极限计算方法及例题
求极限的12种方法总结及例题

求极限的12种方法总结及例题求极限的12种方法总结及例题1. 引言在数学学习中,求极限是一个重要的概念,也是许多数学题解的基础。
在学习求极限的过程中,有许多不同的方法可以帮助我们理解和解决问题。
本文将总结12种方法,帮助我们更全面地理解求极限的概念,并提供相应的例题进行演示。
2. 利用极限的定义我们可以利用极限的定义来求解问题。
根据定义,当x趋向于a时,函数f(x)的极限为L,即对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。
利用这个定义,可以求得一些简单的极限,如lim(x→0) sinx/x=1。
3. 利用夹逼准则夹逼准则是求极限常用的方法之一。
当我们无法直接求出某个函数的极限时,可以利用夹逼准则来找到该函数的极限值。
要求lim(x→0) xsin(1/x)的极限,可以通过夹逼准则来解决。
4. 利用极限的四则运算极限的四则运算法则是求解复杂函数极限的基本方法之一。
利用这个法则,我们可以将复杂的函数分解成简单的部分,再进行求解。
要求lim(x→0) (3x^2+2x-1)/(x+1),可以利用极限的四则运算法则来求解。
5. 利用洛必达法则当我们遇到不定型的极限时,可以利用洛必达法则来求解。
洛必达法则可以帮助我们求出不定型极限的值,例如0/0、∞/∞、0*∞等形式。
通过洛必达法则,我们可以将求解不定型极限的过程转化为求解导数的问题,从而得到极限的值。
6. 利用泰勒展开泰勒展开是求解复杂函数极限的有效方法之一。
当我们遇到无法直接求解的函数极限时,可以利用泰勒展开将其转化为无穷级数的形式,然后再进行求解。
通过泰勒展开,我们可以将复杂函数近似为一个多项式,从而求得函数的极限值。
7. 利用换元法换元法是求解复杂函数极限的常用方法之一。
通过适当的变量替换,可以将复杂的函数转化为简单的形式,然后再进行求解。
对于lim(x→∞) (1+1/x)^x,可以通过换元法将其转化为e的极限形式来求解。
极限的求法2

lim
a0 x m a1 x m1 am a0 , 当 n=m; x b x n b x n 1 b b0 0 1 n
a0 x m a1 x m1 am lim 0, 当 n>m; x b x n b x n 1 b 0 1 n lim a0 x m a1 x m1 am , 当 n<m; x b x n b x n 1 b 0 1 n
x 1
法
lim
x 1
则
x 1 0; x
:
x 2 2x 1 lim x 1 x2 1
x 因式分解法:Байду номын сангаасlim x 1
2
lim(2 x 2) lim 2 x
x 1
2
2x 1 x2 1
1) x 1 = lim (x (x1 lim 0; )(x 1) x 1
方法四:有界函数与无穷小的乘积是无穷小。
sin x x x sin x 解: lim =0 x x
例一:求 lim 因为 sinx 在-1 与 1 之间震荡,-1 与 1 为其上界和下界,所以 sinx 为有界函数,而 x 是无穷 的,所以
1 则为无穷小,根据定理即可计算为 0; x
2
例二: lim x sin x
2
1 sin x ) 1 sin x ) 1 sin x )
lim
x 0
lim
x 0
1 sin x )
lim
x 0
x2 2
sin 2 ( 1 t an x 1 sin x ) 2 x2 2 lim 2 x 0 x ( 1 t an x 1 sin x ) 2 1 1 lim ; x 0 2 1 t an x 1 sin x
高等数学求极限的常用方法(附例题和详解)

高等数学求极限的常用方法(附例题和详解)高等数学求极限的常用方法(附例题和详解)在高等数学中,求极限是一个基础而重要的概念,它在各个数学领域都有广泛的应用。
本文将介绍一些常用的方法,以及针对这些方法的例题和详细解析。
I. 无穷小量法无穷小量法是求解极限最常见的方法之一。
它的基本思想是将待求极限转化为无穷小量之间的比较。
下面通过一个例题来说明这个方法。
例题1:求极限lim(x→0) (sin x) / x解析:考虑当 x 趋近于 0 时,sin x 和 x 的关系。
根据三角函数的极限性质,我们知道 sin x / x 的极限为 1。
因此,原式可以看作(sin x) / x ≈ 1,即它在 x 趋近于 0 时趋近于 1。
故lim(x→0) (sin x) / x = 1.II. 夹逼法夹逼法也是常用的求解极限的方法,它适用于求解含有不等式的极限问题。
下面通过一个例题来说明夹逼法的思想。
例题2:求极限lim(x→0) x^2sin(1/x)解析:首先,我们要注意到 x^2sin(1/x) 的取值范围在 [-x^2, x^2] 之间,因为 -1 ≤sin(θ) ≤ 1 对任意θ 成立。
然后,我们可以利用夹逼法,将 x^2sin(1/x) 夹逼在 0 和 0 之间。
也就是说,对于任何 x,都有 -x^2 ≤ x^2sin(1/x) ≤ x^2。
根据夹逼定理,当 x 趋近于 0 时,x^2sin(1/x) 的极限为 0。
故lim(x→0) x^2sin(1/x) = 0.III. 泰勒展开法泰勒展开法是一种将函数在某点附近进行多项式逼近的方法,它可以帮助我们求解一些复杂的极限问题。
下面通过一个例题来说明泰勒展开法的应用。
例题3:求极限lim(x→0) (e^x - 1) / x解析:考虑函数 f(x) = e^x 在 x = 0 处的泰勒展开式:f(x) = f(0) + f'(0)x + f''(0)x^2 / 2! + f'''(0)x^3 / 3! + ...其中,f'(0)表示 f(x) 在 x = 0 处的导数,依次类推。
高等数学求极限的常用方法(附例题和详解)

高等数学求极限的14种方法一、极限的定义1.极限的保号性很重要:设A x f x x =→)(lim 0,(i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。
2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。
要特别注意判定极限是否存在在:(i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。
常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ”(ii )A x x f x A x f x =+∞→=-∞→⇔=∞→limlimlim)()((iii)A x x x x A x f x x =→=→⇔=→+-lim lim lim 0)((iv)单调有界准则(v )两边夹挤准则(夹逼定理/夹逼原理)(vi )柯西收敛准则(不需要掌握)。
极限)(lim 0x f x x →存在的充分必要条件是:εδεδ<-∈>∃>∀|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当二.解决极限的方法如下:1.等价无穷小代换。
只能在乘除..时候使用。
例题略。
2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法)它的使用有严格的使用前提。
首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。
其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。
另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。
洛必达法则分为3种情况:(i )“00”“∞∞”时候直接用 (ii)“∞∙0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。
求极限的方法和例题总结

求极限的⽅法和例题总结8.⽤初等⽅法变形后,再利⽤极限运算法则求极限例11213lim1--+→x x x解:原式=43)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。
注:本题也可以⽤洛⽐达法则。
例2)12(lim --+∞→n n n n解:原式=2311213lim12)]1()2[(lim=-++=-++--+∞→∞→nn n n n n n n nn 分⼦分母同除以。
例3 nn n n n 323)1(lim++-∞→解:原式11)32(1)31(lim 3=++-=∞→nn n n上下同除以。
3.两个重要极限(1) 1sin lim0=→x xx(2) e x xx =+→10)1(lim ; e x x x =+∞→)11(lim说明:不仅要能够运⽤这两个重要极限本⾝,还应能够熟练运⽤它们的变形形式,例如:133sin lim0=→x xx ,e x xx =--→21)21(lim ,e x xx =+∞→3)31(lim ;等等。
利⽤两个重要极限求极限例5 203cos 1lim x xx -→解:原式=61)2(122sin 2lim 32sin 2lim 220220=?=→→x xx x x x 。
注:本题也可以⽤洛⽐达法则。
例6xx x 2)sin 31(lim -→=6sin 6sin 31sin 6sin 310])sin 31[(lim )sin 31(lim ---→-?-→=-=-e x x xx xx xxx x例7nn n n )12(lim +-∞→=313311331])131[(lim )131(lim -+--+∞→+-?-+∞→=+-+=+-+e n n n n n n n nn n 。
4.等价⽆穷⼩定理2 ⽆穷⼩与有界函数的乘积仍然是⽆穷⼩(即极限是0)。
定理3 当0→x 时,下列函数都是⽆穷⼩(即极限是0),且相互等价,即有:x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-xe 。
高等数学求极限的常用方法(附例题和详解)

高等数学求极限的14种方法一、极限的定义1.极限的保号性很重要:设A x f x x =→)(lim 0,〔i 〕假设A 0>,那么有0>δ,使得当δ<-<||00x x 时,0)(>x f ; 〔ii 〕假设有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。
2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。
要特别注意判定极限是否存在在:〔i 〕数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。
常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a 〞〔ii 〕A x x f x A x f x =+∞→=-∞→⇔=∞→limlimlim)()((iii)A x x x x A x f x x =→=→⇔=→+-lim lim lim 0)((iv)单调有界准那么〔v 〕两边夹挤准那么〔夹逼定理/夹逼原理〕〔vi 〕柯西收敛准那么〔不需要掌握〕。
极限)(lim 0x f x x →存在的充分必要条件是:εδεδ<-∈>∃>∀|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当二.解决极限的方法如下:1.等价无穷小代换。
只能在乘除..时候使用。
例题略。
2.洛必达〔L’ho spital 〕法那么〔大题目有时候会有暗示要你使用这个方法〕它的使用有严格的使用前提。
首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。
其次,必须是函数的导数要存在,假设告诉f 〔x 〕、g 〔x 〕,没告诉是否可导,不可直接用洛必达法那么。
另外,必须是“0比0〞或“无穷大比无穷大〞,并且注意导数分母不能为0。
洛必达法那么分为3种情况:〔i 〕“00〞“∞∞〞时候直接用 (ii)“∞•0〞“∞-∞〞,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。
高等数学求极限的常用方法附例题和详解

高等数学求极限的14种方法一、极限的定义1、极限的保号性很重要:设A x f x x =→)(lim 0,(i)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。
2、极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限与0x x →的极限。
要特别注意判定极限就是否存在在:(i)数列{}的充要条件收敛于a n x 就是它的所有子数列均收敛于a 。
常用的就是其推论,即“一个数列收敛于a 的充要条件就是其奇子列与偶子列都收敛于a ”(ii)A x x f x A x f x =+∞→=-∞→⇔=∞→limlimlim)()((iii)A x x x x A x f x x =→=→⇔=→+-lim lim lim 0)((iv)单调有界准则(v)两边夹挤准则(夹逼定理/夹逼原理)(vi)柯西收敛准则(不需要掌握)。
极限)(lim 0x f x x →存在的充分必要条件就是:εδεδ<-∈>∃>∀|)()(|)(,0,021021x f x f x U x x o时,恒有、使得当二.解决极限的方法如下:1、等价无穷小代换。
只能在乘除..时候使用。
例题略。
2、洛必达(L’ho spital)法则(大题目有时候会有暗示要您使用这个方法)它的使用有严格的使用前提。
首先必须就是X 趋近,而不就是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然就是趋近于正无穷的,不可能就是负无穷。
其次,必须就是函数的导数要存在,假如告诉f(x)、g(x),没告诉就是否可导,不可直接用洛必达法则。
另外,必须就是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。
洛必达法则分为3种情况:(i)“00”“∞∞”时候直接用 (ii)“∞•0”“∞-∞”,应为无穷大与无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。
高等数学求极限的17种常用方法(附例题和详解)

(iii)
(iv)单调有界准则
(v)两边夹挤准则(夹逼定理/夹逼原理)
(vi)柯西收敛准则(不需要掌握)。极限 存在的充分必要条件是:
二.解决极限的方法如下:
1.等价无穷小代换。只能在乘除时候使用。例题略。
2.洛必达(L’hospital)法则(大题目有时候会有暗示要你使用这个方法)
它的使用有严格的使用前提。首先必须是X趋近,而不是N趋近,所以面对数列极限时候先要转化成求x趋近情况下的极限,数列极限的n当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f(x)、g(x),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况:
;
cos=
ln(1+x)=x-
(1+x) =
以上公式对题目简化有很好帮助
4.两多项式相除:设 ,
P(x)= ,
(i) (ii)若 ,则
5.无穷小与有界函数的处理办法。例题略。
面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了。
(i)“ ”“ ”时候直接用
(ii)“ ”“ ”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通项之后,就能变成(i)中的形式了。即 ;
(iii)“ ”“ ”“ ”对于幂指函数,方法主要是取指数还取对数的方法,即 ,这样就能把幂上的函数移下来了,变成“ ”型未定式。
3.泰勒公式(含有 的时候,含有正余弦的加减的时候)
例1已知A={x -2≤x<3},B={x -1<x≤5},求A B,A B
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
极限计算方法总结《高等数学》是理工科院校最重要的基础课之一,极限是《高等数学》的重要组成部分。
求极限方法众多,非常灵活,给函授学员的学习带来较大困难,而极限学的好坏直接关系到《高等数学》后面内容的学习。
下面先对极限概念和一些结果进行总结,然后通过例题给出求极限的各种方法,以便学员更好地掌握这部分知识。
一、极限定义、运算法则和一些结果1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。
说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:)0,(0lim ≠=∞→a b a an bn 为常数且;5)13(lim 2=-→x x ;⎩⎨⎧≥<=∞→时当不存在,时当,1||1||0lim q q q nn ;等等(2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。
2.极限运算法则定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[(2)B A x g x f ⋅=⋅)()(lim(3))0(,)()(lim成立此时需≠=B BAx g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。
3.两个重要极限(1)1sin lim0=→xxx(2)e x xx =+→1)1(lim ; e x xx =+∞→)11(lim说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式,作者简介:靳一东,男,(1964—),副教授。
例如:133sin lim0=→xxx ,e x xx =--→210)21(lim ,e x x x =+∞→3)31(lim ;等等。
4.等价无穷小定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。
定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有:x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-xe 。
说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价关系成立,例如:当0→x 时,13-x e ~ x 3 ;)1ln(2x - ~ 2x -。
定理4 如果函数)(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且)(x f ~)(1x f ,)(x g ~)(1x g ,则当)()(lim 110x g x f xx →存在时,)()(lim 0x g x f x x →也存在且等于)(x f )()(lim110x g x f x x →,即)()(lim 0x g x f x x →=)()(lim 110x g x f x x →。
5.洛比达法则定理5 假设当自变量x 趋近于某一定值(或无穷大)时,函数)(x f 和)(x g 满足:(1))(x f 和)(x g 的极限都是0或都是无穷大;(2))(x f 和)(x g 都可导,且)(x g 的导数不为0;(3))()(lim x g x f ''存在(或是无穷大);则极限)()(limx g x f 也一定存在,且等于)()(lim x g x f '',即)()(lim x g x f =)()(lim x g x f '' 。
说明:定理5称为洛比达法则,用该法则求极限时,应注意条件是否满足,只要有一条不满足,洛比达法则就不能应用。
特别要注意条件(1)是否满足,即验证所求极限是否为“00”型或“∞∞”型;条件(2)一般都满足,而条件(3)则在求导完毕后可以知道是否满足。
另外,洛比达法则可以连续使用,但每次使用之前都需要注意条件。
6.连续性定理6 一切连续函数在其定义去间内的点处都连续,即如果0x 是函数)(x f 的定义去间内的一点,则有)()(lim00x f x f x x =→ 。
7.极限存在准则定理7(准则1) 单调有界数列必有极限。
定理8(准则2) 已知}{,}{,}{n n n z y x 为三个数列,且满足:(1)),3,2,1(, =≤≤n z x y n n n(2)a y n n =∞→lim ,a z n n =∞→lim则极限∞→n n x lim一定存在,且极限值也是a ,即a x n n =∞→lim 。
二、求极限方法举例1. 用初等方法变形后,再利用极限运算法则求极限例11213lim1--+→x x x解:原式=43)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。
注:本题也可以用洛比达法则。
例2)12(lim --+∞→n n n n解:原式=2311213lim12)]1()2[(lim=-++=-++--+∞→∞→nn n n n n n n nn 分子分母同除以。
例3 nn nn n 323)1(lim ++-∞→解:原式11)32(1)31(lim 3=++-=∞→n n n n上下同除以 。
2. 利用函数的连续性(定理6)求极限例4xx ex 122lim →解:因为20=x 是函数xex x f 12)(=的一个连续点,所以 原式=e e 42212= 。
3. 利用两个重要极限求极限例5203cos 1limx xx -→解:原式=61)2(122sin 2lim 32sin 2lim22022=⋅=→→x xx x x x 。
注:本题也可以用洛比达法则。
例6xx x 20)sin 31(lim -→解:原式=6sin 6sin 31sin 6sin 310])sin 31[(lim )sin 31(lim ---→-⋅-→=-=-e x x xx xx xxx x 。
例7nn n n )12(lim +-∞→ 解:原式=313311331])131[(lim )131(lim -+--+∞→+-⋅-+∞→=+-+=+-+e n n n nn n n nn n 。
4. 利用定理2求极限例8xx x 1sinlim 20→ 解:原式=0 (定理2的结果)。
5. 利用等价无穷小代换(定理4)求极限 例9 )arctan()31ln(lim 20x x x x +→解:)31ln(0x x +→时,~x 3,)arctan(2x ~2x , ∴ 原式=33lim2=⋅→xxx x 。
例10 xx e e xx x sin lim sin 0--→解:原式=1sin )sin (lim sin )1(lim sin 0sin sin 0=--=--→-→xx x x e x x e e x x x x x x 。
注:下面的解法是错误的:原式=1sin sin lim sin )1()1(lim 0sin 0=--=----→→xx xx x x e e x x x x 。
正如下面例题解法错误一样: 0lim sin tan lim 3030=-=-→→xxx x x x x x 。
例11xx x x sin )1sin tan(lim 20→解:等价与是无穷小,时,当xx x x x x x 1sin )1sin tan(1sin0222∴→ , 所以, 原式=01sin lim 1sinlim020==→→xx x x x x x 。
(最后一步用到定理2)6. 利用洛比达法则求极限说明:当所求极限中的函数比较复杂时,也可能用到前面的重要极限、等价无穷小代换等方法。
同时,洛比达法则还可以连续使用。
例12203cos 1limxxx -→(例4) 解:原式=616sin lim 0=→x x x 。
(最后一步用到了重要极限)例1312coslim1-→x xx π 解:原式=212sin2lim1πππ-=-→xx 。
例143sin limx x x x -→ 解:原式=203cos 1limxx x -→=616sin lim 0=→x x x 。
(连续用洛比达法则,最后用重要极限) 例15 xx x x x x sin cos sin lim20-→ 解:313sin lim 3)sin (cos cos limcos sin lim202020==--=⋅-=→→→xx x x x x x x x x x x x x x x 原式例18])1ln(11[lim 0x x x +-→ 解:错误解法:原式=0]11[lim 0=-→xx x 。
正确解法:。
原式21)1(2lim 2111lim )1ln(lim)1ln()1ln(lim0000=+=-+=⋅-+=+-+=→→→→x x x x x x x xx x x x x x x x x应该注意,洛比达法则并不是总可以用,如下例。
例19xx xx x cos 3sin 2lim+-∞→解:易见:该极限是“0”型,但用洛比达法则后得到:x x x sin 3cos 21lim --∞→,此极限不存在,而原来极限却是存在的。
正确做法如下:原式=xxxxx cos 3sin 21lim +-∞→ (分子、分母同时除以x )=31(利用定理1和定理2) 7. 利用极限存在准则求极限例20 已知),2,1(,2,211=+==+n x x x n n ,求n n x ∞→lim解:易证:数列}{n x 单调递增,且有界(0<n x <2),由准则1极限n n x ∞→lim 存在,设 a x n n =∞→lim 。
对已知的递推公式 nn x x +=+21两边求极限,得:aa +=2,解得:2=a或1-=a (不合题意,舍去)所以2lim =∞→n n x 。
例21 )12111(lim 222nn n n n ++++++∞→解: 易见:11211122222+<++++++<+n n nn n n nn n因为1lim2=+∞→nn n n ,11lim2=+∞→n n n所以由准则2得:1)12111(lim 222=++++++∞→nn n n n 。