极限计算方法及例题

极限计算方法及例题
极限计算方法及例题

极限计算方法总结

《高等数学》是理工科院校最重要的基础课之一,极限是《高等数学》的重要组成部分。求极限方法众多,非常灵活,给函授学员的学习带来较大困难,而极限学的好坏直接关系到《高等数学》后面内容的学习。下面先对极限概念和一些结果进行总结,然后通过例题给出求极限的各种方法,以便学员更好地掌握这部分知识。

一、极限定义、运算法则和一些结果

1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。

说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的

极限严格定义证明,例如:)0,(0lim

≠=∞→a b a an b

n 为常数且;5)13(lim 2

=-→x x ;???≥<=∞→时当不存在,时当,1||1||0lim q q q n

n ;等等

(2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需

再用极限严格定义证明。

2.极限运算法则

定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[

(2)B A x g x f ?=?)()(lim

(3))0(,)

()(lim

成立此时需≠=

B B

A x g x f

说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,

不能用。 3.两个重要极限 (1) 1sin lim

=→x

x x

(2) e x x x =+→1

)1(lim ; e x x x =+∞→)11(l i m 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式,

作者简介:靳一东,男,(1964—),副教授。

例如:133sin lim

=→x

x x ,e x x

x =--→21

)

21(lim ,e

x

x

x =+

→3)31(lim ;等等。

4.等价无穷小

定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。

定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有:

x ~x sin

~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。

说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价

关系成立,例如:当0→x 时,

13-x

e

~ x 3 ;)1ln(2x - ~ 2

x

-。

定理4 如果函数)(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且)(x f ~)(1x f ,)(x g ~)(1x g ,则当)()(lim

110

x g x f x x →存在时,)

()(lim

x g x f x x →也存在且等于

)(x f )

()(lim

110

x g x f x x →,即)

()(lim

x g x f x x →=)

()(lim

110

x g x f x x →。

5.洛比达法则

定理5 假设当自变量x 趋近于某一定值(或无穷大)时,函数)(x f 和)(x g 满足:

(1))(x f 和)(x g 的极限都是0或都是无穷大;

(2))(x f 和)(x g 都可导,且)(x g 的导数不为0;

(3))

()(lim

x g x f ''存在(或是无穷大);

则极限)

()(lim

x g x f 也一定存在,且等于)

()(lim

x g x f '',即)

()(lim

x g x f =)

()(lim

x g x f '' 。

说明:定理5称为洛比达法则,用该法则求极限时,应注意条件是否满足,只要有一条不

满足,洛比达法则就不能应用。特别要注意条件(1)是否满足,即验证所求极限是否为“

0”型或“

∞”型;条件(2)一般都满足,而条件(3)则在求导完毕

后可以知道是否满足。另外,洛比达法则可以连续使用,但每次使用之前都需要注

意条件。

6.连续性

定理 6 一切连续函数在其定义去间内的点处都连续,即如果0x 是函数)(x f 的定义去间

内的一点,则有)()(lim 00

x f x f x x =→ 。

7.极限存在准则

定理7(准则1) 单调有界数列必有极限。

定理8(准则2) 已知}{,}{,}{n n n z y x 为三个数列,且满足:

(1) ),3,2,1(, =≤≤n z x y n n n

(2) a y n n =∞

→lim ,a z n n =∞

→lim

则极限∞

→n n x lim 一定存在,且极限值也是a ,即a x n n =∞

→lim 。

二、求极限方法举例

1. 用初等方法变形后,再利用极限运算法则求极限

例1 1

213lim

1

--+→x x x

解:原式=4

3)

213)(1(3

3lim

)

213)(1(2

)13(lim

1

2

2

1

=

++--=++--+→→x x x x x x x x 。

注:本题也可以用洛比达法则。 例2 )12(lim

--

+∞

→n n n n

解:原式=2

311213lim

1

2)]1()2[(lim =

-

+

+

=-+

+--+∞

→∞

→n

n n n n n n n n

n 分子分母同除以

例3 n

n

n

n n 3

23)1(lim

++-∞

解:原式

11)3

2(1)3

1(lim 3

=++-=

∞→n

n

n n

上下同除以 。 2. 利用函数的连续性(定理6)求极限

例4 x

x e x 1

2

2

lim →

解:因为20=x 是函数x

e x x

f 1

2

)(=的一个连续点,

所以 原式=e e 4221

2

= 。 3. 利用两个重要极限求极限

例5 2

3cos 1lim

x

x x -→

解:原式=6

1

)

2

(122sin

2lim

32sin

2lim 22

02

2

=?=→→x x

x

x x x 。

注:本题也可以用洛比达法则。

例6 x x x 2

)sin 31(lim -→

解:原式=6

sin 6sin 31

sin 6sin 310

]

)sin 31[(lim )

sin 31(lim ---→-?

-→=-=-e

x x x

x x x

x

x x 。

例7 n

n n n )1

2(

lim +-∞

解:原式=3

1

33

1

1

331])

1

31[(lim )1

31(lim -+--+∞

→+-?

-+∞

→=+-+

=+-+

e

n n n n n n n n

n n 。

4. 利用定理2求极限

例8 x

x x 1sin

lim 2

解:原式=0 (定理2的结果)。 5. 利用等价无穷小代换(定理4)求极限 例9 )

arctan(

)31l n(l i m

2

x x x x +→

解:)31ln(0x x +→时, ~x 3,)arctan(2x ~2

x ,

∴ 原式=33lim

2

=?→x

x x x 。

例10 x

x e

e x

x x sin lim

sin 0

--→

解:原式=1sin )

sin (lim

sin )

1(lim

sin 0

sin sin 0

=--=--→-→x

x x x e x

x e e

x

x x

x x

x 。

注:下面的解法是错误的: 原式=1sin sin lim

sin )

1()1(lim

sin 0

=--=----→→x

x x x x

x e

e x x

x x 。

正如下面例题解法错误一样: 0lim

sin tan lim

3

3

=-=-→→x

x x x

x

x x x 。

例11 x

x

x x sin )

1sin

tan(lim

2

解:等价与是无穷小,时,当x

x x

x x

x x 1sin

)1sin

tan(1sin

02

2

2∴→ ,

所以, 原式=0

1sin lim 1

sin

lim

02

==→→x

x x x x x x 。(最后一步用到定理2)

6. 利用洛比达法则求极限

说明:当所求极限中的函数比较复杂时,也可能用到前面的重要极限、等价无穷小代换等方法。同时,洛比达法则还可以连续使用。 例12 2

3cos 1lim

x

x x -→(例4)

解:原式=6

16sin lim 0

=

→x

x x 。(最后一步用到了重要极限)

例13 12

cos

lim

1

-→x x

x π 解:原式=2

1

2sin 2

lim

1

π

ππ

-=-

→x

x 。 例14 3

sin lim

x

x x x -→

解:原式=2

3cos 1lim

x

x x -→=6

16sin lim

=

→x

x x 。(连续用洛比达法则,最后用重要极限)

例15 x

x x

x x x sin cos sin lim 2

-→

解:

3

13sin lim

3)

sin (cos cos lim

cos sin lim

20

2

2

=

=--=?-=→→→x

x x x

x x x x x x x

x x x x x 原式

例18 ])

1ln(11[

lim 0

x x

x +-

解:错误解法:原式=0]11[

lim 0

=-

→x

x

x 。

正确解法:

原式2

1)

1(2lim

21

11lim

)1ln(lim

)1ln()1ln(lim

=

+=-+=?-+=+-+=→→→→x x x x

x x

x x

x x x x x x x x x

应该注意,洛比达法则并不是总可以用,如下例。 例19 x

x x x x cos 3sin 2lim

+-∞

解:易见:该极限是“

0”型,但用洛比达法则后得到:x

x x sin 3cos 21lim

--∞

→,此极限

不存在,而原来极限却是存在的。正确做法如下:

原式=x

x x

x

x cos 3sin 21lim

+

-

→ (分子、分母同时除以x ) =

3

1 (利用定理1和定理2)

7. 利用极限存在准则求极限

例20 已知),2,1(,2,211 =+=

=

+n x x x n n ,求n n x ∞

→lim

解:易证:数列}{n x 单调递增,且有界(0

→lim 存在,

a x n n =∞

→lim 。对已知的递推公式 n n x x +=

+21两边求极限,得:

a a +=2,解得:2=a 或1-=a (不合题意,舍去)

所以

2lim =∞

→n n x 。 例21 )12111(lim 2

2

2

n

n n n n ++

+++

+∞

解: 易见:

1

12

11

1

2

2

2

2

2+<

+++++

+<

+n n n

n n n n

n n

因为 1lim 2

=+∞

→n

n n n ,11

lim

2

=+∞

→n n n

所以由准则2得:1)12

1

1

1

(

lim 2

2

2

=++

+++

+∞

→n

n n n n 。

贴现利息的计算题

票据贴现利息的计算 票据贴现利息的计算分两种情况: (1)票据贴现 贴现利息=票据面值x贴现率x贴现期 不带息票据不需要算到期值他的面值就是到期值带息票据要算到期值 (2)带息票据的贴现 票据到期值=票据面值+票面面值*票面利率*票据期限 票据到期值=票据面值×(1+贴现率×票据期限/12) 贴现利息=票据到期值x贴现率x贴现天数/360 贴现利息=票据到期值x贴现率x贴现月数/12 贴现实际所得额=票据面值-贴现息 【例】:汇票金额10000元,到期日2006年7月20日,持票人于4月21日向银行申请贴现,银行年贴现利率3.6%: 贴现利息=10000x90x3.6%/360=90元,银行在贴现当日付给持票人9910元,扣除的90元就是贴现利息。 一公司于8月15日拿一张银行承兑汇票申请贴现面值1000000贴现率2.62%,签发于上年的12月30日,到期日为10月29日,贴现息如何计算? 16(16-31日)+30(9月)+29(1-29日)=75天 贴现息=1000000x 75x(2.62%/360)=5458.33 〔例〕2004年3月23日,企业销售商品收到一张面值为10000元,票面利率为6%,期限为6个月的商业汇票。5月2日,企业将上述票据到银行贴现,银行贴现率为8%。假定在同一票据交换区域,则票据贴现利息计算如下: 票据到期值=10 000 x(1+6×6% /12)=10 300(元) 该应收票据到期日为9月23日,其贴现天数应为144天(30 +30 +31 +31+23-1)

票据贴现利息=票据到期值x贴现率x贴现天数/360=103 00 x 8% x 144/360=329.60(元)

统计学计算题例题及计算分析

计算分析题解答参考 1.1.某厂三个车间一季度生产情况如下: 计算一季度三个车间产量平均计划完成百分比和平均单位产品成本。 解:平均计划完成百分比=实际产量/计划产量=733/(198/0.9+315/1.05+220/1.1) =101.81% 平均单位产量成本 X=∑xf/∑f=(15*198+10*315+8*220)/733 =10.75(元/件) 1.2.某企业产品的有关资料如下: 试分别计算该企业产品98年、99年的平均单位产品成本。 解:该企业98年平均单位产品成本 x=∑xf/∑f=(25*1500+28*1020+32*980)/3500 =27.83(元/件) 该企业99年平均单位产品成本x=∑xf /∑(m/x)=101060/(24500/25+28560/28+48000/32) =28.87(元/件) 年某月甲、乙两市场三种商品价格、销售量和销售额资料如下: 1.3.1999 解:三种商品在甲市场上的平均价格x=∑xf/∑f=(105*700+120*900+137*1100)/2700 =123.04(元/件) 三种商品在乙市场上的平均价格x=∑m/∑(m/x)=317900/(126000/105+96000/120+95900/137) =117.74(元/件) 2.1.某车间有甲、乙两个生产小组,甲组平均每个工人的日产量为22件,标准差为 3.5件;乙组工人日产量资料:

试比较甲、乙两生产小组中的哪个组的日产量更有代表性? 解:∵X 甲=22件 σ甲=3.5件 ∴V 甲=σ甲/ X 甲=3.5/22=15.91% 列表计算乙组的数据资料如下: ∵x 乙=∑xf/∑f=(11*10+14*20+17*30+20*40)/100 =17(件) σ乙= √[∑(x-x)2 f]/∑f =√900/100 =3(件) ∴V 乙=σ乙/ x 乙=3/17=17.65% 由于V 甲<V 乙,故甲生产小组的日产量更有代表性。 2.2.有甲、乙两个品种的粮食作物,经播种实验后得知甲品种的平均产量为998斤,标准差为162.7斤;乙品种实验的资料如下: 试研究两个品种的平均亩产量,确定哪一个品种具有较大稳定性,更有推广价值? 解:∵x 甲=998斤 σ甲=162.7斤 ∴V 甲=σ甲/ x 甲=162.7/998=16.30% 列表计算乙品种的数据资料如下:

高等数学求极限的常用方法附例题和详解完整版

高等数学求极限的常用 方法附例题和详解 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即 “一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→? =→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限 )(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下:

1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (i )“ 00”“∞ ∞ ”时候直接用 (ii)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了 无穷小的倒数形式了。通项之后,就能变成(i)中的形式了。即 )(1)()()()(1)()()(x f x g x g x f x g x f x g x f ==或;) ()(1 )(1 )(1 )()(x g x f x f x g x g x f -=- (iii)“00”“∞1”“0∞”对于幂指函数,方法主要是取指数还取对数的方法,即 e x f x g x g x f ) (ln )()()(=,这样就能把幂上的函数移下来了,变成“∞?0”型未定式。 3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候) 12)! 1(!!21+++++++=n x n x x n e n x x x e θ ; cos=221242)! 22(cos )1()!2()1(!4!21+++-+-+-+-m m m m x m x m x x x θ

财务管理学计算公式及例题

财务管理学计算公式与例题 第二章时间价值与收益风险 1.单利终值是指一定量的资本在若干期以后包括本金和单利利息在内的未来价值。 单利终值的计算公式为: F=P+P×n×r=P×(1+n×r) 单利利息的计算公式为: I=P×n×r 式中:P是现值(本金);F是终值(本利和); I是利息;r是利率;n是计算利息的期数。 某人于20x5年1月1日存入中国建设银行10000元人民币,存期5年,存款年利率为5%,到期本息一次性支付。则到期单利终值与利息分别为: 单利终值=10 000×(1+5×5%)=12 500(元) 利息=10 000×5%×5=2 500(元) 2.单利现值是指未来在某一时点取得或付出的一笔款项,按一定折现率计算的现在的价值。 单利现值的计算公式为: 某人3年后将为其子女支付留学费用300 000元人民币,20x5年3月5日他将款项一次性存入中国银行,存款年利率为 4.5%。则此人至少应存款的数额为: 第n期末:F=P×(1+r)n 式中:(1+r)n称为复利终值系数或一元的复利终值, 用符号(F/P,r,n)表示。(可查表) 因此,复利终值也可表示为:F=P×(F/P,r,n) 某人拟购房一套,开发商提出两个付款方案: 方案一,现在一次性付款80万元; 方案二,5年后一次性付款100万元。假如购房所需资金可以从银行贷款取得,若银行贷款利率为7% ,则: 方案一5年后的终值为: F=80×(F/P,7%,5)=80×1.4026=112.208(万元) 由于方案一5年后的付款额终值(112.208万元)大于方案二5年后的付款额(100万元),所以选择方案二对购房者更为有利。

地方时计算方法及试题精选(DOC)

关于地方时的计算 一.地方时计算的一般步骤: 1.找两地的经度差: (1)如果已知地和要求地同在东经或同在西经,则: 经度差=经度大的度数—经度小的度数 (2)如果已知地和要求地不同是东经或西经,则: 经度差=两经度和(和小于180°时) 或经度差=(180°—两经度和)。(在两经度和大于180°时) 2.把经度差转化为地方时差,即: 地方时差=经度差÷15°/H 3.根据要求地在已知地的东西位置关系,加减地方时差,即:要求点在已知点的东方,加地方时差;如要求点在已知点西方,则减地方时差。 二.东西位置关系的判断: (1)同是东经,度数越大越靠东。即:度数大的在东。 (2)是西经,度数越大越靠西。即:度数大的在西。 (3)一个东经一个西经,如果和小180°,东经在东西经在西;如果和大于180°,则经度差=(360°—和),东经在西,西经在东;如果和等于180,则亦东亦西。 三.应用举例: 1、固定点计算 【例1】两地同在东经或西经 已知:A点120°E,地方时为10:00,求B点60°E的地方时。 分析:因为A、B两点同是东经,所以,A、B两点的经度差=120°-60°=60° 地方时差=60°÷15°/H=4小时 因为A、B两点同是东经,度数越大越靠东,要求B点60°E比A点120°E小,所以,B点在A点的西方,应减地方时差。 所以,B点地方时为10:00—4小时=6:00 【例2】两地分属东西经 A、已知:A点110°E的地方时为10:00,求B点30°W的地方时. 分析:A在东经,B在西经,110°+30°=140°<180°,所以经度差=140°,且A点东经在东,B 点西经在西,A、B两点的地方时差=140°÷15°/H=9小时20分,B点在西方, 所以,B点的地方时为10:00—9小时20分=00:40。 B、已知A点100°E的地方时为8:00,求B点90°W的地方时。 分析:A点为东经,B点为西经,100°+90°=190°>180°, 则A、,B两点的经度差=360°—190°=170°,且A点东经在西,B点西经在东。 所以,A、B两点的地方时差=170°÷15°/H=11小时20分,B点在A点的东方, 所以B点的地方时为8:00+11小时20分=19:20。 C、已知A点100°E的地方8:00,求B点80°W的地方时。 分析:A点为100°E,B点为80°W,则100°+80°=180°,亦东亦西,即:可以说B点在A 点的东方,也可以说B点在A点的西方,A,B两点的地方时差为180÷15/H=12小时。 所以B点的地方时为8:00+12小时=20:00或8:00—12小时,不够减,在日期中借一天24小时来,即24小时+8:00—12小时=20:00。 2、变化点计算 【例1】一架飞机于10月1日17时从我国上海(东八区)飞往美国旧金山(西八区),需飞行14小时。到达目的地时,当地时间是() A. 10月2日15时 B. 10月2日3时 C. 10月1日15时 D. 10月1日3时

高等数学求极限的14种方法(完整资料).doc

【最新整理,下载后即可编辑】 高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (1)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (2)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2. 极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。 要特别注意判定极限是否存在在: (1)数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即 “一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (2)A x x f x A x f x =+∞ →=-∞ →?=∞ →lim lim lim )()( (3) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (4) 单调有界准则 (5)两边夹挤准 (夹逼定理/夹逼原理) (6) 柯西收敛准则(不需要掌握)。极限)(lim 0 x f x x →存在的充分必要条件。是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (1)“0 0”“∞ ∞”时候直接用 (2)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成

各种利息计算方法例题

.各种利息计算方法例题 利息计算基本公式:利息=本金×利率×存期=本金×天数×日利率=本金×月数×月利率 税后利息=利息×80% 天数计算=月×30天+另头天数(如4月24日即为144天) 利率表示法:%代表年利率,‰代表月利率,万分比代表日利率。 1、活期储蓄存单:按实际存期有一天算一天,大小月要调整。现行日利率为每天0.2元。 例:2006年2月18日存入的活期存单一张,金额为1000元,于06年05月08日支取。问应实付多少利息? 解:(158-78-1)天×0.1万×0.2元=1.58元 2、定期存款利息计算: A、提前支取按活期存单的计算方法计算。 B、到期支取的利息=本金×年利率×年数 C、过期支取的利息=到期息+过期息(到期息参照B,过期息参照A) 实付利息=应付利息×80% 例:※2006年03月16日存入一年期存款一笔,金额为50000元,于2006年9月3日支取,利率为2.25%,问应付给储户本息多少? 解:实付息=(273-106+4)天×5万×0.2元=171元 本息合计=50000+171=50171元 ※2001年6月16日存入五年期存款一笔,金额为20000元,利率为2.88%,于2006年6月16日支取,问应实付多少利息? 解:实付息=20000×2.88%×5年 =2880元. ※2003年01年27日存入三年期存款一笔,金额为12000元,利率2.52%,于2006年6月16日支取,问实付利息为多少? 解:到期息=12000×2.52%×3年=907.2元 过期息=(196-57+1)×1.2万×0.2元=33.60元 实付利息=(到期息+过期息)=(907.2+34.08)=940.08元.

盈亏问题计算公式+例题分析(打印版)

数学运算:盈亏问题计算公式 把若干物体平均分给一定数量得对象,并不就是每次都能正好分完。 如果物体还有剩余,就叫盈; 如果物体不够分,就叫亏。 凡就是研究盈与亏这一类算法得应用题就叫盈亏问题。 盈亏问题得常见题型为给出某物体得两种分配标准与结果,来求物体数量与参与分配得对象数量。由于每次分配都可能出现刚好分完、多余或不足这三种情况,那么就会有多种结果得组合,这里以一道典型得盈亏问题对三种情况得几种组合加以说明。 注意:公司中两次每人分配数得差也就就是大分减小分 一、基础盈亏问题 1、一盈一亏(不够)【一次有余(盈),一次不够(亏)】可用公式:(盈+亏)÷(两次每人分配数得差)=人数。例如,“小朋友分桃子,每人10个少9个,每人8个多7个。问:有多少个小朋友与多少个桃子?” 解:(7+9)÷(10-8)=16÷2=8(个)………………人数 10×8-9=80-9=71(个)………………………桃子 或8×8+7=64+7=71(个)(答略) 测试:如果每人分9 个苹果,就剩下10 个苹果;如果每人分12 个苹果,就少20 个苹果。 2、两次皆盈(余),可用公式:(大盈-小盈)÷(两次每人分配数得差)=人数。 例如,“士兵背子弹作行军训练,每人背45发,多680发;若每人背50发,则还多200发。问:有士兵多少人?有子弹多少发?” 解:(680-200)÷(50-45)=480÷5=96(人) 45×96+680=5000(发)或50×96+200=5000(发)(答略) 测试:如果每人分8 个苹果,就剩下20 个苹果;如果每人分7 个苹果,就剩下30 个苹果。 3、两次皆亏(不够),可用公式:(大亏-小亏)÷(两次每人分配数得差)=人数。 例如,“将一批本子发给学生,每人发10本,差90本;若每人发8本,则仍差8本。有多少学生与多少本本子?”解:(90-8)÷(10-8)=82÷2=41(人)10×41-90=320(本)(答略) 测试:如果每人分11 个苹果,就少10 个苹果;如果每人分13 个苹果,就少30 个苹果。 4、一盈一尽(刚好分完),可用公式:盈÷(两次每人分配数得差)=人数。 测试:如果每人分6 个苹果,就剩下40 个苹果;如果每人分10 个苹果,就刚好分完。 5、一亏一尽(刚好分完),可用公式:亏÷(两次每人分配数得差)=人数。 测试:如果每人分14 个苹果,就少40 个苹果;如果每人分10 个苹果,就刚好分完。 由上面得问题,我们归纳出盈亏问题得公式: 【提示】解决这类问题得关键就是要抓住两次分配时盈亏总量得变化,经过比对后,再来进行计算。 【例题1】某班去划船,如果每只船坐4 人,就会少3 只船;如果每只船坐6 人,还有2 人留在岸边。问有多少个同学? () A、30 B、31 C、32 D、33 解析:此题答案为C。 设小船有x 只,根据人数不变列方程:4(x+3)=6x+2,解得x=5。 所以有同学6×5+2=32 人。 盈亏问题例题讲解:

求极限的常用方法典型例题

求极限的常用方法典型例题 掌握求简单极限的常用方法。求极限的常用方法有 (1) 利用极限的四则运算法则; (2) 利用两个重要极限; (3) 利用无穷小量的性质(无穷小量乘以有界变量还是无穷小量); (4) 利用连续函数的定义。 例 求下列极限: (1)x x x 33sin 9lim 0-+→ (2)1)1sin(lim 21--→x x x (3)x x x 1 0)21(lim -→ (4)2 22)sin (1cos lim x x x x x +-+∞→ (5))1 1e (lim 0-+→x x x x 解(1)对分子进行有理化,然后消去零因子,再利用四则运算法则和第一重要极限计算,即 x x x 33sin 9lim 0-+→ =) 33sin 9()33sin 9)(33sin 9(lim 0++++-+→x x x x x =3 3sin 91lim 3sin lim 00++?→→x x x x x =2 1613=? (2)利用第一重要极限和函数的连续性计算,即 )1)(1()1sin(lim 1 )1sin(lim 121-+-=--→→x x x x x x x 11lim 1)1sin(lim 11+?--=→→x x x x x 2 11111=+?= (3)利用第二重要极限计算,即 x x x 1 0)21(lim -→=2210])21[(lim --→-x x x 2e -=。 (4)利用无穷小量的性质(无穷小量乘以有界变量还是无穷小量)计算,即

222222222)sin 1(lim ]1cos 1[lim )sin 1(1cos 1lim )sin (1cos lim x x x x x x x x x x x x x x x x +-+=+-+=+-+∞→∞→∞→∞→= 1 注:其中当∞→x 时,x x x x sin 1sin =,)1(cos 11cos 2222-=-x x x x 都是无穷小量乘以有界变量,即它们还是无穷小量。 (5) 利用函数的连续性计算,即 )11e (lim 0-+→x x x x =11 01e 00-=-+?

银行贷款利息计算题目附答案

1、某客户2011年8月1日贷款10000元,到期日为2012 年6月20日,利率7.2‰,该户于2012年5月31日前来还款,计算贷款利息应收多少? 304*7.2‰*10000/30=729.6(元) 2、2012年7月14日,某客户持一张2012年5月20日签 发、到期日为2012年10月31日、金额10万元的银行承兑汇票,到我行办理贴现,已知贴现率为4.5‰,我行规定加收邮程为3天,计算票据办理贴现后实际转入该客户账户金额是多少? 答:贴现天数为109天,另加3天邮程共112天 利息收入:100000*112*4.5‰/30=1680 实际转入该客户账户100000-1680=98320 重点在于天数有天算一天,大月31日要加上,另3天邮程要加上 3、张三2012年1月1日在我行贷款5000元,到期日为 2012年10月20日,利率9‰,利随本清,约定逾期按15‰罚息,张三于2012年12月10日还款,他共要支付多少利息? 答:期限内天数293天,293*5000*9‰/30=439.50 逾期51天,51*5000*15‰/30=127.50 439.50+127.50=567元

4、张三2011年1月1日在我行贷款10000元,到期日为 2011年12月31日,利率7.2‰,利随本清,约定逾期按12‰计算罚息,张三于2011年9月1日要求先行归还部分贷款,本金加利息共计5000元,计算本金和利息各是多少? 答:归还时天数为243天, 本金=5000÷(1+7.2‰÷30×243)=4724.47 利息=275.53 5、如上题,张三在2011年9月1日归还部分贷款后,直 到2012年4月10日才来还清贷款,计算他应支付本息共计多少? 答:本金=10000-4724.47=5275.53 期限内天数=364天逾期天数=101天 5275.53×7.2‰÷30×364+5275.53×12‰÷30×101 =460.87+213.13 =674元(利息) 本息合计5275.53+674=5949.53

三重积分的计算方法与例题

三重积分的计算方法: 三重积分的计算是化为三次积分进行的。其实质是计算一个定积分(一重积分)和一个二重积分。从顺序看: 如果先做定积分?2 1),,(z z dz z y x f ,再做二重积分??D d y x F σ),(,就是“投 影法”,也即“先一后二”。步骤为:找Ω及在xoy 面投影域D 。多D 上一点(x,y )“穿线”确定z 的积分限,完成了“先一”这一步(定积分);进而按二重积分的计算步骤计算投影域D 上的二重积分,完成“后二”这一步。σd dz z y x f dv z y x f D z z ??????Ω =2 1]),,([),,( 如果先做二重积分??z D d z y x f σ),,(再做定积分?2 1 )(c c dz z F ,就是“截面 法”,也即“先二后一”。步骤为:确定Ω位于平面21c z c z ==与之间,即],[21c c z ∈,过z 作平行于xoy 面的平面截Ω,截面z D 。区域z D 的边界曲面都是z 的函数。计算区域z D 上的二重积分??z D d z y x f σ),,(,完成 了“先二”这一步(二重积分);进而计算定积分?2 1 )(c c dz z F ,完成“后 一”这一步。dz d z y x f dv z y x f c c D z ]),,([),,(2 1σ??????Ω = 当被积函数f (z )仅为z 的函数(与x,y 无关),且z D 的面积)(z σ容易求出时,“截面法”尤为方便。 为了简化积分的计算,还有如何选择适当的坐标系计算的问题。可以按以下几点考虑:将积分区域Ω投影到xoy 面,得投影区域D(平面) (1) D 是X 型或Y 型,可选择直角坐标系计算(当Ω的边界曲

高等数学求极限的14种方法

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (1)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (2)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2. 极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。 要特别注意判定极限是否存在在: (1)数列{} 的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (2)A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (3) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (4) 单调有界准则 (5)两边夹挤准 (夹逼定理/夹逼原理) (6) 柯西收敛准则(不需要掌握)。极限 )(lim 0 x f x x →存在的充分必要条件。是: ε δεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况: (1)“ 00”“∞ ∞ ”时候直接用 (2)“∞?0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒数形式了。通

利息计算方法及例题

各种利息计算方法例题 利息计算基本公式:利息=本金×利率×存期=本金×天数×日利率=本金×月数×月利率 税后利息=利息×80% 天数计算=月×30天+另头天数(如4月24日即为144天) 利率表示法:%代表年利率,‰代表月利率,万分比代表日利率。 1、活期储蓄存单:按实际存期有一天算一天,大小月要调整。现行日利率为每天元。 例:2006年2月18日存入的活期存单一张,金额为1000元,于06年05月08日支取。问应实付多少利息? 解:(158-78-1)天×万×元×80%=元 2、定期存款利息计算: A、提前支取按活期存单的计算方法计算。 B、到期支取的利息=本金×年利率×年数 C、过期支取的利息=到期息+过期息(到期息参照B,过期息参照A) 实付利息=应付利息×80% 例:※2006年03月16日存入一年期存款一笔,金额为50000元,于2006年9月3日支取,利率为%,问应付给储户本息多少? 解:实付息=(273-106+4)天×5万×元×80%=元 本息合计=50000+=元 ※2001年6月16日存入五年期存款一笔,金额为20000元,利率为%,于2006年6月16日支取,问应实付多少利息? 解:实付息=20000×%×5年×80%=2304元. ※2003年01年27日存入三年期存款一笔,金额为12000元,利率%,于2006年6月16日支取,问实付利息为多少? 解:到期息=12000×%×3年=元 过期息=(196-57+1)×万×元=元 实付利息=(到期息+过期息)×80%=+×=元. 3、利随本清贷款利息计算:方法与活期存单一样,按头际天数有一天算一天。逾期归还的,

极限计算方法及例题

极限计算方法总结 《高等数学》是理工科院校最重要的基础课之一,极限是《高等数学》的重要组成部分。求极限方法众多,非常灵活,给函授学员的学习带来较大困难,而极限学的好坏直接关系到《高等数学》后面内容的学习。下面先对极限概念和一些结果进行总结,然后通过例题给出求极限的各种方法,以便学员更好地掌握这部分知识。 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的 极限严格定义证明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且;5)13(lim 2 =-→x x ;???≥<=∞→时当不存在,时当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需 再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,) ()(lim 成立此时需≠= B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时, 不能用。 3.两个重要极限 (1) 1sin lim =→x x x (2) e x x x =+→1 )1(lim ; e x x x =+∞→)11(l i m 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim =→x x x ,e x x x =--→21 ) 21(lim ,e x x x =+ ∞ →3)31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有:

利率表示方法和利息的计算方法

利息计算方法及例题 各种利息计算方法例题 利息计算基本公式:利息=本金×利率×存期=本金×天数×日利率=本金×月数×月利率 税后利息=利息×80% 天数计算=月×30天+另头天数(如4月24日即为144天) 利率表示法:%代表年利率,‰代表月利率,万分比代表日利率。 1、活期储蓄存单:按实际存期有一天算一天,大小月要调整。现行日利率为每天0.2元。 例:2006年2月18日存入的活期存单一张,金额为1000元,于06年05月08日支取。问应实付多少利息? 解:(158-78-1)天×0.1万×0.2元×80%=1.26元 2、定期存款利息计算: A、提前支取按活期存单的计算方法计算。 B、到期支取的利息=本金×年利率×年数 C、过期支取的利息=到期息+过期息(到期息参照B,过期息参照A) 实付利息=应付利息×80% 例:※2006年03月16日存入一年期存款一笔,金额为50000元,于2006年9月3日支取,利率为2.2 5%,问应付给储户本息多少? 解:实付息=(273-106+4)天×5万×0.2元×80%=136.80元 本息合计=50000+136.8=50136.80元 ※ 2001年6月16日存入五年期存款一笔,金额为20000元,利率为2.88%,于2006年6月16日支取,问应实付多少利息? 解:实付息=20000×2.88%×5年×80%=2304元. ※ 2003年01年27日存入三年期存款一笔,金额为12000元,利率2.52%,于2006年6月16日支取,问实付利息为多少? 解:到期息=12000×2.52%×3年=907.2元 过期息=(196-57+1)×1.2万×0.2元=33.60元 实付利息=(到期息+过期息)×80%=(907.2+34.08)×0.8=752.64元. 3、利随本清贷款利息计算:方法与活期存单一样,按头际天数有一天算一天。逾期归还的,逾期部分按每天3/万计算。(现行计算方法是按原订利率的50%计算罚息) ※例:某户于2006年2月3日向信用社借款30000元,利率为10.8‰,定于2006年8月10日归还,若贷户于2006年7月3日前来归还贷款时,问应支付多少利息? 解:利息=(213-63+0)天×(10.8‰÷30)×30000元=1620元. ※例:某户于2005年10月11日向信用社借款100000元,利率为9.87‰,定于2006年5月10日到期,贷户于2006年6月15日前来归还贷款,问应支付多少利息? 解:利息=(160+360-311+2)天×100000元×(9.87‰÷30)+(195-160+1)天×100000元×(9.87‰÷30×1.5)=6941.90+1776.60=8718.50元 4、定活两便利息计算:存期不足三个月按活期存款利率计算。三个月以上六个月以下的整个存期按定期三个月的利率打六折计算,六个月以上一年以下的整个存期按定期六个月的利率打六折计算,超过一年的整个存期都按一年期利率打六折算。日期有一天算一天. 例:某存款户于2005年3月1日存入10000元定活两便存款,分别于2005年8月4日、2005年9月1 5日、2006年6月16日支取,问储户支取时分别能得多少利息?(三个月利率为1.71%,半年利率为2.0 7%,一年利率为2.25%) 解:2005年8月4日支取时可得利息=(244-91+3)天×(1.71%÷360)×10000元×60%×80%=35.57元. 2005年9月15日可得利息=(285-91+4)天×(2.07%÷360)×10000元×60%×80%=54.65元.

利息计算试题

职业技能鉴定——利息计算(观摩用) 单位____姓名____考号____分数____ 1、客户2008年10月30日存入1年期整存整取定期储蓄存款5000元,于2009年10月31日清户,应付该储户的利息是多少? 2、客户2000年1月2日存入定活两便储蓄存款1000元,于2000年7月2日清户,应付该储户的利息是多少? 3、客户1995年12月2日存入活期储蓄存款10000元,于1996年6月28日清户,应付该储户的利息是多少? 4、客户1996年6月15日存入10000元3年期存本取息定期储蓄,约定每三个月取息一次。求每次支取利息的金额是多少? 5、客户1996年4月30开户,存入1年期整存零取7200元,约定每3个月支取一次,求到期清户时应支付储户多少利息? 6、客户2000年1月2日开户,存入通知存款(1天通知)50000元,于2001年2月2日清户,应付该储户的利息是多少? 7、客户1997年11月开户了零存整取帐户,每月存入100元,1年期,连续存满,存款余额为1200元,到期应付的利息是多少? 8、客户2000年5月21日存入6个月整存整取定期储蓄存款4000元,2000年11月21日支取,应付该储户的利息是多少? 9、客户2000年1月5日存入定活两便储蓄存款3000元,于2002年4月11日清户,应付该储户的利息是多少? 10、客户2002年4月8日存入活期储蓄存款8500元,于2002年6月29日清户,应付该储户的利息是多少?

职业技能鉴定——利息计算答案(观摩用) 1、5000×1×3.6%=180元 2、1000×7×2.16%÷12×60%=7.56元 1000×7×2.16%÷12×60%×20%=1.51元 7.56-1.51=6.05元 3、10000×2.97%÷360×206=169.95元(无税) 4、10000×3×9.18%÷12=229.50元(无税) 5、支取次数:12月÷3=4次 每期平均支取本金为:7200×4=1800元 到期支付利息:(7200+1800)÷2×4×3×9%÷12=405元 6、50000×370×1.35%÷360=693.75元 7、(1200+100)×12÷2×4.14%÷12=26.91元 8、应付储户利息:4000×6×2.16%÷12=43.20元 应扣利息税:43.2×20%=8.64元 支付储户利息:43.20-8.64=34.56元 9、3000×1.98%×816÷360×60%=80.78元 80.7-80.78×20%=64.62元 10、应付储户利息:8500×0.72%×81÷360=13.77元 应扣利息税: 13.77×20%=2.75元 支付储户利息:13.77-2.75=11.02元

利息计算题练习答案1

姓名准考证号等级:初级支取日期:2005年5月19日 储种序 号 开户日 期 存 期 本金(元)利息计算(列式) 税后利 息 零存整取1 2000年5月 19日 五年980.00 980*1830*2.25%/12*0.8 2690.1 2 2004年5月 19日 一年50.00 50*78*1.71%/12*0.8 4.45 3 2002年5月 19日 三年370.00 370*666*1.89%/12*0.8 310.49 整存整取4 2004年3月 28日 一年5,900.00 5900*1.98%*0.8=93.46 (5900+93)*51*0.72%/360*0.8=4.89 98.35 5 2005年2月 19日 3个 月 5,600.00 5600*3*1.71%/12*0.8 19.15 6 2002年7月 28日 三年600.00 600*1011*0.72%/360*0.8 9.71 7 2003年5月 19日 二年4,300.00 4300*2*2.25%*0.8 154.80 8 2000年1月 15日 五年6,000.00 6000*5*2.88%*0.8=691.20 (6000+691)*124*0.72%/360*0.8=13.27 704.47 定活两便9 2002年3月 25日 5,700.00 5700*1134*2.25%/360*0.8*0.6 193.91 活期存款10 2004年7月 23日 8,500.00 8500*296*0.72%360*0.8 40.26 得分标 准 得 分 15分 签名 参考人监考 实 际 得 考评员组长考核日期

计算方法简明教程习题全集及解析

例1 已知数据表 xk 10 11 12 13 f(xk) 2.302 6 2.397 9 2.484 9 2.564 9 试用二次插值计算f(11.75)(计算过程保留4位小数).并回答用线性插值计算f(11.75),应取 哪两个点更好? 解因为11.75更接近12,故应取11,12,13三点作二次插值.先作插值基函数.已知x0=11, y0=2.397 9,x1=12, y1=2.484 9 ,x2=13, y2=2.564 9 P2(x)=y0l0(x)+y1l1(x)+y2l2(x) P2(x)= f(11.75)?P2(11.75)= =2.463 8 若用线性插值,因为所求点x=11.75在11与12之间,故应取x=11,x=12作线性插值合适.注:在作函数插值时,应根据要求,使所求位于所取的中央为好,任意取点一般近似的效果 差些.第五章插值与最小二乘法 5.1 插值问题与插值多项式e x 实际问题中若给定函数是区间上的一个列表函数 ,如果,且f(x)在区间上是连续的,要求用一个简单的,便于计算的解析表达式在区间上近似f(x),使 (5.1.1) 就称为的插值函数,点称为插值节点,包含插值节点的区间称为插值区间. 通常,其中是一组在上线性无关的函数族,表示组成的函数空间表示为

(5.1.2) 这里是(n+1)个待定常数,它可根据条件(5.1.1)确定.当 时,表示次数不超过n次的多项式集合, ,此时 (5.1.3) 称为插值多项式,如果为三角函数,则为三角插值,同理还有 分段多项式插值,有理插值等等.由于计算机上只能使用+、-、×、÷运算,故常用的就是多项式、分段多项式或有理分式,本章着重讨论多项式插值及分段多项式插值,其他插值问题不讨论. 从几何上看,插值问题就是求过n+1个点的曲线,使它近似于已给函数,如图5-1所示. 插值法是一种古老的数学方法,它来自生产实践.早在一千多年前,我国科学家在研究历法时就应用了线性插值与二次插值,但它的基本理论却是在微积分产生以后才逐步完善的,其应用也日益广泛.特别是由于计算机的使用和航空、造船、精密机械加工等实际问题的需要,使插值法在理论上和实践上得到进一步发展.尤其是近几十年发展起来的样条(Spline)插值,获得了极为广泛的应用,并成为计算机图形学的基础. 本章主要讨论如何求插值多项式、分段插值函数、三次样条插值、插值多项式的存在唯一性及误差估计等.此外,还讨论列表函数的最小二乘曲线拟合问题与正交多项式. 讲解: 插值多项式就是根据给定n+1个点,求一个n次多项式: 使 即

求极限的方法及例题总结

1.定义: 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:;5 )13(lim 2 =-→x x (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 利用导数的定义求极限 这种方法要求熟练的掌握导数的定义。 2.极限运算法则 定理1 已知)(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有(1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3) )0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。

. 利用极限的四则运算法求极限 这种方法主要应用于求一些简单函数的和、乘、积、商的极限。通常情况下,要使用这些法则,往往需要根据具体情况先对函数做某些恒等变形或化简。 8.用初等方法变形后,再利用极限运算法则求极限 例1 1213lim 1 --+→x x x 解:原式=4 3)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。 注:本题也可以用洛比达法则。 例2 ) 12(lim --+∞ →n n n n 解:原式= 2 3 11213lim 1 2)]1()2[(lim = -++ = -++--+∞ →∞ →n n n n n n n n n n 分子分母同除以 。 例3 n n n n n 323)1(lim ++-∞→

相关文档
最新文档