求极限的方法总结
求极限的方法,(自己总结的)

求极限的常用方法1.直接代入法:对于初等函数f( )的极限, , 若f( )在0处的函数值f( 0)存在, 即。
直接代入法的本质就是只要将= 0代入函数表达式, 若有意义, 其极限就是该函数值(称为“能代则代”)。
例I: 求极限(1)(2)(3)解: (1)(2)(3)2.变型法(包括两个重要极限)通俗地说代入后无意义的极限称为不定式, (如0/0,∞/∞,∞-∞等)此时若极限存在往往要变形后才可看出。
例I: 求极限(1)(2)解: (1)(2)两个重要极限是和, 第一个重要极限过于简单且可通过等价无穷小来实现。
主要考第二个重要极限。
例I: 求极限解:例II: 求极限【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1, 再凑, 最后凑指数部分。
解:3.利用连续性定义。
例I: 求解:y= 可看作由y= 与复合而成。
因为= , 而函数y= 在点u= 连续, 所以=例II: 求解: =例III: 求解:因为 利用定理3及极限的运算法则, 便有4.利用无穷小、无穷大的关系【说明】(1)常见等价无穷小有:当0→x 时,~)1ln(~arctan ~arcsin ~tan ~sin ~x x x x x x +1e x -, ()abx ax x x b ~11,21~cos 12-+- 例1: 求极限解 002ln(1)lim lim 211cos 2x x x x x x x x →→+⋅==- 例2: 求极限 解x x x x 30tan sin lim -→613lim 31cos lim sin lim 222102030-=-==-=-=→→→xx x x x x x x x x 例3因式代替规则x x x x 3sin tan lim 0-→x x x x 30)1cos 1(sin lim -=→212lim 330==→x x x 5.利用极限的性质法(如四则运算)利用极限的4则运算法则, , ,例1: 求解:先用 除分子和分母, 然后求极限, 得52123lim 232+---∞→x x x x x 020512123lim 332==+---=∞→x x x x x x 例2: 求解, 因为分母的极限 , 不能应用商的极限的运算法则, 但因 所以∞=+--→4532lim 21x x x x6.洛必达法则(求不定式极限)定理一 设(1) 当x 时, f(x)及F (x )都趋向于零;(2) 在点a 的某一去心领域内, f ’(x)及F ’(x)都存在且F ’(x)≠o ;(3) )(')('lim x F x f a x →存在(或为无穷大); 那么 )(')('lim )()(lim x F x f x F x f a x a x →→=定理二 设(1) 当x 时,∞→函数f(x)及F(x)都趋向于零;(2) 当;)都存在,且与时0('F )(')('x ≠>x x F x f N (3) 或为无穷大),存在()(')('lim x F x f x ∞→ 那么 )x F x f x F x f x (')('lim )()(lim x ∞→∞→= 例1: 求解: 原式=例2: 求 >0)解: 原式=例3: 求解: 原式=7.积分法积分求极限法:例一: 求 。
求极限的计算方法总结

千里之行,始于足下。
求极限的计算方法总结极限是数学中重要的概念,它描述了函数在某一点无限接近于某个值的性质。
计算极限是数学分析中的基础内容,对于解决数学问题和理解函数的行为至关重要。
下面将总结一些计算极限的常见方法。
1.代入法:当极限的表达式中存在某个点的函数值不存在时,可以通过代入法来计算极限。
代入法即将极限的定义中与某些点不全都的部分进行代入,然后计算出相应的极限值。
2.分子分母有理化:当极限表达式中含有分数,且分母中有根式时,可以将分子分母有理化,即通过乘以分子分母的共轭形式,将根式消去。
3.利用无穷小量的性质:当极限表达式中存在无穷小量时,可以利用无穷小量的性质进行计算。
例如,常见的无穷小量的性质有:a.加减无穷小量仍旧是无穷小量;b.有界函数与无穷小量相乘仍旧是无穷小量;c.有限次幂无穷小量也是无穷小量等。
4.利用极限的四则运算法则:对于四则运算,极限也有相应的运算法则。
常见的极限运算法则有:a.加减法则:lim(f(x) ± g(x)) = lim f(x) ± lim g(x)b.乘法法则:lim(f(x) * g(x)) = lim f(x) * lim g(x)c.除法法则:lim(f(x) / g(x)) = lim f(x) / lim g(x),其中lim g(x) ≠ 0d.复合函数法则:lim(f(g(x))) = lim f(g(x)), when lim g(x) exists第1页/共2页锲而不舍,金石可镂。
5.利用夹逼定理:当极限表达式无法直接计算时,可以利用夹逼定理进行计算。
夹逼定理规定了假如存在两个函数h(x)和i(x),使得对于足够大的x,h(x) ≤ f(x) ≤i(x),且lim h(x) = lim i(x) = L,则lim f(x)也等于L。
6.利用洛必达法则:洛必达法则可用于计算形如lim(f(x)/g(x))的不定型极限,其中f(x)和g(x)在极限点四周连续可导。
求极限的几种方法

求极限的几种方法在数学分析中,求极限是一种重要的技巧和方法,用于研究数列、函数的收敛性和特性。
对于求极限的方法,可以总结为以下几类:代入法、夹逼法、等价无穷小代换法、洛必达法则、泰勒展开精确到n次、换元法、分数分解法、递归关系法等。
一、代入法:代入法是求函数极限的最基本的方法之一,适用于绝大多数最简单的函数。
通过将自变量值代入函数中,得到具体的函数值,看函数的值是否有限并趋于确定的值,如果有限且趋于确定的值,则可以认为该函数极限存在,并等于该确定的值。
当然,代入法只是一种相对简单和直观的方法,并不适用于复杂函数的极限计算。
二、夹逼法:夹逼法也被称为迫敛法或挤压定理,适用于数列或函数的极限计算。
当数列或函数存在上、下界,且上、下界的极限都为所求极限时,可以通过夹逼法来证明所求极限的存在并求得。
三、等价无穷小代换法:等价无穷小代换法是一种常用的得到极限的方法之一,将一个复杂的极限问题转化成一个简单的等价无穷小求极限问题。
其主要思想是将原函数与理论已知的函数进行比较,找出它们之间的等价关系,进而得到原函数的极限。
常用的等价无穷小有:指数、对数、三角函数等。
四、洛必达法则:洛必达法则是求函数极限的常用方法之一,主要用于求解0/0型或∞/∞型的极限。
其基本思想是将函数的极限转化成求导数的极限。
通常情况下,通过不断使用洛必达法则,可以通过求多次极限最终得到函数的极限。
五、泰勒展开精确到n次:对于有限次求导的函数,可以使用泰勒展开式来近似估计函数极限。
泰勒展开式是用若干项之和来逼近一个函数的方法,通过将函数展开成多项式形式,可以在一定程度上表示出原函数的性质。
通常情况下,使用泰勒展开精确到n次可以更加准确地求得函数的极限。
六、换元法:换元法也称为特殊换元法,通过选择合适的换元变量,将原来复杂的极限问题转化成更加简单的极限计算问题。
常见的换元方法有:取代法、正弦替换法、余弦替换法、平方根替换法等。
七、分数分解法:分数分解法是一种常用的计算复杂函数极限的方法,通过将极限问题利用分式相除的形式,将复杂的极限表达式化简成多个简单函数之比的极限表达式,进而进行求解。
求极限方法总结

求极限方法总结求极限方法总结第一篇1、等价无穷小的转化,〔只能在乘除时候使用,但是不是说肯定在加减时候不能用,前提是必需证明拆分后极限依旧存在,e的X次方-1或者〔1+x〕的a次方-1等价于Ax等等。
全部熟记〔x趋近无穷的时候还原成无穷小〕。
2、洛必达法则〔大题目有时候会有示意要你使用这个方法〕。
首先他的使用有严格的使用前提!必需是X趋近而不是N趋近!〔所以面对数列极限时候先要转化成求x趋近状况下的极限,当然n趋近是x趋近的一种状况而已,是必要条件〔还有一点数列极限的n当然是趋近于正无穷的,不行能是负无穷!〕必需是函数的导数要存在!〔假如告知你g〔x〕,没告知你是否可导,直接用,无疑于找死!!〕必需是0比0无穷大比无穷大!当然还要留意分母不能为0。
洛必达法则分为3种状况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷〔应为无穷大于无穷小成倒数的关系〕所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。
对于〔指数幂数〕方程方法主要是取指数还取对数的方法,这样就能把幂上的'函数移下来了,就是写成0与无穷的形式了,〔这就是为什么只有3种形式的缘由,LNx 两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0〕。
3、泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变留意!〕E的x展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。
4、面对无穷大比上无穷大形式的解决方法,取大头原则最大项除分子分母!!!看上去冗杂,处理很简洁!5、无穷小于有界函数的处理方法,面对冗杂函数时候,尤其是正余弦的冗杂函数与其他函数相乘的时候,肯定要留意这个方法。
面对特别冗杂的函数,可能只需要知道它的范围结果就出来了!6、夹逼定理〔主要对付的是数列极限!〕这个主要是观察极限中的函数是方程相除的形式,放缩和扩大。
求极限的13种方法

求极限的13种方法求极限的方法有很多种,以下列举了常见的13种方法和技巧,以帮助解决各种极限问题。
1.代入法:将极限中的变量代入表达式中,简化计算。
这通常适用于简单的多项式函数。
2.夹逼定理:当一个函数夹在两个趋向于相同极限的函数之间时,函数的极限也趋向于相同的值。
3.式子分解:通过将复杂的函数分解成更简单的部分,可以更容易地计算极限。
4.求导法则:使用导数的性质和规则来计算函数的极限。
这适用于涉及导数的函数。
5.递归关系:如果一个函数的递归关系式成立,可以使用递归关系来计算函数的极限。
6.级数展开:将函数展开成无穷级数的形式,可以使用级数的性质来计算函数的极限。
7.泰勒级数:对于可微的函数,可以通过使用泰勒级数来近似计算函数的极限。
8. 洛必达法则:如果一个函数的极限形式是$\frac{0}{0}$或$\frac{\infty}{\infty}$,可以使用洛必达法则来计算极限。
该法则涉及对分子分母同时求导的操作。
9.极限存在性证明:通过证明一个函数在一些点上的左极限和右极限存在且相等,可以证明函数在该点上的极限存在。
10.收敛性证明:对于一个序列极限,可以通过证明序列是有界且单调递增或单调递减的来证明其极限存在。
11.极限值的判断:根据函数的性质,可以判断函数在一些点上的极限是多少。
12.替换法:通过将变量替换为一个新的变量,可以使函数更容易计算极限。
13.反证法:通过假设极限不存在或不等于一些特定值,来推导出矛盾的结论,从而证明极限存在或等于一些特定值。
这些方法并非完整的极限求解技巧列表,但是它们是最常见和基本的方法。
在实际问题中,可能需要结合使用多种方法来求解复杂的极限。
高数中求极限的16种方法

千里之行,始于足下。
高数中求极限的16种方法在高等数学中,求极限是一个格外重要的技巧和考点。
为了解决各种极限问题,数学家们总结出了很多方法和技巧。
以下是高数中求极限的16种方法:1.代换法:将极限中的变量进行代换,使其变成简洁计算的形式。
2.夹逼准则:当函数处于两个已知函数之间时,可以通过比较已知函数的极限来确定未知函数的极限。
3.无穷小量比较法:比较两个函数的无穷小量的大小,以确定它们的极限。
4.利用函数性质:利用函数的对称性、奇偶性等性质来计算极限。
5.利用恒等变形:将极限式子进行恒等变形,以将其转化为简洁计算的形式。
6.利用泰勒开放:将函数开放成无穷级数的形式,以求出极限。
7.利用洛必达法则:对于某些不定型的极限,可以利用洛必达法则将其转化为可计算的形式。
8.利用级数或累次求和:将极限式子转化为级数或累次求和的形式,以求出极限。
9.利用积分计算:将极限式子进行积分计算,以求出极限。
10.利用微分方程:将极限问题转化为求解微分方程的问题,以求出极限。
第1页/共2页锲而不舍,金石可镂。
11.利用积素等价:将极限式子进行积素等价,以求出极限。
12.利用无穷增减变异法:通过凑出一个等价变形,将极限问题转化为比较某些函数值的大小。
13.利用不等式:通过找到合适的不等式,对函数进行估量,以求得极限。
14.利用递推公式:对于递归定义的函数,可以通过递推公式求出极限。
15.利用导数性质:利用函数的导数性质,对极限进行计算。
16.利用对数和指数函数的性质:利用对数和指数函数的特性,求出极限。
除了上述方法外,还有很多其他的方法和技巧,可以依据具体问题来选择使用。
这些方法和技巧的使用需要机敏把握,通过大量的练习和思考,可以在求解极限问题中得到娴熟应用。
几种求极限方法的总结

几种求极限方法的总结求极限是数学中常见的一种运算方法,通过确定变量趋近于一些特定值时的极限值,可以得到一些重要的数学结论和性质。
在数学中,常用的求极限方法主要包括代入法、夹逼定理、换元法、洛必达法则和级数展开法等。
下面对这些方法进行总结。
1.代入法:代入法是求极限的最基本也是最常用的方法之一、该方法的基本思想是将待求极限的表达式中的变量用一些特定的值替代,然后计算得到的函数值,以此来确定极限值。
代入法特别适用于求一些基本极限,如常数的极限、指数函数的极限和三角函数的极限等。
2.夹逼定理:夹逼定理也称为两边夹定理,是一种常用的求极限方法。
它的基本思想是通过找到两个函数,使得它们的极限值分别接近于待求极限值,而且夹逼在它们之间。
这两个函数的极限值可以比较容易地求得,从而通过夹逼定理求出待求极限的值。
夹逼定理常用于求一些复杂函数的极限,如无理函数和乘积、商函数等。
3.换元法:换元法又称为代换法,是一种常用的求极限方法。
该方法的基本思想是通过对待求极限的表达式进行变量替换,将其转化为一个可以比较容易计算的形式。
通过选取合适的变量替换方式,可以使得原表达式中的一些难以计算的部分简化,从而更容易求得极限的值。
换元法特别适用于一些复杂的函数、无穷级数或指数函数等。
4.洛必达法则:洛必达法则是一种求极限的重要方法,尤其适用于求函数之商的极限。
该方法的基本思想是将待求极限转化为求两个函数的导数的极限,然后利用导数的性质来确定极限值。
通过使用洛必达法则,可以简化一些分数形式的极限,使得求解过程更加简单明了。
但需要注意的是,使用洛必达法则时,必须保证函数和导数满足一些特定的条件,如充分可导、分子分母都趋于零或无穷等。
5.级数展开法:级数展开法是一种求极限的常用方法,尤其适用于求函数的幂级数展开形式。
该方法的基本思想是将函数在一些点附近进行泰勒级数展开,然后将其转化为级数的形式。
通过截取级数中的有限项或考虑级数的收敛性,可以确定原函数的极限值。
求极限的计算方法总结

求极限的计算方法总结在数学中,极限是一种重要的概念,用于描述一个函数或者数列在一些点或无穷远处的趋势。
计算极限是解决微积分、数学分析以及其他数学领域中问题的基础。
极限的计算方法种类繁多,以下是一些常见的极限计算方法的总结:1.代入法:直接将要计算的极限值代入函数中。
这个方法通常适用于简单的极限,例如多项式的极限。
2. 分子有理化法:对于含有根式的极限,可以通过有理化方法将分子有理化,从而更容易求得极限。
例如,对于极限lim(x->0)((sinx)/x),可以通过将分子分母都乘以(conj(x))来有理化。
3. 倍角公式和和差化积公式:对于一些三角函数的极限,可以使用倍角公式或和差化积公式进行化简。
例如,对于极限lim(x->0)((sin2x)/(x^3)),可以使用倍角公式将分子化简为2*sin(x)*cos(x),进而求得极限。
4. 指数函数和对数函数的性质:对于一些指数函数和对数函数的极限,可以利用它们的性质进行计算。
例如,对于极限lim(x->0)(e^x-1)/x,可以利用指数函数的性质e^0=1进行计算。
5. L'Hospital法则:L'Hospital法则是求解一些特定类型极限的强大工具。
该法则适用于极限形式为0/0或无穷/无穷的情况。
它的基本思想是将函数的求导转化为简化问题。
例如,对于极限lim(x->0)((sinx)/x),可以使用L'Hospital法则将其转化为lim(x->0)(cosx)/1=16. 夹逼准则:夹逼准则适用于求解一些不能直接计算的极限,它的基本思想是找到两个函数夹住要计算的函数,并且这两个函数的极限相等。
然后可以利用夹逼准则得到要计算函数的极限。
例如,对于极限lim(x->0)(x*sin(1/x)),我们可以利用夹逼准则,将其夹逼在两个函数0和x之间,从而得到0。
7. 泰勒级数展开:对于一些复杂的函数,可以利用泰勒级数展开来近似求解极限。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
求极限的方法总结
1.约去零因子求极限
例1:求极限11lim
41--→x x x
【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。
【解】4)1)(1(lim 1)
1)(1)(1(lim
2121=++=-++-→→x x x x x x x x 习题:2
33
lim 9x x x →-- 22121lim 1x x x x →-+-
2.分子分母同除求极限
例2:求极限13lim 3
2
3+-∞→x x x x
【说明】∞∞
型且分子分母都以多项式给出的极限,可通过分子分母同除来求。
【解】3131lim 13lim 3
11323=+-=+-∞→∞→x x
x x x x x
【注】(1) 一般分子分母同除........x .的最高次方;......且一般...x .是趋于无穷的......
⎪⎪⎩⎪⎪⎨⎧
=<∞>=++++++----∞→n
m b a n m n m b x b x b a x a x a n
n
m m m m n n n n x 0lim 01101
1
习题 3232342lim 753x x x x x →∞+++-
n 1+13lim 3n n n n n +→∞++(-5)(-5)
n
n n
n n 323)1(lim
++-∞→
3.分子(母)有理化求极限
例1:求极限)
13(lim 22+-++∞→x x x
【说明】分子或分母有理化求极限,是通过有理化化去无理式。
【解】
1
3)
13)(13(lim
)13(lim 2222222
2+++++++-+=+-++∞
→+∞
→x x x x x x x x x x
1
32lim
2
2
=+++=+∞
→x x x
例2:求极限30
sin 1tan 1lim
x x
x x +-+→
【解】
x x x x
x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim
3030
+-+-=+-+→→
41
sin tan lim 21sin tan lim
sin 1tan 11
lim
30300
=-=-+++=→→→x x x x x x x
x x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键
习题:lim
1
x x →∞
+
12
13lim
1
--+→x x x
4.用函数的连续求极限(当函数连续时,它的函数值就是它的极限值...................
) 22
034lim 2x x x x →+++ 【其实很简单的】
5.利用无穷小与无穷大的关系求极限
例题
3
x → 【给我最多的感觉,就是:当取极限时,分子不为
0而分母为0时 就取倒数!】
6. 有界函数与无穷小的乘积为无穷小
例题
sin lim
x x x →∞ , arctan lim
x x
x →∞
7.用等价无穷小量代换求极限
【说明】
(1)常见等价无穷小有:
当0→x 时,~)1ln(~arctan ~arcsin ~tan ~sin ~x x x x x x +1e x
-,
()abx ax x x b
~11,21~
cos 12-+-;
(2) 等价无穷小量代换,只能代换极限式中的因式..; (3)此方法在各种求极限的方法中应作为首选.....。
例1:求极限0
ln(1)
lim
1cos x x x x →+=
-
【解】
02ln(1)lim
lim 211cos 2x x x x x x
x x
→→+⋅==-.
例2:求极限x x x x 3
0tan sin lim
-→
【解】x
x x x 30tan sin lim -→613lim 31cos lim sin lim 22
2102030-=-==-=-=→→→x x x x x x x x x x 习题
)arctan()31ln(lim 20x x x x +→ x x x x sin )1sin tan(lim 2
0→
x x e e x x x sin lim sin 0--→
x →
8.应用两个重要极限求极限
两个重要极限是1sin lim 0=→x
x
x 和e x n x x x n n x x =+=+=+→∞→∞→1
0)1(lim )11(lim )11(lim ,第
一个重要极限过于简单且可通过等价无穷小来实现。
主要考第二个重要极限。
说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式,
例如:133sin lim 0=→x x x ,e x x x =--→21
0)21(lim ,e x x
x =+∞
→3)31(lim ;等等。
例1:求极限x
x x x ⎪⎭
⎫ ⎝⎛-++∞→11lim
【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X
1
+,最后凑指数部分。
【解】22
21212112111lim 121lim 11lim e x x x x x x x x
x x x =⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+--+∞→+∞→+∞→ 例2 2
03cos 1lim
x x
x -→
解:原式=61
)
2
(122sin 2lim 32sin 2lim 22
02
2
=⋅=→→x x
x x x x 例3
x
x x 20
)
sin 31(lim -→
解:原式=6
sin 6sin 31
sin 6sin 310]
)
sin 31[(lim )sin 31(lim ---→-⋅
-→=-=-e x x x
x x
x x
x
x x 。
例4n
n n n )12(
lim +-∞
→
解:原式=
31
331
1
331])131[(lim )131(lim -+--+∞→+-⋅
-+∞→=+-+=+-+e n n n n
n n n n
n n
习题:(1)x x x ⎪⎭⎫ ⎝⎛-+∞→211lim ;(2)已知82lim =⎪⎭⎫
⎝⎛-++∞
→x
x a x a x ,求a
9.夹逼定理求极限
例题:极限⎪⎪⎭
⎫
⎝⎛++
++++∞→n n n n n 2221
2111lim 【说明】两边夹法则需要放大不等式,常用的方法是都换成最大的或最小的。
【解】⎪⎪⎭⎫
⎝⎛++
++++∞→n n n n n 2221
211
1lim 因为
1
1
21112
2
2
2
2
+≤
++
++++≤
+n n n
n n n n n n
又n
n n
n +∞
→2lim
11
lim
2
=+=∞
→n n
n
所以⎪⎪⎭
⎫
⎝⎛++
++++∞→n n n n n 2221
211
1lim =1 习题: 证明下列极限
n 1lim 11n →∞
+
= 222n 111lim (...)12n n n n n πππ
→∞+++=+++
10. 数列极限中等比等差数列公式应用(等比数列的公比q 绝对值要小于1)。
11. .利用1n n x x +和与极限相同求极限
例题: 已知),2,1(,2,211
=+==+n x x x n n ,求n n x ∞
→lim
解:易证:数列}{n x 单调递增,且有界(0<
n x <2),由准则
1极限n n x ∞
→lim
存在,设
a x n n =∞
→lim 。
对已知的递推公式 n
n x x +=+21两边求极限,得:
a
a +=2,解得:2=a 或1-=a (不合题意,舍去)
所以
2lim =∞
→n n x 。
12.换元法 求极值
此后,还将学:
13.用导数定义求极限
14.利用洛必达法则求极限
15.利用泰勒公式求极限
16.利用定积分的定义求极限
17.利用级数收敛的必要条件求极限。