极限计算方法总结
极限求解方法总结

千里之行,始于足下。
极限求解方法总结极限是高等数学中的重要概念,是数学分析和微积分的基础。
在实际问题中,往往需要通过求解极限来得到数学模型的一些重要结果。
本文将对极限求解的方法进行总结与归纳。
1. 基本极限公式:在求解极限问题时,我们首先要生疏一些基本的极限公式,这些公式可以挂念我们快速求解极限问题。
常用的基本极限公式有:- 数列极限:常数数列、等差数列、等比数列、级数等。
- 函数极限:幂函数、指数函数、对数函数、三角函数等。
2. 替换法:替换法是求解极限问题时常用的一种方法。
通过将极限问题中的变量进行替换,使得计算变得更加简洁。
常用的替换法有以下几种:- 分子分母同时除以最高次数的项;- 用无穷小量代替无穷大量;- 用无穷小量的幂代替无穷小量。
3. 夹逼准则:夹逼准则是求解极限问题的一种重要方法。
通过找到一个上界和一个下界,使得极限问题的解被夹在这两个界之间,可以确定极限的存在性和取值。
常用的夹逼准则有以下几种:- 当函数在某一点四周趋于同一个极限;- 当两个函数的极限分别为一正一负,但两个函数的确定值函数的极限相等。
4. 施瓦茨不等式:第1页/共3页锲而不舍,金石可镂。
施瓦茨不等式是求解极限问题中常用的一种方法。
它可以用来估量两个函数的内积,从而得到某些函数的极限。
施瓦茨不等式的形式如下:\\[|\\int_{a}^{b}f(x)g(x)dx|\\leq\\sqrt{\\int_{a}^{b}f^2(x)dx}\\s qrt{\\int_{a}^{b}g^2(x)dx}\\]5. 利用基本不等式:在求解极限问题时,我们可以利用一些基本的不等式来推导和求解极限问题。
常用的基本不等式有以下几个:- 平均值不等式:对于两个正数a和b,平均值不等式可以表示为\\[(a+b)/2≥\\sqrt{ab}\\]- 柯西不等式:对于两个数列或者两个函数,柯西不等式可以表示为\\[\\sum a_kb_k≤(\\sum a_k^2)^{1/2}(\\sum b_k^2)^{1/2}\\]6. 等价无穷小替换法:在求解极限问题时,假如消灭了不适合直接求解的形式,可以尝试使用等价无穷小替换法。
求函数极限的八种方法

求函数极限的八种方法
常见的求函数极限的方法有八种:
1.定义域内求函数极限:在函数的定义域内直接计算函数值,即可得到函数的极限值。
2.不存在极限:若函数在某一点的极限不存在,则在该点处函数没有极限。
3.左右极限存在且相等:若函数在某一点处的左右极限都存在且相等,则在该点处函数的
极限等于左右极限的值。
4.不等式法求极限:通过不等式将函数的上下界确定,从而确定函数的极限值。
5.函数的单调性求极限:通过函数的单调性可以确定函数在某一点处的极限值。
6.函数连续性求极限:通过函数的连续性可以确定函数在某一点处的极限值。
7.函数导数存在求极限:通过函数的导数存在性可以确定函数在某一点处的极限值。
8.无穷小量法求极限:通过考虑无穷小量对函数值的影响,可以确定函数在某一点处的极
限值。
这八种方法都可以用来求解函数的极限,但是在实际应用中,不同的方法适用于不同的情况。
例如,当函数的定义域内有足够的数据时,定义域内求函数极限是最直接的方法;如果函数在某一点处的左右极限都存在且相等,则可以直接使用左右极限的值作为函数在该点处的极限值;如果函数有明显的单调性或连续性,则可以利用这些性质来求解函数的极限;如果函数的导数存在,则可以利用导数的性质来求解函数的极限。
总之,求函数极限有许多方法,选择哪种方法取决于函数的性质和特点。
在实际应用中,应该根据函数的具体情况选择适当的方法,以得到最准确的结果。
求极限的计算方法总结

千里之行,始于足下。
求极限的计算方法总结极限是数学中重要的概念,它描述了函数在某一点无限接近于某个值的性质。
计算极限是数学分析中的基础内容,对于解决数学问题和理解函数的行为至关重要。
下面将总结一些计算极限的常见方法。
1.代入法:当极限的表达式中存在某个点的函数值不存在时,可以通过代入法来计算极限。
代入法即将极限的定义中与某些点不全都的部分进行代入,然后计算出相应的极限值。
2.分子分母有理化:当极限表达式中含有分数,且分母中有根式时,可以将分子分母有理化,即通过乘以分子分母的共轭形式,将根式消去。
3.利用无穷小量的性质:当极限表达式中存在无穷小量时,可以利用无穷小量的性质进行计算。
例如,常见的无穷小量的性质有:a.加减无穷小量仍旧是无穷小量;b.有界函数与无穷小量相乘仍旧是无穷小量;c.有限次幂无穷小量也是无穷小量等。
4.利用极限的四则运算法则:对于四则运算,极限也有相应的运算法则。
常见的极限运算法则有:a.加减法则:lim(f(x) ± g(x)) = lim f(x) ± lim g(x)b.乘法法则:lim(f(x) * g(x)) = lim f(x) * lim g(x)c.除法法则:lim(f(x) / g(x)) = lim f(x) / lim g(x),其中lim g(x) ≠ 0d.复合函数法则:lim(f(g(x))) = lim f(g(x)), when lim g(x) exists第1页/共2页锲而不舍,金石可镂。
5.利用夹逼定理:当极限表达式无法直接计算时,可以利用夹逼定理进行计算。
夹逼定理规定了假如存在两个函数h(x)和i(x),使得对于足够大的x,h(x) ≤ f(x) ≤i(x),且lim h(x) = lim i(x) = L,则lim f(x)也等于L。
6.利用洛必达法则:洛必达法则可用于计算形如lim(f(x)/g(x))的不定型极限,其中f(x)和g(x)在极限点四周连续可导。
极限计算方法总结

极限计算方法总结极限是微积分的重要概念,它在数学和物理学中有着广泛的应用。
在学习极限的过程中,我们需要掌握一些常用的计算方法,以便能够准确地求解各种类型的极限问题。
下面我将对常见的极限计算方法进行总结,希望能够对大家的学习有所帮助。
1. 代入法。
代入法是求解极限最直接的方法之一。
当我们计算极限时,如果能够将极限中的变量替换为一个确定的数值,就可以直接求出极限的值。
例如,对于极限lim(x→2)(x^2+3x-2),我们可以直接将x替换为2,得到4+6-2=8。
这种方法适用于一些简单的极限计算,但对于一些复杂的极限问题并不适用。
2. 因子分解法。
当极限中存在多项式或根式时,我们可以尝试使用因子分解法来简化计算过程。
通过对多项式进行因子分解或有理化,可以将极限转化为更简单的形式,从而更容易求解。
例如,对于极限lim(x→1)((x^2-1)/(x-1)),我们可以将分子进行因子分解得到lim(x→1)((x+1)(x-1)/(x-1)),进而化简为lim(x→1)(x+1),最终得到极限的值为2。
3. 夹逼定理。
夹逼定理是一种常用的极限计算方法,它适用于求解一些复杂的极限问题。
夹逼定理的核心思想是通过构造两个函数,使得它们的极限值相等,并且夹住待求极限的函数,从而得到待求极限的值。
这种方法常用于证明极限存在或不存在的问题,也可以用来求解一些特殊的极限。
例如,对于极限lim(x→0)(sinx/x),我们可以构造两个函数f(x)=sinx和g(x)=x,然后利用夹逼定理得到lim(x→0)(sinx/x)=1。
4. 洛必达法则。
洛必达法则是一种常用的求解不定型极限的方法。
当计算极限时遇到不定型形式0/0或∞/∞时,可以尝试使用洛必达法则来简化计算过程。
该法则的核心思想是对极限中的分子和分母分别求导,然后再计算极限,从而得到原极限的值。
例如,对于极限lim(x→0)(sinx/x),我们可以对分子sinx和分母x分别求导,得到cosx和1,然后再计算极限,最终得到极限的值为1。
16种求极限的方法

16种求极限的方法在微积分中,求极限是一项重要的技巧和方法,用于研究函数在其中一点或趋于其中一点时的行为。
求极限的方法有很多种,下面将介绍16种常见的求极限方法。
1.代入法:将待求极限中的变量替换成极限点处的值,如果代入后得到一个有界的数或者可数收敛,则该极限存在。
2.四则运算法则:利用加法、减法、乘法和除法的性质进行极限运算。
例如,如果两个函数的极限都存在,则它们的和、差、积以及商(除数非零)的极限均存在。
3.夹逼定理:如果两个函数在其中一点附近夹住一个函数,并且夹住的函数的极限存在,则被夹住的函数的极限也存在,并且等于夹住的函数的极限。
4.极限的唯一性:如果存在一个数L是函数f在其中一点的极限,那么该极限是唯一的。
5.极限的有界性:如果函数f在其中一点的极限存在,则函数f在该点附近必定有界。
反之,如果函数f在其中一点附近有界,那么该点处的极限必定存在。
6.无穷小量和无穷大量:无穷小量是指当自变量趋于其中一点时,函数值趋近于零的量,无穷大量是指当自变量趋于其中一点时,函数值趋近于无穷的量。
利用无穷小量和无穷大量的性质,可以简化极限的求解过程。
7. 根式求极限:使用L'Hopital法则来解决根式的极限问题,即将根式转化为分式,再求导数。
8.多项式求极限:将多项式的极限转化为无穷小量的极限,利用低阶无穷小量和高阶无穷小量的性质进行极限计算。
9.取对数法:将函数取对数后,利用对数的性质进行极限计算。
10.换元法:通过进行合适的变量替换,将待求极限转化为更容易求解的形式。
11.不等式运算法:通过使用不等式的性质,对函数进行合理的估计,从而求解极限。
12.导数法则:利用导数的性质,对函数进行极限计算。
例如,利用导数的定义和求导法则可以方便地求解一些函数的极限。
13.递推法:对于一些递归定义的数列或函数,可以通过递推法求解其极限。
14.泰勒展开法:利用函数对应点附近的泰勒展开式,将函数的极限转化为级数的极限,进而求解极限。
求极限的13种方法

求极限的13种方法求极限的方法有很多种,以下列举了常见的13种方法和技巧,以帮助解决各种极限问题。
1.代入法:将极限中的变量代入表达式中,简化计算。
这通常适用于简单的多项式函数。
2.夹逼定理:当一个函数夹在两个趋向于相同极限的函数之间时,函数的极限也趋向于相同的值。
3.式子分解:通过将复杂的函数分解成更简单的部分,可以更容易地计算极限。
4.求导法则:使用导数的性质和规则来计算函数的极限。
这适用于涉及导数的函数。
5.递归关系:如果一个函数的递归关系式成立,可以使用递归关系来计算函数的极限。
6.级数展开:将函数展开成无穷级数的形式,可以使用级数的性质来计算函数的极限。
7.泰勒级数:对于可微的函数,可以通过使用泰勒级数来近似计算函数的极限。
8. 洛必达法则:如果一个函数的极限形式是$\frac{0}{0}$或$\frac{\infty}{\infty}$,可以使用洛必达法则来计算极限。
该法则涉及对分子分母同时求导的操作。
9.极限存在性证明:通过证明一个函数在一些点上的左极限和右极限存在且相等,可以证明函数在该点上的极限存在。
10.收敛性证明:对于一个序列极限,可以通过证明序列是有界且单调递增或单调递减的来证明其极限存在。
11.极限值的判断:根据函数的性质,可以判断函数在一些点上的极限是多少。
12.替换法:通过将变量替换为一个新的变量,可以使函数更容易计算极限。
13.反证法:通过假设极限不存在或不等于一些特定值,来推导出矛盾的结论,从而证明极限存在或等于一些特定值。
这些方法并非完整的极限求解技巧列表,但是它们是最常见和基本的方法。
在实际问题中,可能需要结合使用多种方法来求解复杂的极限。
极限运算的方法

极限运算的方法1. 直接代入法,这可是很基础但超有用的哦!比如说,当 x 趋近于某个值时,咱们就直接把那个值代进去,看看结果是啥。
就好像你想吃蛋糕,直接拿起勺子挖一口尝尝,多直白!比如计算lim(x→1)(x^2-1)/(x-1),直接把 1 带进去,不就得出结果 2 啦!2. 等价无穷小替换法呀,这简直是个神奇的Tool!当一些式子在极限情况下可以用等价的简单式子替换,那就大胆去换呀!就像你走路累了,换上舒服的拖鞋一样。
比如说求lim(x→0)sinx/x,就可以用等价无穷小把sinx 换成 x,一下子就求出结果 1 啦!3. 洛必达法则呢,可是个厉害的家伙!当遇到那种不好直接求的极限时,就用它呀。
就好比你遇到一个难题,突然找到了一个巧妙的解题方法!举个例子,求lim(x→0)e^x-1/x,用洛必达法则,求导后再求极限就简单多了。
4. 夹逼准则也不能少啊!就像是给极限夹在中间,让它跑不掉。
比如说一堆数都比它大,另一堆数都比它小,那它不就乖乖现形啦!像判断n/(n^2+1)的极限,用夹逼准则就能轻松搞定啦。
5. 泰勒展开式啊,这可真是个精细的玩意儿!把一个函数展开成一系列的多项式,然后再去求极限,哇,那叫一个精确!好比把一个复杂的东西拆解成一个个小零件来研究。
比如求lim(x→0)(1-cosx)/x^2 ,用泰勒展开,马上就能得到结果 1/2。
6. 数列极限的方法也有很多独特的呢!比如单调有界原理,就像是给数列戴上了紧箍咒。
想想看数列乖乖地在一个范围内,多有趣呀!哎呀,极限运算的方法可真是丰富多彩呀,好好去探索吧!总之,极限运算的方法多种多样,每一种都像是一把钥匙,能打开不同类型极限问题的大门,要好好掌握呀!。
极限计算方法总结(简洁版)

极限计算方法总结(简洁版)一、极限定义、运算法则和一些结果1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。
说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且;5)13(lim 2=-→x x ;⎩⎨⎧≥<=∞→时当不存在,时当,1||1||0lim q q q nn ;等等(2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。
2.极限运算法则定理 1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[(2)B A x g x f ⋅=⋅)()(lim(3))0(,)()(lim成立此时需≠=B BAx g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。
3.两个重要极限 (1) 1sin lim0=→xxx(2) e x xx =+→1)1(lim ; e x xx =+∞→)11(lim说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式,作者简介:靳一东,男,(1964—),副教授。
例如:133sin lim0=→xxx ,e x xx =--→210)21(lim ,exxx =+∞→3)31(lim ;等等。
4.等价无穷小定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。
定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有:x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-xe 。
说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
极限计算方法总结一、极限定义、运算法则和一些结果1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。
说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:)0,(0lim≠=∞→a b a an bn 为常数且;5)13(lim 2=-→x x ;⎩⎨⎧≥<=∞→时当不存在,时当,1||1||0lim q q q n n ;等等(2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。
2.极限运算法则定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[(2)B A x g x f ⋅=⋅)()(lim(3))0(,)()(lim成立此时需≠=B BAx g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。
3.两个重要极限(1)1sin lim0=→xxx(2)e x xx =+→1)1(lim ; e x x x =+∞→)11(l i m 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式,作者简介:靳一东,男,(1964—),副教授。
例如:133sin lim0=→xxx ,e x xx =--→210)21(lim ,e xxx =+∞→3)31(lim ;等等。
4.等价无穷小定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。
定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有:x ~x sin ~x tan ~x arcsin~x arctan ~)1ln(x +~1-x e 。
说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。
定理4 如果函数)(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且)(x f ~)(1x f ,)(x g ~)(1x g ,则当)()(lim 110x g x f xx →存在时,)()(l i m 0x g x f x x →也存在且等于)(x f )()(lim110x g x f x x →,即)()(lim 0x g x f x x →=)()(lim 110x g x f x x →。
5.洛比达法则定理5 假设当自变量x 趋近于某一定值(或无穷大)时,函数)(x f 和)(x g 满足:(1))(x f 和)(x g 的极限都是0或都是无穷大;(2))(x f 和)(x g 都可导,且)(x g 的导数不为0; (3))()(limx g x f ''存在(或是无穷大); 则极限)()(limx g x f 也一定存在,且等于)()(lim x g x f '',即)()(lim x g x f =)()(lim x g x f '' 。
说明:定理5称为洛比达法则,用该法则求极限时,应注意条件是否满足,只要有一条不满足,洛比达法则就不能应用。
特别要注意条件(1)是否满足,即验证所求极限是否为“00”型或“∞∞”型;条件(2)一般都满足,而条件(3)则在求导完毕后可以知道是否满足。
另外,洛比达法则可以连续使用,但每次使用之前都需要注意条件。
6.连续性定理6 一切连续函数在其定义去间内的点处都连续,即如果0x 是函数)(x f 的定义去间内的一点,则有)()(lim00x f x f x x =→ 。
7.极限存在准则定理7(准则1) 单调有界数列必有极限。
定理8(准则2) 已知}{,}{,}{n n n z y x 为三个数列,且满足:(1)),3,2,1(, =≤≤n z x y n n n(2)a y n n =∞→lim ,a z n n =∞→lim则极限∞→n n x lim 一定存在,且极限值也是a ,即a x n n=∞→lim 。
二、求极限方法举例1. 用初等方法变形后,再利用极限运算法则求极限例11213lim1--+→x x x解:原式=43)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。
注:本题也可以用洛比达法则。
例2)12(lim --+∞→n n n n解:原式=2311213lim 12)]1()2[(lim =-++=-++--+∞→∞→nn n n n n n n nn 分子分母同除以。
例3 nn nn n 323)1(lim ++-∞→解:原式11)32(1)31(lim 3=++-=∞→n n n n上下同除以 。
2. 利用函数的连续性(定理6)求极限 例4xx ex 122lim →解:因为20=x 是函数xe x xf 12)(=的一个连续点,所以 原式=e e 42212= 。
3. 利用两个重要极限求极限 例5 23cos 1lim x xx -→解:原式=61)2(122sin 2lim 32sin 2lim 220220=⋅=→→x xx x x x 。
注:本题也可以用洛比达法则。
例6xx x 20)sin 31(lim -→ 解:原式=6sin 6sin 31sin 6sin 310])sin 31[(lim )sin 31(lim ---→-⋅-→=-=-e x x xx xx xxx x 。
例7nn n n )12(lim +-∞→ 解:原式=313311331])131[(lim )131(lim -+--+∞→+-⋅-+∞→=+-+=+-+e n n n nn n n nn n 。
4. 利用定理2求极限 例8xx x 1sinlim 20→ 解:原式=0 (定理2的结果)。
5. 利用等价无穷小代换(定理4)求极限 例9)arctan()31ln(lim20x x x x +→解:)31ln(0x x +→时, ~x 3,)arctan(2x ~2x ,∴ 原式=33lim2=⋅→xxx x 。
例10 xx e e xx x sin lim sin 0--→解:原式=1sin )sin (lim sin )1(lim sin 0sin sin 0=--=--→-→xx x x e x x e e x x x x x x 。
注:下面的解法是错误的:原式=1sin sin lim sin )1()1(lim 0sin 0=--=----→→xx xx x x e e x x x x 。
正如下面例题解法错误一样:0l i m s i n t a n l i m 3030=-=-→→xx x x x x x x 。
例11xx x x sin )1sin tan(lim 20→解:等价与是无穷小,时,当xx x x x x x 1sin )1sin tan(1sin 0222∴→ , 所以, 原式=01sin lim 1sinlim020==→→xx x x x x x 。
(最后一步用到定理2)6. 利用洛比达法则求极限说明:当所求极限中的函数比较复杂时,也可能用到前面的重要极限、等价无穷小代换等方法。
同时,洛比达法则还可以连续使用。
例12203cos 1limxxx -→(例4) 解:原式=616sin lim 0=→x x x 。
(最后一步用到了重要极限)例1312coslim1-→x xx π 解:原式=212sin2lim1πππ-=-→xx 。
例14 30sin lim x xx x -→解:原式=203cos 1limxx x -→=616sin lim 0=→x x x 。
(连续用洛比达法则,最后用重要极限) 例15 xx x x x x sin cos sin lim20-→解:313sin lim 3)sin (cos cos limcos sin lim202020==--=⋅-=→→→xx x x x x x x x x x x x x x x 原式例18])1ln(11[lim 0x x x +-→ 解:错误解法:原式=0]11[lim 0=-→xx x 。
正确解法:。
原式21)1(2lim 2111lim )1ln(lim)1ln()1ln(lim0000=+=-+=⋅-+=+-+=→→→→x x x x x x x xx x x x x x x x x应该注意,洛比达法则并不是总可以用,如下例。
例19 xx xx x cos 3sin 2lim+-∞→解:易见:该极限是“0”型,但用洛比达法则后得到:x x x sin 3cos 21lim --∞→,此极限 不存在,而原来极限却是存在的。
正确做法如下:原式=xxxxx cos 3sin 21lim +-∞→ (分子、分母同时除以x )=31(利用定理1和定理2) 7. 利用极限存在准则求极限例20 已知),2,1(,2,211=+==+n x x x n n ,求n n x ∞→lim 解:易证:数列}{n x 单调递增,且有界(0<n x <2),由准则1极限n n x ∞→lim 存在,设 a x n n =∞→lim 。
对已知的递推公式 nn x x +=+21两边求极限,得:a a +=2,解得:2=a 或1-=a (不合题意,舍去)所以2lim =∞→n n x 。
例21 )12111(lim 222nn n n n ++++++∞→解: 易见:11211122222+<++++++<+n n nn n n nn n因为1lim2=+∞→nn n n ,11lim2=+∞→n n n所以由准则2得:1)12111(lim 222=++++++∞→nn n n n 。
上面对求极限的常用方法进行了比较全面的总结,由此可以看出,求极限方法灵活多样,而且许多题目不只用到一种方法,因此,要想熟练掌握各种方法,必须多做练习,在练习中体会。
另外,求极限还有其它一些方法,如用定积分求极限等,由于不常用,这里不作介绍。