求极限 2.1利用微分中值定理求极限

计算数列和函数的极限时,经常遇到的多是"00

","0"∞?,"0"∞···的不定

形式,其中有时"0"也以差的形式出现,这就给应用微分中值定理提供了机会,微分中值定理把差化成积之后,就可在积的极限中,用等价无穷小进行代换,从而起到化繁为简的作用,另一方面,微分中值定理把函数差变成其间的导数值这种转化往往能变难为易。 例2:求(

)

1lim +∞

→-m m

n a a n ξ

()0>a

解:因为m a 和1+m a 可以看成指数函数x a 在n

x 1

=

和11+=n x 两点处的函数值,

又因a a a x x ln )'(=故由微分中值定理知)

1(1

ln 1+?

?=-+n n a a a a m m ξ,其中

1+<

)

a n n n a a a n

m m

ln )

1(1

1

+?=-

ξ

ξ 故得

(

)

a a a n m m

n ln lim 1=-+∞

→ξ

例3:求[]x x x ln sin )1ln(sin lim -+∞

解:由微分中值定理知ξ

ξ

ln cos ln sin )1ln(sin =

-+x x ,其中1+<

1ln cos ≤ξ,故[]0ln sin )1ln(sin lim =-+∞

→x x x

从以上两例可以看出,当不定式中的"0"以同一函数在不同的两点之差的形式出现时,利用微分中值定理求极限,有统一简便且易于掌握的优点。

2.2利用积分中值定理求极限

据文[]1定理9.7积分中值定理:如果函数()x f 在闭区间[]b a ,上连续,那么一定存在

[]b a ,∈ξ,使()()()ξf a b dx x f b

a

-=?

如果某些数列含有带参数的定积分,并且定积分不易计算,那么在求这类数列的极限时应当首先考虑利用积分中值定理脱去积分符号,然后再作进一步的处理。

例4:求dx x x I p

n n

n 2

sin lim ?

+∞→??

?

??= (0>p ) 解:利用积分中值定理,得2

2

sin sin ???

?

??=??

? ???

+ξξp dx x x p

n n

(p n n +≤≤ξ) 因为无穷小与有界量的乘积还是无穷小,所以

0sin 1lim sin lim sin lim 2

22

2

=?=???

? ?

?=???? ?

?+∞→+∞→∞→ξξξξ

ξξ

ξξn 故所求极限0sin lim 2

=???

?

??=∞→ξξn p I 例5:求?-∞→=2

1

arctan lim nxdx I n

解:作变量代换:nx u =则ndx du =于是

??? ??+==???-∞→-∞→n

n n n n n n n udu udu n udu n I 22arctan arctan 1lim arctan 1lim

?∞→=n

n

n udu n 2arctan 1lim (利用定积分的对称性,第一项积分为零) =()ξarctan 21

lim n n n

n -∞→ (n n 2≤≤ξ)(利用积分中值定理) =2

arctan lim arctan lim πξξξ=

=+∞

→∞

→n

所以原式?-∞→=2

1

arctan lim nxdx I n =

2

π

三.利用定积分定义求极限

据文[]1定理2:设f 是定义在[]b a ,上的一个函数,J 是一个确定的实数,若对任给的正数ε,总存在某一正数δ,使得对[]b a ,的任何分割T ,以及在其上任意选取的点集i ξ,只要ξ

i i i J x f 1)(,则称函数f 在区间

[]b a ,上可积或黎曼可积,数J 称为f 在[]b a ,上的定积分或黎曼积分,记作

dx x f J b

a

?=)(

例6:()()()??

????++++++∞→22

212111lim n n n n n n 解:记f (x )=

()

2

11

x +,x []1,0∈,则()x f 在[]1,0上连续,所以可积,取T ={0,n 1,n 2,n n , },i ε=i x =i n

i

?∈,i =1,2, ,n

则 ()?+1

021x dx =()i n i i T f ?∑=→1

0lim ξ=∑=∞→?

?? ?

?+n i n n i n 12_11

1lim =()()()??????++++++∞→22212111lim n n n n n =-1

0|11x +=(-21)-(-1) =21 例7:4

1lim

n n ∞→(1+3

32n ++ ) 解:记()x f =3x ,则()x f 在[]1,0上连续且可积,取T ={0,n 1,n 2, ,n

n

}==i i x ε

i n

i

i ,?∈=1,2, ,n 则dx x ?1

03=()i n

i i T f ?∑

=∞

→1

lim

ξ=3

11lim ∑=∞→???

?

?n i n n i n =()33343211lim n n n ++++∞→ =41|4110

= 运用该方法时,通常是将所求式转化成和式n

a

b n i a b a f n

i --+

∑=1

)

)((的极限,相当于定积分中的n

a b x i -=?,n i

a b a i )(-+=ξ也就是将区间[]b a ,等分,每个小区间的长度为

n a b -,取每个小区间的右断点为n

i

a b a i )(-+=ξ,这样就可以将和式的极限n

a

b n i a b a f n

i n --+∑

=∞

→1

)

)((lim 写成定积分dx x f b a ?)(形式。 四.利用施笃兹公式

据文[]2117页定理6:设数列{}n x 及{}n y 满足: (1)n n y y >+1 (n=1,2,3,····); (2)+∞=∞

→n n y lim ;

(3)n n n n n y y x x --++∞

→11lim

存在(有理数或者是-∞+)则n

n n n n n n n y y x

x y x --=++∞→∞→11lim lim

例5:求αααn n n 1

11lim --∞→++ (0>α)

解:利用施笃兹公式

原式=()α

ααα??

? ??--=--∞

→-∞→n n

n n n

n n 1111

lim

1lim

1

=n

n n n e n

n n n 1

1

lim 11ln 1lim

1

1lim

11ln α

ααα--

=?

?

? ?

?--

=--

∞→∞

→?

?

?

??

-∞

→ =

α

1

例8:求n

n n ln 1211lim

+++

→ 解:因为∞→-→?

?? ??

-+n n n ,1

1111ln 利用施笃兹公式,便有 原式=()?

?

? ??

-+=--∞

→∞→111ln 1

lim 1ln ln 1lim

n n n n n n n =n

n n 1

lim

-∞→=1

推论1:若存在(有限数或者是-∞+),则其算术平均值数列 n

x x x n

+++ 21 (n=1,2,3,····)的极限也存在,并且

n n n n x n

x x x ∞→∞→=++lim lim 21 推论2:若0>n x 且n n x ∞

→lim 存在(有限数或者是∞+),则其几何平均值数列

n

n x x x 21(n=1,2,3·

··)的极限也存在,并且 n n n n n x x x x ∞

→∞

→=lim lim 21

例9:设0>n x ,并且()0lim

1

>=+∞→l x x n

n n ,证明l x n n n =∞→lim

证明:由条件()0lim

1>=+∞→l x x n

n n ,即正项数列 ,,,,123121n n x x x x

x x x +

当∞→n 时,有极限l ,于是根据推论2,应有l x x x x x x x x n n n n n n n ==??

→-∞

→lim lim 123

121 例10:求n

n n n !1lim

∞→ 解:设0!

>=n n n n x 则

()()!1!1lim lim 11n n n n x x n n x n

n x ?++=+∞→+∞→=n n n

n n n n ??

? ??+=???

??+∞

→∞→111lim 1lim =e

1 由例9便得e

n n x n n n n n 1!1lim

lim ==∞→∞

→ 在数列极限中,有一类数列极限用常规方法,是不容易解决或者是相当困难的,

比如求109

99433321lim ,21lim n n n n n n ++++++∞→∞→ 按通常的方法是先求和式∑=n

i i 13和∑=n

i i 1

9再求极限,显然第一步是困难的,对于这类

∞∞

型不定式n

n y x 极限,如果运用施笃兹定理将会得到一种简便的方法。

五.利用泰勒公式求极限

泰勒展开式:若 f(x)在x=0点有直到n+1 阶连续导数,

()()///

2

()()(0)(0)()

2!

!

n n n f x f x f x f f x x x R x n =+++

++

()11

()()(1)!n n n f R x x

n ξ++=+ (其中ξ在0与1之间)

几个重要的泰勒公式

(1)()

n n

x

x o n x x x e +++++=!

!212 ;

(2)()()()m m m x o m x x x x x 2121

53!121!

5!3sin +--+++-=-- ; (3)()()(

)

12242!21!

4!21cos ++-+++-=m m

m x o m x

x x x ;

(4)()()

()

n n

n x o n

x

x x x x +-+++-=+-1321321ln ; (5)()()()()

()

n n n

x o x n n x x x ++--+

+-+

+=+!

11!

21112αααααα .

例11:求()

n

n

n n n ln lim ∞→

解:因为???

? ??++==22ln 1ln ln 1

1n n o n n e

n n n

n

()

1ln 1lim ln 1lim =???

??

???? ??+=-?∞→∞→n n o n n n n n n 例12:求极限30cos sin lim

x

x

x x x -→ 解:分析:将x sin 和x x cos 分别按x 的幂展开成三阶泰勒公式

)(!

31sin 3

3x o x x x +-=,)(!2cos 33x o x x x x +-=将上两式代入原式,因为泰勒公式

是恒等式,所以相当于把自己代进去了,结果仍然不变。即

3333303

0))(!21

()(!31lim

cos sin lim

x

x o x x x o x x x x

x x x x +--+-

=-→→

由于分母已经是一个简单的多项式,所以不用再做什么变化,分子整理得到

)(3

1

)(!21()(!31333333x o x x o x x x o x x +=+--+-

,这里要注意,第一个)(3x o 和第

二个

)(3x o 只是一个代号,二者不一定完全相等。所以相减后的结果不一定是0,,但可以肯定的是它们的差一定是的高阶无穷小,所以二者的差用)(3x o 代替,即原

式3

1

)

(31lim 333

0=

+=→x x o x x 由上述例题可以看出,使用泰勒公式展到几阶由分母的最低次数来决定。

六.利用级数法求极限

6.1利用收敛级数的和求极限

根据数项与数列其内在的联系,利用递推形式把一些极限转化为一些已知收

敛且易于求和的数项级数来求。

例13:设b a ,为正数,且b a <,而b x a x ==10,令2

2

1--+=n n n x x x 求n n x ∞→lim 解:由已知条件知)(2

1

2

22121

11------=--=-+=

-n n n n n n n n n x x x

x x x x x x n n n n n n a b x x x x 2

)1()(21)1()(2101323--=--==-=-- 因而有1

1

11

11

1012)

1()(--+=+=-+--=-=-∑∑i i n i n i i i n a b x x x x 1

1

1

)21

()(-+=∑--=i n i a b

因为级数n

n ∑∞

=-0

)21

(收敛,且其和为32,故)(32)(lim a b a x n n -=-∞→

所以)2(3

1

lim a b x n n +=∞→

6.2利用级数的性质

(1)级数收敛的必要条件:如果级数∑∞

=1

n n u 收敛,则0lim =∞

→n n u

例14:计算n n n n

n !2lim ∞→

解:因为 ()()121lim 2!21!

12lim 1

1<=???

??+=++∞→++∞→e n n n n n n n n n

n n n n 根据正项级数的比式判别法可知级数n n n n

n !

2lim ∞→收敛,再利用级数收敛的必要条件

可知

0!

2lim =∞→n n n n

n (2)级数收敛的柯西准则:∑∞

=1

n n u 收敛0>??ε,总存在正整数N ,当N n >及

任意正整数p ,有ε<++++++p n n n u u u 21

例15:设1>p ,计算()()()????

?

?+++++∞→p p p n n n n 212111lim 解:因为1>p 时,级数∑∞

=1

1

n p n 收敛,再利用级数收敛的柯西准则知

()()()0212111lim =????

?

?+++++∞→p p p n n n n

七.结论

以上内容简单归纳了计算极限的几种特殊方法,并举出了相关方法的示例。

求解极限的方法很多,而且非常灵活,因此对于找到解决问题的方法是至关重要的,每种方法都是有局限的,都不是万能的,因此在遇到比较复杂的题时,我们首先考虑应用导数定义和中值定理来求极限,当题中出现带有"!"的形式时可以用级数收敛的必要性求极限。总之解决的办法并不是一成不变的,这需要自身努力,从而能灵活掌握和运用.总之,在求极限时,要认真审题,认真分析解题思路,寻找解题途径。

参考文献

[1]华东师范大学数学系编,数学分析(上册)第四版[M],高等教育出版社,2010.07.01

[2]华东师范大学数学系编,数学分析(下册)第四版[M],高等教育出版社, 2010.06

[3]郝梅编,求函数极限的方法[J],福建教育学校学报,2006.10

[4] 邓乐斌编,数学分析的理论、方法与技巧[M],华中科技大学出版社,2005.12

[5] 徐利治编,大学数学解题法诠释[M],安徽教育出版社,2001.12

[6] 樊启斌编,数学综合复习解题指南[M],武汉大学出版社,2003.06

[7]钱吉林编,数学分析题解精粹(第二版)[M],高等教育出版社,2009

(注:可编辑下载,若有不当之处,请指正,谢谢!)

高等数学极限计算方法总结

极限计算方法总结 《高等数学》是理工科院校最重要的基础课之一,极限是《高等数学》的重要组成部分。求极限方法众多,非常灵活,给函授学员的学习带来较大困难,而极限学的好坏直接关系到《高等数学》后面内容的学习。下面先对极限概念和一些结果进行总结,然后通过例题给出求极限的各种方法,以便学员更好地掌握这部分知识。 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可 以用上面的极限严格定义证明,例如: )0,(0lim ≠=∞→a b a an b n 为常数且; 5 )13(lim 2 =-→x x ; ???≥<=∞→时当不存在, 时 当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运 用,而不需再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条 件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x

(2) e x x x =+→10 ) 1(lim ; e x x x =+∞ →)11(lim 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim 0=→x x x ,e x x x =--→21 0) 21(lim ,e x x x =+ ∞ →3 )31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的 等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。 定理4 如果函数)(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且 )(x f ~)(1x f ,)(x g ~)(1x g ,则当) ()(lim 110 x g x f x x →存在时,)() (lim 0x g x f x x →也存在且等于)(x f )()(lim 110 x g x f x x →,即)() (lim 0x g x f x x →=) ()(lim 110x g x f x x →。 5.洛比达法则 定理5 假设当自变量x 趋近于某一定值(或无穷大)时,函数)(x f 和)(x g 满 足:(1))(x f 和)(x g 的极限都是0或都是无穷大; (2))(x f 和)(x g 都可导,且)(x g 的导数不为0; (3)) () (lim x g x f ''存在(或是无穷大);

关于计算极限的几种方法

目录 摘要 (1) 引言 (2) 一.利用导数定义求极限 (2) 二.利用中值定理求极限 (2) 三.利用定积分定义求极限 (3) 四.利用施笃兹公式 (4)

五.利用泰勒公式 (5) 六.级数法 (5) 七.结论 (6) 参考文献 (6)

内容摘要

引言: 极限是分析数学中最基本的概念之一,用以描述变量在一定的变化过程中的终极状态。早在中国古代,极限的朴素思想和应用就已在文献中有记载。例如,3世纪中国数学家刘徽的割圆术,就是用圆内接正多边形周长的极限是圆周长这一思想来近似地计算圆周率 的。随着微积分学的诞生,极限作为数学中的一个概念也就明确提出。但最初提出的这一概念是含糊不清的,因此在数学界引起不少争论甚至怀疑。直到19世纪,由A.-L.柯西、K. (T.W.)外尔斯特拉斯等人的工作,才将其置于严密的理论基础之上,从而得到举世一致的公认。 数学分析中的基本概念的表述,都可以用极限来描述。如函数()x f y =在 0x x =处导数的定义,定积分的定义,偏导数的定义,二重积分,三重积分的定义,无穷级数收敛的定义,都是用极限来定义的。极限是研究数学分析的基本公具。极限是贯穿数学分析的一条主线。 一.利用导数定义求极限 据文[]1定理1导数的定义:函数)(x f 在0x 附近有定义,对于任意的x ?, 则)()(00x f x x f y -?+=? 如果x x f x x f x x ?-?+=→?→? ) ()(lim lim 000 0存在,则此极限值就 称函数)(x f 在点0x 的导数记为 )('0x f .即x x f x x f x f x ?-?+=→?) ()(lim )('0000在这 种方法的运用过程中。首先要选好)(x f ,然后把所求极限。表示成)(x f 在定点0x 的导数。 例1:求a x x a a x x a a a a x --→lim 解:原式0)(lim lim 1lim 0---?=---=-→→→a x x a a x a a x a x x a a a x x a a a a x a a a a a x x a x x ,令a x x a y -=, 当a x →时,0→y ,故原式a a a a a a a y y a ln |)'(0=?== 一般地,能直接运用导数定义求的极限就直接用导数定义来求,值得注意的是许

极限的计算、证明

极限的论证计算,其一般方法可归纳如下 1、 直接用定义()等δεε--,N 证明极限 例、试证明01 lim =∞→n n 证:要使ε<-01n ,只须ε 1 >n ,故 0>?ε,11 +?? ? ???=?εN ,N n >?,有ε<-01 n 2、 适当放大,然后用定义或定理求极限或证明极限 例、证明:0! lim =∞→n a n n ,0>a 证:已知0>a 是一个常数 ?∴正整数k ,使得k a ≤ ()ε 1!,01+???? ????=?>?∴+εεk a N k ,当N n >时,有 ε<-0! n a n 3、用两边夹定理在判定极限存在的同时求出极限 例、求()() n n n n 264212531lim ??-??∞ → 解: ()()()()n n n n n 212264212753264212531?-??-??=??-?? ()()()()n n n n n n 41 125312642211253264?-????=?-??> ∴ ()()n n n 41 2642125312 >??? ? ????-??

两边开n 2次方: ()()121 21412642125311222→?=>??-??>n n n n n n n n 由两边夹:()() 1264212531lim =??-??∞ →n n n n 4、 利用等价性原理把求一般极限的问题化为无穷小量的极限问 题 例、设0≠→l S n ()∞→n ,0>p 为常数,求证:p p n l S →()∞→n 证:00→-≤-≤l S l S n n ,得 l S n →()∞→n 记 n n l S α+=,其中 0→n α()∞→n 再记n n l S α+=()n n l l l βα+=??? ? ? ?+=11,其中0→=l n n αβ()∞→n 则有()p n p p n l S β+=1。 若取定自然数p K >,则当1

浅析洛必达法则求函数极限

本科学年论文论文题目:用洛必达法则求极限的方法 学生姓名:卫瑞娟 学号: 1004970232 专业:数学与应用数学 班级:数学1002班 指导教师:严惠云 完成日期: 2013 年 3月 8 日

用洛必达法则求未定式极限的方法 内容摘要 极限运算是微积分学的基础,在众多求极限方法中,洛必达法则是一种简单而又方便的求极限方法。但在具体使用过程中,一旦疏忽,解题就很可能出错。本文就针对利用此法则求极限的过程及解题过程中常见问题,对洛必达法则求函数极限的条件及范围、应用、何时失效做了整体分析与探讨,并举例说明。除此之外,还介绍了除洛必达法则之外其他求函数极限的方法以及同洛必达法则的比较,最后对洛必达法则进行小结。 关键词:洛必达法则函数极限无穷小量

目录 一、洛必达法则求极限的条件及适用范围 (1) (一)洛必达法则定理 (1) (二)洛必达法则使用条件 (2) 二、洛必达法则的应用 (2) (一)洛必达法则应用于基本不定型 (2) (二)洛必达法则应用于其他不定型 (3) 三、洛必达法则对于实值函数失效问题 (5) (一)使用洛必达法则后极限不存在 (5) (二)使用洛必达法则后函数出现循环 (6) (三)使用洛必达法则后函数越来越复杂 (6) (四)使用洛必达法则中求导出现零点 (6) 四、洛必达法则与其他求极限方法比较 (6) (一)洛必达法则与无穷小量替换求极限法 (7) (二)洛必达法则与利用极限运算和已知极限求极限 (8) (三)洛必达法则与夹逼定理求极限 (9) 五、洛必达法则求极限小结 (10) (一)洛必达法则条件不可逆 (10) (二)使用洛必达法则时及时化简 (11) (三)使用洛必达法则前不定型转化 (11) 参考文献 (13)

极限计算方法总结

极限计算方法总结 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的 极限严格定义证明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且; 5)13(lim 2=-→x x ;??? ≥<=∞→时当不存在,时当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需 再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时, 不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+→1 )1(lim ; e x x x =+∞→)11(l i m 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim 0=→x x x ,e x x x =--→21 0) 21(lim ,e x x x =+∞ →3 )31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2 x - ~ 2x -。

归纳函数极限的计算方法

归纳函数极限的计算方法-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

归纳函数极限的计算方法 摘 要 :本文总结出了求极限的几种方法,比如用定义、公式、定理、性质求极限. 关键词 :函数极限;计算方法;洛必达法则; 四则运算 The sum of the Method of Computing Function Limit Abstract :The write sums up in this article several ways of extacting the limit by the means of definition, formula,nature, theorem and so on. Key Words :Function Limit ;Computing method ;L’Hospita l rules; Four fundamental rules 前言 极限的概念是高等数学中一个最基本、最重要的概念,极限理论是研究连续、导数、积分、级数等的基本工具,因此正确理解和运用极限的概念、掌握极限的求法,对学好数学分析是十分重要的.求极限的方法很多且非常灵活,本文归纳了函数极限计算的一些常见方法和技巧. 1. 预备知识 1.1函数极限的εδ-定义]1[ 设函数f 在点0x 的某个空心邻域'0(;)U x δ内有定义,A 为定数,若对任给的0ε>,存在正数'()δδ<,使得当00||x x δ<-<时有|()|f x A ε-<,则称函数当趋于0x 时以A 为极限,记作0 lim ()x x f x A →=或()f x A →0()x x →. 2.求函数极限的方法总结 极限是描述函数的变化趋势,以基于图形或直观结合定义可以求出一些简单的函数的极限;但是结构较为复杂的函数的图形不易画出,基于直观也就无法得出极

浅谈求极限的方法与技巧

目录 中文摘要 (2) 外文摘要 (3) 引言 (4) 1.求极限的相关技巧与方法 (4) 1.1 利用极限的四则运算法则求极限 (4) 1.2 利用函数的连续性求极限 (5) 1.3 利用无穷小的性质求极限 (6) 1.4 利用等价无穷小的代换求极限 (6) 1.5 利用两个重要极限求极限 (7) 1.6 利用两个极限存在准则求极限 (9) 1.7 利用L'Hospital法则求极限 (10) 1.8 利用泰勒展式求极限 (11) 1.9 利用积分求极限 (13) 1.10 利用Lagrange中值定理求极限 (14) 1.11 利用微分中值定理来求极限 (15) 1.12 用Stolz法求极限 (16) 1.13 用代数函数方法求极限 (17) 2.多种极限方法的综合运用 (19) 参考文献 (22) 致谢 (23)

浅谈求极限的方法与技巧 陶习满 指导老师:胡玲 (黄山学院数学系,黄山,安徽 245041) 摘要:极限的概念是高等数学中最重要、最基本的概念之一,它是研究分析方法的重要理论基础,但极限定义并未直接提供如何去求极限。然而求极限的方法很多,本文总结几种常用的求极限的方法。 关键词:极限;技巧;方法。

Of Getting The Methods And Techniques Limit Tao Ximan Director : Hu Ling (The mathematics department of huangshan university, Huangshan,Anhui,245041) Abstract:The concept of limit of higher mathematics is the most important and one of the most basic concepts,the definition does not tell us how to seek limits.There are a lot of methods to get limits, This paper summarizes several common ways to limit demand for reference. Key Words: Limit; skills; method.

求极限的几种方法

一、求函数极限的方法 1、运用极限的定义 例: 用极限定义证明: 12 23lim 22=-+-→x x x x 证: 由 2 4 4122322-+-= --+-x x x x x x ()2 2 22 -=--= x x x 0>?ε 取 εδ= 则当δ <-<20x 时,就有 ε<--+-12 2 32x x x 由函数极限 δε-定义有: 12 23lim 22=-+-→x x x x 2、利用极限的四则运算性质 若 A x f x x =→)(lim 0 B x g x x =→)(lim 0 (I) []=±→)()(lim 0 x g x f x x )(lim 0 x f x x →±B A x g x x ±=→)(lim 0 (II) []B A x g x f x g x f x x x x x x ?=?=?→→→)(lim )(lim )()(lim 0 (III)若 B ≠0 则: B A x g x f x g x f x x x x x x ==→→→)(lim )(lim )()(lim 0 00 (IV ) cA x f c x f c x x x x =?=?→→)(lim )(lim 0 (c 为常数) 上述性质对于 时也同样成立-∞→+∞→∞→x x x ,,

例:求 4 5 3lim 22+++→x x x x 解: 4 53lim 22+++→x x x x =254252322=++?+ 3、约去零因式(此法适用于 型时0 ,0x x → 例: 求12 16720 16lim 23232+++----→x x x x x x x 解:原式= () () ) 12102(65) 2062(103lim 223 2232 +++++--+---→x x x x x x x x x x x =)65)(2() 103)(2(lim 222+++--+-→x x x x x x x =)65()103(lim 222++---→x x x x x =) 3)(2()2)(5(lim 2+++--→x x x x x =2 lim -→x 73 5 -=+-x x 4、通分法(适用于∞-∞型) 例: 求 )21 44(lim 22x x x ---→ 解: 原式=) 2()2() 2(4lim 2x x x x -?++-→ =) 2)(2() 2(lim 2x x x x -+-→ =4 1 21lim 2=+→x x 5、利用无穷小量性质法(特别是利用无穷小量与有界量之乘积仍为无穷小量的性质) 设函数f(x)、g(x) 满足:

极限计算方法总结(简洁版)

极限计算方法总结(简洁版) 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证 明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且;5)13(lim 2=-→x x ;???≥<=∞→时当不存在, 时当,1||1||0lim q q q n n ; 等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 2.极限运算法则 定理 1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1) B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+ →1 )1(lim ; e x x x =+∞ →)11(lim 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如: 133sin lim 0=→x x x ,e x x x =--→21 0)21(lim ,e x x x =+∞→3)3 1(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价

浅谈极限的几种求法及注意事项

万方数据

万方数据

浅谈极限的几种求法及注意事项 作者:唐新华 作者单位:山东政法学院 刊名: 科学咨询 英文刊名:SCIENTIFIC CONSULT 年,卷(期):2009,(22) 引用次数:0次 相似文献(10条) 1.期刊论文许利极限--定积分--广义极限-呼伦贝尔学院学报2003,11(1) 本文以极限概念为基础,过渡到定积分概念,并通过对定积分和广义极限概念的剖析.加深了对极限概念的本质的更深层次的认识和理解. 2.期刊论文鲁翠仙.李天荣利用定积分求极限-科技信息(学术版)2008(26) 极限思想贯穿整个高等数学的课程之中,而给定函数极限的求法则成为极限思想的基础,但利用定积分求极限也是一种重要方法.定积分的本质含义是和式的极限,利用积分求解特定形式的极限问题,是微积分学的一个重要方法.本文结合具体的例子说明如何利用积分求解几种特定形式的极限以及求解方法的关键. 3.期刊论文兰光福.LAN Guang-fu利用定积分定义求和式极限的方法初探-重庆科技学院学报(自然科学版)2007,9(1) 和式项数多、抽象,求其极限较困难,举例利用定积分求和式极限,使问题简单化. 4.期刊论文李冠臻.吕志敏.LI Guan-zhen.LU Zhi-min极限、定积分、二重积分概念教法之探讨-天津职业院校联合学报2006,8(5) 在极限、定积分、二重积分的概念教学过程中,运用哲学思想、引用历史典故和逻辑思维及直观图像等方式方法,变抽象数学概念为学生易于接受的信息,使学生更容易掌握新概念、新理论. 5.期刊论文傅苇.FU Wei极限、导数、定积分概念所蕴涵的数学思想方法剖析-重庆科技学院学报(自然科学版)2005,7(4) 论述了加强数学思想方法教学的重要性;分析了高等数学中的极限、导数、定积分概念在形成过程中所蕴涵的数学思想方法;辩证剖析概念中各个变量在变化过程中的量变与质变、近似与精确等对立统一规律. 6.期刊论文张劲一些解决极限问题的方法-科技信息(学术版)2008(7) <高等数学>是高校教学中的一门重要课程,而极限可以说是<高等数学>的基础,它贯穿于<高等数学>整个课程的始终,很多重要的概念如导数.定积分都是由极限给出,笔者结合平时的教学经验,通过几个例子,对一些解决极限问题方法加以总结并给出自己的一些观点. 7.期刊论文王永安.WANG Yong-an广义积分:定积分在极限思想下的自然延伸-西安教育学院学报2004,19(3) 研究函数在某区间上的定积分时,总是假定区间为有限区间,并且函数为该区间上的有界函数.如果去掉这两个限制,则得到无穷区间上有界函数的广义积分与有限区间上无界函数的广义积分.一般对这两类广义积分概念的引入缺乏直观性. 8.期刊论文刘德厚定积分的概念刍议-科技信息(学术版)2008(21) 定积分是数学分析和高等数学研究的重要内容之一,定积分的定义中对被积函数要求的条件过高,适当降低条件也是可以的. 9.期刊论文桂林定积分概念教学初探-高等函授学报(自然科学版)2003,16(2) 人民教育出版社出版的新高中数学试验课本中新增了微积分初步知识,如何教好这部分内容是广大数学教师关注的焦点,其中一个极其重要的概念--定积分的概念教学引发了教师们的思考.本文主要针对定积分概念教学中的问题,从教学目标、教材分析和教学建议等几方面谈了自己的理解和看法. 10.期刊论文候治平定积分与极限运算交换问题-晋东南师范专科学校学报2001,18(3) 极限和定积分是高等数学中的两个非常重要的概念.定积分是源于极限与微分理论,通过对诸多实际问题(如平面上封闭曲线围成的面积、变力作功、变速直线运动的路程、水的压力、立体的体积等)的分析、研究而抽象出来的.经过对这些具体问题在特定区域上细化为若干子区域(分割),在每个子区域上,将"变"的问题转化为局部"不变"的问题(近似代替),然后经过对各个子区域相应问题求和,便得到所求问题的近似解,当每个子区域的长度充分小时,这个和式的极限值就是所求问题的解.这样定积分问题就转化为求具有某种特定结构形式和式的极限问题;同时某些具有特定结构的和式极限运算也可以借助定积分运算来解决. 本文链接:https://www.360docs.net/doc/0c12146980.html,/Periodical_kxzx200922078.aspx 下载时间:2010年1月16日

求二元函数极限的几种方法

11 1.二元函数极限概念分析 定义1 设函数f 在2D R ?上有定义,0P 是D 的聚点,A 是一个确定的实数.如果对于任意给定的正数ε,总存在某正数δ,使得00(;)P U P D δ∈时,都有 ()f P A ε-<, 则称f 在D 上当0P P →时,以A 为极限,记0 lim ()P P P D f P A →∈=. 上述极限又称为二重极限. 2.二元函数极限的求法 利用二元函数的连续性 命题 若函数(,)f x y 在点00(,)x y 处连续,则 0000(,)(,) lim (,)(,)x y x y f x y f x y →=. 例1 求2 (,)2f x y x xy =+ 在点(1,2)的极限. 解: 因为2 (,)2f x y x xy =+在点(1,2)处连续,所以 12 212 2lim (,) lim(2) 12125.x y x y f x y x xy →→→→=+=+??= 例2 求极限()()2 21,1,21 lim y x y x +→. 解: 因函数在()1,1点的邻域内连续,故可直接代入求极限,即 ()()221,1,21lim y x y x +→=31 .

22 利用恒等变形法 将二元函数进行恒等变形,例如分母或分子有理化等. 例3 求 00 x y →→ 解: 00 x y →→ 00 x y →→= 00 x y →→= 00 1. 4 x y →→==-例4 ()() 2 2220,0,321 )31)(21(lim y x y x y x +-++→. 解: 原式()() ( )) () () ,0,02 211lim 231x y x y →+= + ()( 22 ,0,0lim x y →= + 11022 = +=.

高数求极限方法总结

第一章极限计算方法总结 一、极限定义、运算法则和一些结果 1.定义: 数列极限、函数极限, 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:0)1(1 lim 2=+-∞→n n ;5)13(lim 2=-→x x ;1,0lim <=∞ →q q n n 当等。 定义证明按着总结的四个步骤来,缺一不可!(2)在后面求极限时,(1)中提到的简单极限 作为已知结果直接运用,而不需再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在, 且(1)B A x g x f ±=±)]()(lim[(2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+→1 0)1(lim ; e x x x =+∞→)11(lim 说明:(1)不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式。 (2)一定注意两个重要极限成立的条件。 例如: 133sin lim 0=→x x x ,e x x x =--→210)21(lim ,e x x x =+∞→3)31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。 定理4 如果函数 )(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且)(x f ~)(1x f , )(x g ~)(1x g ,则当)()(lim 110 x g x f x x →存在时,)() (lim 0x g x f x x →也存在且等于)()(lim 1 10x g x f x x →。 5.连续性 定理5 一切连续函数在其定义去间内的点处都连续,即如果0x 是函数)(x f 的定义去间内

数学分析求极限的方法

求极限的方法 具体方法 ⒈利用函数极限的四则运算法则来求极限 定理1①:若极限)(lim 0 x f x x →和)(lim x g x x →都存在,则函数)(x f ±)(x g ,)()(x g x f ? 当0x x →时也存在且 ①[])()()()(lim lim lim 0 .00 x g x f x g x f x x x x x →→→± = ± ②[])()()()(lim lim lim 0 x g x f x g x f x x x x x x →→→?= ? 又若0)(lim 0 ≠→x g x x ,则 ) ()(x g x f 在0x x →时也存在,且有 ) ()() ()(lim lim lim x g x f x g x f x x x x x x →→→= 利用极限的四则运算法则求极限,条件是每项或每个因子极限存在,一般所给的变量都不满足这个条件,如 ∞ ∞、 0等情况,都不能直接用四则运算法则, 必须要对变量进行变形,设法消去分子、分母中的零因子,在变形时,要熟练掌握饮因式分解、有理化运算等恒等变形。 例1:求2 42 2 lim --- →x x x 解:原式=()() ()022 22lim lim 2 2 =+= -+-- - →→x x x x x x ⒉用两个重要的极限来求函数的极限 ①利用1sin lim =→x x x 来求极限 1sin lim =→x x x 的扩展形为: 令()0→x g ,当0x x →或∞→x 时,则有 ()() 1sin lim =→x g x g x x 或()() 1sin lim =∞ →x g x g x

论文二重极限计算方法

包头师范学院 本科毕业论文 题目:二重极限的计算方法 学生姓名:王伟 学院:数学科学学院 专业:数学与应用数学 班级:应数一班 指导教师:李国明老师 二〇一四年四月

摘要 函数极限是高等数学中非常重要的内容。关于一元函数的极限及求法,各种高等数学教材中都有详细的例题和说明。二元函数极限是在一元函数极限的基础上发展起来的,二者之间既有联系又有区别。本文在二元函数定义基础上通过求对数,变量代换等方式总结了解决二重极限问题的几种方法,并给出相关例题及解题步骤,及二重极限不存在的几种证明方法。 关键词:二重极限变量代换等不存在的证明二元函数连续性

Abstract The limit function is a very important contents of advanced mathematics. The limit of a function and method, all kinds of advanced mathematics textbooks are detailed examples and explanation. The limit function of two variables is the basis for the development in the limit of one variable function on it, there are both connections and differences in the two yuan on the basis of the definition of the logarithm function between the two, variable substitution, summarizes several methods to solve the problem of double limit, and gives some examples and solving steps. Several proof method and double limit does not exist. keywords: Double limit variable substitution, etc. There is no proof Dual function of continuity

求极限的方法总结

求极限的方法总结 1.约去零因子求极限 例1:求极限11lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】4)1)(1(lim 1) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x 习题:2 33 lim 9x x x →-- 22121lim 1x x x x →-+- 2.分子分母同除求极限 例2:求极限13lim 3 2 3+-∞→x x x x 【说明】∞∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323=+-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除........x .的最高次方;......且一般...x .是趋于无穷的...... ??????? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1 习题 3232342 lim 753x x x x x →∞+++- 2324n 1lim n n n n n →∞+++- 1+13l i m 3n n n n n +→∞++(-5)(-5) n n n n n 323)1(lim ++-∞→

3.分子(母)有理化求极限 例1:求极限) 13(lim 22+-++∞→x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】 1 3) 13)(13(lim )13(lim 2222222 2+++++++-+=+-++∞ →+∞ →x x x x x x x x x x 1 32lim 2 2 =+++=+∞ →x x x 例2:求极限30 sin 1tan 1lim x x x x +-+→ 【解】 x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030 +-+-=+-+→→ 41 sin tan lim 21sin tan lim sin 1tan 11 lim 30300 =-=-+++=→→→x x x x x x x x x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键 习题:2 lim 1 x x x x →∞ +-+ 12 13lim 1 --+→x x x 4.用函数的连续求极限(当函数连续时,它的函数值就是它的极限值................... ) 22 034lim 2x x x x →+++ 【其实很简单的】 5.利用无穷小与无穷大的关系求极限 例题 3 3lim 3x x x →+- 【给我最多的感觉,就是:当取极限时,分子不为 0而分母为0时 就取倒数!】 6. 有界函数与无穷小的乘积为无穷小 例题 s i n l i m x x x →∞ , arctan lim x x x →∞

浅谈求极限的方法

浅谈求极限的方法 极限是高等数学中最基本最重要的概念,极限思想贯穿高等数学的全部内容,它是研究问题,分析问题的重要理论基础.因此掌握好求极限的方法对学好高等数学是十分重要的,求极限的方法因题而异,变化多端,有时甚至无从下手.本文总结了12种常用的求极限的方法,意在广开思路,然后举出三个一题多解的例子,希望这些例题对初学者有所帮助. 1 求极限的方法 1.1 利用斯托兹定理 定理1 [1](57) P ( ∞ ∞ 型Stolz 公式) 数列{},{}n n x y ,设{}n x 严格递增(即?n ∈N 有1n n x x +<),且lim n n x →∞ =+∞,若11lim n n n n n y y a x x -→∞ --=- (有限数,+∞,或-∞),则lim n n n y a x →∞=. 证 )1( (a 为有限数)目的在于证明: 0,0,ε?>?N >当n >N 时,有 n n y a x ε-<. ① 记 1 1 n n n n n y y a x x α---≡ --. ② 按已知条件有lim 0n n α→∞ =,即0,0,ε?>?N >当n ≥N 时,有2 n ε α< . ③ 现在的目的在于从③推出①,为此从②解出n y 再代入①,由②得 11()()n n n n n y y a x x α--=++- (再迭代使用此式) 21121()()()()n n n n n n n y a x x a x x αα-----=++-++- =??? 111()()()()n n n y a x x a x x ααN N+N+N -=++-+???++- 1111()()()n n n n n y x x x x a x x ααN N+N+N --=+-+???+-+- 两边同时除以n x ,再同时减去a ,得 111 n n n n n n n x x x x y y ax a x x x ααN+N+N -N N -+???+---≤+

考研数学极限计算方法:利用单侧极限

https://www.360docs.net/doc/0c12146980.html, 版权所有翻印必究 考研数学极限计算方法:利用单侧极限 今天给大家带来极限计算方法中的利用单侧极限来求极限。为什么会有单侧极限这种极限的计算方法呢,我们知道极限存在的充要条件要求函数左右两侧的极限同时存在且相等才表示函数极限存在,那么在极限计算中出现哪些“信号”是要分左右极限计算呢? 第一,当分段函数的分段点两侧表达式不同时,求分段点处的极限利用单侧极限。例如,讨论函数1,0arcsin(tan )()2,0ln(1arctan ),0121x e x x f x x x x x ?-+-?? 在0=x 处的极限。分析:在做这道题时我们发现0=x 处左右两侧的解析式是不同的,所以计算0=x 处的极限要分左右来求解,也即 1lim 22 1arctan lim 121)arctan 1ln(lim 000==?=-+++++→→→x x x x x x x x x ,1tan lim )arcsin(tan 1lim 00==---→→x x x e x x x ,左右两侧的极限同时存在且相等,所以1)(lim 0 =→x f x 。有一些特殊的分段函数,如,[],max{},min{},sgn x x x ,当题目中出现这几个函数时需要考虑单侧极限。 第二,如果出现(),arctan e a ∞∞∞,求极限是要分左右的,例如,???? ? ??+++→x x e e x x x sin 12lim 410分析:这道题让我们求解0=x 处的极限,我们发现它有x ,在脱绝对值时

版权所有翻印必究 https://www.360docs.net/doc/0c12146980.html, 2会出现负号,同时出现了e ∞,故分单侧计算极限, 11144400002sin 2sin 2sin lim lim lim lim 1111x x x x x x x x x x e x e x e x x x x e e e ++++→→→→????+++ ? ?+=+=+= ? ? ? ?+++????,11144400002sin 2sin 2sin lim lim lim lim 1111x x x x x x x x x x e x e x e x x x x e e e ----→→→→????+++ ? ?+=-=-= ? ? ? ?+++???? ,所以1sin 12lim 410=???? ? ??+++→x x e e x x x 。上述几种情况原理比较简单,但是需要同学们在做题目中多去总结,掌握其具体的解题思路,也要将知识点和不同类型的题目建立联系,提高自己的解题能力。

求极限的几种方法

求函数极限的方法和技巧 摘要: 本文就关于求函数极限的方法和技巧作了一个比较全面的概括、综合。 关键词:函数极限 引言 在数学分析与微积分学中,极限的概念占有主要的地位并以各种形式出现而贯穿全部内容,因此掌握好极限的求解方法是学习数学分析和微积分的关键一环。本文就关于求函数极限的方法和技巧作一个比较全面的概括、综合,力图在方法的正确灵活运用方面,对读者有所助益。 主要内容 一、求函数极限的方法 1、运用极限的定义 例: 用极限定义证明: 12 2 3lim 22=-+-→x x x x 证: 由 2 4 4122322-+-= --+-x x x x x x

()2 2 22 -=--= x x x 0>?ε 取εδ= 则当δ <-< 20x 时,就有 ε<--+-12 2 32x x x 由函数极限δε-定义有: 12 23lim 22=-+-→x x x x 2、利用极限的四则运算性质 若 A x f x x =→)(lim B x g x x =→)(lim 0 (I)[]=±→)()(lim 0 x g x f x x )(lim 0 x f x x →±B A x g x x ±=→)(lim 0 (II)[]B A x g x f x g x f x x x x x x ?=?=?→→→)(lim )(lim )()(lim 0 (III)若 B ≠0 则: B A x g x f x g x f x x x x x x ==→→→)(lim ) (lim )()(lim 0 00 (IV )cA x f c x f c x x x x =?=?→→)(lim )(lim (c 为常数) 上述性质对于时也同样成立 -∞→+∞→∞→x x x ,,

相关文档
最新文档