机械原理重要概念
科普机械了解机器与运动的原理

科普机械了解机器与运动的原理在我们的日常生活中,机器无处不在。
从简单的家用电器,到复杂的工业设备,机械在我们的生活中起到了重要的作用。
然而,对于大多数人来说,机器的原理和运动方式仍然是一个神秘的领域。
在本文中,我们将科普机械的基本原理,以帮助读者更好地了解和掌握机器的使用和维护。
一、机械的基本原理在了解机器的工作原理之前,我们首先需要了解几个基本概念:力、质量、摩擦、动力等。
这些概念是理解机械原理的基础。
1. 力:力是物体相互作用时产生的作用效果。
它可以改变物体的运动状态,如加速、减速或改变方向。
力的单位是牛顿(N)。
2. 质量:质量是物体所固有的属性,它影响物体对力的响应。
质量越大,物体对力的响应越小。
质量的单位是千克(kg)。
3. 摩擦:摩擦是物体间的相互阻力,它阻碍了物体的运动。
摩擦力的大小取决于物体表面的粗糙程度和相互接触的压力。
4. 动力:动力是物体的运动能力,它包括速度和加速度两个方面。
物体的动力可以通过外力的作用来改变。
二、机器的工作原理机器的工作原理基于力、质量、摩擦和动力等基本概念。
机器通过将外部能量转化为机械能量,实现所需的功能。
1. 杠杆原理:杠杆是一种简单机械,它可以通过改变力的作用点和作用方向,实现力的平衡和增强。
杠杆的作用原理基于力的平衡和转移。
2. 轮轴原理:轮轴是机械中常见的元件,它可以通过改变力的大小、方向和转动速度,实现力的传递和运动变换。
3. 齿轮原理:齿轮是一种传动装置,它通过齿轮之间的啮合,实现力和运动的传递。
齿轮的大小和齿数的变化可以改变传动比,从而改变输出力和速度。
4. 压力原理:压力是指力在垂直方向上的作用效果。
机器中的液压系统利用液体的压力传递力和运动。
液压系统的原理基于封闭的液体容器和液压泵的作用。
三、机器运动的原理机器的运动原理涉及到动力和运动学的知识。
在机械中,常见的运动方式包括直线运动、旋转运动和往复运动。
1. 直线运动:直线运动是物体沿直线路径移动的运动方式。
机械原理和机械设计

机械原理和机械设计机械原理和机械设计是现代工程领域中非常重要的两个概念,它们对于许多机械设备和系统的设计、运行和优化起着至关重要的作用。
机械原理是研究机械系统运动、力学和能量转换规律的基础理论,而机械设计则是根据机械原理的基础上,通过创新和设计来实现机械系统的功能和性能。
在机械原理方面,我们首先要了解力学原理,即物体在受力作用下的运动规律。
根据牛顿三大定律,我们可以推导出许多机械系统的运动和力学特性,例如受力分析、速度与加速度关系等。
在机械设计中,我们需要充分利用这些力学原理,合理设计机械结构,确保系统稳定、高效地运行。
机械原理中还包括能量转换原理。
能量是机械系统运行的基础,而能量转换则是机械设计的核心。
通过合理设计传动系统、减震系统等部件,我们可以实现能量的高效转换,提高机械系统的效率和性能。
而在机械设计方面,我们需要将机械原理应用到实际的设计中。
首先,我们需要明确设计的目标和要求,例如系统的功能、运行条件、使用寿命等。
然后,根据这些要求,我们可以选择合适的材料、结构、零部件等,进行设计。
在设计过程中,我们需要考虑力学原理、材料力学、流体力学等知识,确保设计的合理性和可靠性。
在机械设计中,创新和优化也是非常重要的。
通过不断地创新和改进设计方案,我们可以提高机械系统的性能,降低成本,提高效率。
同时,优化设计也可以减少系统的能耗、排放等,实现可持续发展。
因此,在机械设计中,我们需要注重创新和优化,不断提升设计水平和能力。
总的来说,机械原理和机械设计是紧密相关的两个领域,它们共同影响着机械系统的设计和运行。
通过深入理解机械原理,合理应用到机械设计中,我们可以设计出更加高效、可靠的机械系统,满足不同领域的需求。
希望通过对机械原理和机械设计的学习和研究,可以推动机械工程领域的发展,为社会的进步做出贡献。
机械原理-机械常用驱动及运动传递

传动机构
采用齿轮传动的机构能够实现不 同速度比和转矩传递,广泛应用 于各种机械系统中。
滑轮系统
滑轮系统通过滑轮的配合来实现 力的传递和改变,常用于提升和 运输装置。
结论
机械驱动和运动传递是机械原理中的重要概念。通过合理选择和应用不同驱 动方式和机构,我们能够实现各种机械功能和运动需求。
2 为什么机械驱动很重要?
机械驱动使机械系统能够执行各种任务,例 如生产、运输和自动化。它是实现机械功能 的基础。
机械常用驱动方式
人力驱动
通过人力输入力量,例如手动操作的工具和装 置。
液压驱动
通过流体的力量传递和控制机械运动。
电力驱动
通过电能转换为机械能,使用电动机等设备。
气动驱动
通过气体的力量传递和控制机械运动。
机械原理-机械常用驱动 及运动传递
在这个演示中,我们将介绍机械原理中与机械驱动和运动传递相关的重要概 念。通过理解这些概念,您将能够更好地理解机械的工作原理和实际应用。
机械驱动的定义及重要性
1 什么是机械驱动?
机械驱动是指通过力量或能量传递来产生机 械运动的过程。它是机械系统中至关重要的 一部分。
机械运动传递的基本概念
1
传递与转换
机械运动传递是指将能量或力量从一处传递到另一处,并将其转换为所需的运动 形式。
2
主动与被动
在机械系统中,主动件通过直接施加力或能量来驱动被动件的运动。
3
齿轮传动
齿轮是机械运动传递中常见的元件,通过不同齿数的齿轮配合来实现速度和力的 转换。
机械运动传递的常
机械原理报告

机械原理报告一、引言。
机械原理是机械工程的基础学科,是研究机械运动规律和力学性能的科学。
它是机械设计、制造和运用的理论基础。
在机械工程领域,机械原理是非常重要的学科,对于提高机械设计和制造水平,促进机械工程技术的发展具有重要的意义。
二、机械原理的基本概念。
机械原理是研究机械运动规律和力学性能的科学,它主要包括静力学、运动学和动力学三个部分。
静力学是研究物体平衡状态及平衡条件的科学;运动学是研究物体运动状态及运动规律的科学;动力学是研究物体受力及运动的科学。
三、机械原理的应用。
机械原理在机械工程中有着广泛的应用,它可以指导机械设计、制造和运用中的各种问题。
在机械设计中,机械原理可以用来确定机械零件的尺寸、结构和工作性能;在机械制造中,机械原理可以用来确定机械零件的加工工艺和工艺参数;在机械运用中,机械原理可以用来分析机械设备的工作性能和工作状态。
四、机械原理的发展。
随着科学技术的不断发展,机械原理也在不断地发展和完善。
在过去的几十年中,机械原理经历了静力学、运动学和动力学三个阶段的发展,取得了许多重要的成果。
在未来,随着科学技术的进一步发展,机械原理将会不断地完善和深化,为机械工程技术的发展做出更大的贡献。
五、结论。
机械原理是机械工程的基础学科,它是研究机械运动规律和力学性能的科学。
它在机械设计、制造和运用中有着广泛的应用,可以指导机械工程中的各种问题。
随着科学技术的不断发展,机械原理也在不断地发展和完善。
我们应该不断地学习和掌握机械原理的基本理论和方法,为提高机械工程技术水平做出更大的努力。
六、参考文献。
1. 王明, 李刚. 机械原理[M]. 北京: 机械工业出版社, 2008.2. 张伟, 赵勇. 机械原理与设计[M]. 北京: 清华大学出版社, 2010.以上是关于机械原理的报告内容,希望对大家有所帮助。
机械原理全部知识点总结

机械原理全部知识点总结一、牛顿定律1. 牛顿第一定律:物体在外力作用下静止或匀速直线运动,除非有外力作用,否则不会改变其状态。
2. 牛顿第二定律:物体受力作用时,其加速度与作用力成正比,与物体质量成反比,方向与力的方向相同。
3. 牛顿第三定律:作用力与反作用力大小相等,方向相反,作用在不同物体上。
二、运动学1. 位移、速度和加速度的定义及关系2. 直线运动和曲线运动的描述和分析3. 相对运动和相对运动问题的解决方法4. 圆周运动和角速度、角加速度的计算5. 瞬时速度和瞬时加速度的概念及计算方法三、动力学1. 动量和动量定理:动量的定义和计算方法,动量守恒定律的应用2. 动能和动能定理:动能的定义和计算方法,动能定理的应用3. 动力和动力定理:动力的定义和计算方法,动力定理的应用4. 质点受力分析:引力、弹力、摩擦力等力的计算和分析5. 动能、动量和功率的关系:能量守恒定律和功率的计算方法四、静力学1. 平衡条件和平衡方法:受力平衡条件的表述和计算方法2. 力的合成和分解:力的合成定理和力的分解定理的应用3. 各向同性和各向异性材料的力学性质4. 梁的静力学分析方法:简支梁、固支梁和悬臂梁的静力学分析方法五、轴系1. 轴系的分类和特点:一般轴系、滚动轴系和滑动轴系的特点和应用2. 轴系的受力分析:轴系受力平衡条件和计算方法3. 轴系的设计与选用:轴系的设计原则和选材方法4. 轴系的传动:轴系的传动原理和传动装置的种类及应用六、传动1. 传动的分类和特点:齿轮传动、带传动、链传动和齿条传动的特点和应用2. 传动的传递特性:传动的传递比、效率和传动比的计算方法3. 传动装置的设计与选用:传动装置的设计原则和选用方法4. 传动装置的振动和噪音控制:传动装置的振动和噪音控制原理和方法七、机构1. 机构的分类和特点:平面机构、空间机构、连杆机构和歧杆机构的特点和应用2. 机构的运动分析:机构的运动规律、运动轨迹和运动参数的计算方法3. 机构的静力学分析:机构的受力平衡条件和受力分析方法4. 机构的动力学分析:机构的运动学和动力学分析方法八、机器人1. 机器人的分类和特点:工业机器人、服务机器人和专用机器人的特点和应用2. 机器人的结构和工作原理:机器人的机械结构和工作原理3. 机器人的传感器和执行器:机器人的传感器和执行器的种类和应用4. 机器人的控制系统:机器人的控制系统和编程方法以上是机械原理的全部知识点总结,涵盖了牛顿定律、运动学、动力学、静力学、轴系、传动、机构和机器人等内容。
机械原理 绪论

机械原理绪论
机械原理的概念
机械原理是机械工程中的基础部分,是指研究机械运动、力学和能量转化等基本规律的科学理论和方法。
它涉及到力学、动力学、静力学、运动学等多个学科领域,是机械工程师必须掌握的重要基础知识。
机械原理的研究对象是机械系统。
机械系统可以是任何由零部件、构件、机构组成的具有一定功能的装置或设备,例如汽车、机床、起重机等。
通过对机械系统的分析和研究,可以揭示其中的运动规律、受力情况以及能量转化过程,从而为机械设计和优化提供理论依据。
机械原理的核心是力学原理。
力学原理是描述物体运动和受力的基本规律,分为静力学、动力学和运动学。
在机械原理中,静力学主要研究物体静止时的受力平衡和力的分析;动力学研究物体运动时受到的力和加速度之间的关系;运动学则研究物体的运动规律和路径。
除了力学原理,机械原理还涉及到材料力学、机械振动、流体力学等方面的知识。
因此,机械工程师在应用机械原理时需要掌握这些相关的知识,以便更好地理解和解决实际工程问题。
综上所述,机械原理是机械工程中的重要理论基础,它的研究对象是机械系统,核心是力学原理。
通过对机械原理的学习和
应用,可以为机械设计和优化提供理论支持,实现机械系统的高效运行和性能提升。
机械原理简介

机械原理简介机械原理是研究机械运动和力的学科,在现代工程学和物理学中具有重要的地位。
它涉及众多的机械装置和工作原理,通过对机械原理的研究,我们可以更好地理解和应用机械设备和系统。
一、机械原理的基本概念机械原理是运用物理学和工程学的基本原理,研究机械结构和机械运动的学科。
在机械原理的研究中,常用的基本概念包括力、力的作用点、力的方向和力的大小等。
力是机械运动和机械系统中不可或缺的要素,它可以产生、改变和控制物体的运动状态。
二、杠杆原理杠杆是最基本的机械原理之一,它是通过应用力的乘积原理来实现力的增大或减小。
杠杆的作用是通过调整力臂和力的大小来改变力的效果。
根据杠杆原理,我们可以设计出各种各样的杠杆装置,如剪刀、门铃和不同类型的机械臂等。
三、齿轮传动齿轮传动是一种常见的机械传动方式,它利用齿轮的啮合转动来实现传动和转速调节。
齿轮传动包括直齿轮传动、斜齿轮传动和蜗杆传动等。
齿轮传动的优点是传递效率高、传动精度高,并且可以实现正逆转以及不同转速比的调节。
四、摩擦和润滑摩擦是机械运动中常见的现象,它会产生阻力和能量损失。
为了减小摩擦力和延长机械设备的使用寿命,我们需要进行润滑。
润滑可以通过润滑剂的使用来减小机械零件之间的接触面积,从而减小摩擦力并保护机械设备。
五、运动分析对于机械系统和装置的设计和优化,我们需要进行运动分析。
运动分析可以通过使用运动学和动力学原理来确定物体的运动轨迹、速度和加速度等参数。
运动分析可以帮助我们理解机械系统的运动规律,并对机械设备进行合理的设计和改进。
六、机械振动机械振动是机械设备运行过程中不可避免的现象,它会对机械设备的性能和寿命产生影响。
机械振动的研究一般包括振动的原因、振动的特性和振动的控制。
了解机械振动的原理,可以帮助我们预防振动问题,提高机械设备的运行稳定性和可靠性。
七、螺旋机械螺旋机械是一类特殊的机械装置,它利用螺旋线的性质实现力的转化和运动的变换。
常见的螺旋机械包括螺旋传动、螺旋提升机和螺旋泵等。
机械原理知识点总结详细

机械原理知识点总结详细第一章机械原理概述1.1 机械原理的定义机械原理是研究和应用机械运动规律的科学,它包括机械结构、机械运动、机械传动等内容,是机械设计与制造的基础。
1.2 机械原理的基本概念机械原理包括机械结构、机械运动和机械传动,机械结构是机械系统的组成部分,机械运动是机械系统的基本运动规律,机械传动是机械系统实现运动的手段。
1.3 机械原理的研究内容机械原理主要包括力学、运动学、动力学、材料力学、结构力学等内容,其中力学是机械原理的基础,它研究物体的静力学和动力学。
第二章机械结构2.1 机械结构的分类机械结构可以分为刚性结构和柔性结构两大类,刚性结构包括机架、轴系、连杆、机构等,柔性结构包括弹簧、轴承等。
2.2 机械结构的基本部件机械结构的基本部件包括轴、支承、齿轮、齿条、皮带、链条等,它们是机械系统的骨架,支撑和传动机械运动。
2.3 机械结构的设计原则机械结构的设计原则包括合理、简洁、坚固、耐用、易于维修等,设计过程中需考虑机械系统的工作环境和使用要求。
2.4 机械结构的材料选择机械结构的材料选择需考虑其力学性能、热处理性能、加工性能、耐磨性、耐腐蚀性等因素,常用的材料有钢、铝合金、黄铜等。
第三章机械运动3.1 旋转运动旋转运动是物体绕轴线旋转的运动,它有角度、角速度、角加速度等物理量,旋转运动的基本原理是牛顿第二定律。
3.2 直线运动直线运动是物体沿直线运动的运动,它有位移、速度、加速度等物理量,直线运动的基本原理是牛顿第一定律。
3.3 圆周运动圆周运动是物体绕圆周运动的运动,它有周期、频率、角速度等物理量,圆周运动的基本原理是向心力和离心力。
3.4 抛物线运动抛物线运动是物体在重力作用下进行的运动,它有初速度、抛射角度等物理量,抛物线运动的基本原理是牛顿的万有引力定律。
第四章机械传动4.1 齿轮传动齿轮传动是利用齿轮传递动力和运动的一种机械传动,它有直齿轮、斜齿轮、蜗杆、锥齿轮等类型,齿轮传动的基本原理是齿轮的啮合。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、
(1)什么是曲柄?平面四杆机构曲柄存在的条件是什么?(2分)
答:能够整周回转的连架杆称为曲柄。
平面四杆机构曲柄存在的条件是:1.最短杆与最长杆长度之和小于或等于其它两杆长度之和;2.最短杆为机架或连架杆。
(2)什么是行程速度变化系数?极位夹角?急回运动?(3分)
答:机构往复运动的从动件快速行程平均速度与慢速行程平均速度的比值称为行程速度变化系数;机构往复运动的从动件处在两个极限位置时所对应的曲柄的两个位置之间所夹的锐角,称为极位夹角;机构往复运动的从动件往返行程平均速度不相等,这种运动称为急回运动。
(3)棘轮机构有几种?各有什么特点?(2分)
答:棘轮机构有两种类型,一种是轮齿式棘轮机构,一种是摩擦式棘轮机构。
轮齿式棘轮机构结构简单,易于制造,运动可靠,棘轮转角容易实现有级调整,但是,棘爪滑过齿面时引起噪声和冲击;摩擦式棘轮机构运动较平稳,无噪声,从动件的转角可作无级调整,其缺点是容易打滑,运动准确性差。
(4)槽轮机构有几种?各有什么特点?(2分)
答:曹轮机构有两种类型,一种是外啮合槽轮机构,一种是内啮合槽轮机构。
外啮合槽轮机构主动件与从动件转向相反,内啮合槽轮机构主动件与从动件转向相同。
内啮合槽轮机构与外啮合槽轮机构相比,结构紧凑、运动较平稳,槽轮停歇时间较短。
(5)机器等效动力学模型中,等效力的等效原则是什么?(2分)
答:等效构件上作用的等效力所产生的瞬时功率等于原机械系统作用的所有力的合力矩产生的瞬时功率之和。
(6)机器等效动力学模型中,等效质量的等效原则是什么?(2分)
答:等效构件的等效质量所具有的动能等于整个机械系统的总动能。
(7)试述齿廓啮合基本定律(2分)
答:任意齿廓的两齿轮啮合时,其瞬时速度的比值等于齿廓接触点公法线将其中心距分成两段长度的反比。
二、
1、何谓三心定理?
答:三个彼此作平面运动的构件的三个瞬心必位于同一直线上。
2、简述机械中不平衡惯性力的危害?
答:机械中的不平衡惯性力将在运动副中引起附加的动压力,这不仅会增大运动副中的摩擦和构件中的内应力,降低机械效率和使用寿命,而且会引起机械及其基础产生强迫振动。
3、铰链四杆机构在死点位置时,推动力任意增大也不能使机构产生运动,这与机构的自锁现象是否相同?
试加以说明?
答:(1)不同。
(2)铰链四杆机构的死点指:传动角=0度时,主动件通过连杆作用于从动件上的力恰好通过其回转中心,而不能使从动件转动,出现了顶死现象。
死点本质:驱动力不产生转矩。
机械自锁指:机构的机构情况分析是可以运动的,但由于摩擦的存在,却会出现无论如何增大驱动力,也无法使其运动的现象。
自锁的本质是:驱动力引起的摩擦力大于等于驱动力的有效分力。
4棘轮机构与槽轮机构均可用来实现从动轴的单向间歇转动,但在具体的使用选择上,又有什么不同?
答:棘轮机构常用于速度较低和载荷不大的场合,而且棘轮转动的角度可以改变。
槽轮机构较棘轮机构工作平稳,但转角不能改变。
4、简述齿廓啮合基本定律。
答:相互啮合传动的一对齿轮,在任一位置时的传动比,都与其连心线被其啮合齿廓在接触点处的公法线所分成的两段成反比。
零件:独立的制造单元
构件:机器中每一个独立的运动单元体
运动副:由两个构件直接接触而组成的可动的连接
运动副元素:把两构件上能够参加接触而构成的运动副表面
运动副的自由度和约束数的关系f=6-s
运动链:构件通过运动副的连接而构成的可相对运动系统
平面运动副的最大约束数为2,最小约束数为1;引入一个约束的运动副为高副,引入两个约束的运动副为平面低副
机构具有确定运动的条件:机构的原动件的数目应等于机构的自由度数目;根据机构的组成原理,任何机构都可以看成是由原动件、从动件和机架组成
高副:两构件通过点线接触而构成的运动副
低副:两构件通过面接触而构成的运动副
由M个构件组成的复合铰链应包括M-1个转动副
平面自由度计算公式:F=3n-(2Pl+Ph)
局部自由度:在有些机构中某些构件所产生的局部运动而不影响其他构件的运动
虚约束:在机构中有些运动副带入的约束对机构的运动只起重复约束的作用
虚约束的作用:为了改善机构的受力情况,增加机构刚度或保证机械运动的顺利
基本杆组:不能在拆的最简单的自由度为零的构件组
速度瞬心:互作平面相对运动的两构件上瞬时速度相等的重合点。
若绝对速度为零,则该瞬心称为绝对瞬心相对速度瞬心与绝对速度瞬心的相同点:互作平面相对运动的两构件上瞬时相对速度为零的点;不同点:后者绝对速度为零,前者不是
三心定理:三个彼此作平面平行运动的构件的三个瞬心必位于同一直线上
速度多边形:根据速度矢量方程按一定比例作出的各速度矢量构成的图形
驱动力:驱动机械运动的力
阻抗力:阻止机械运动的力
质量代换法:为简化各构件惯性力的确定,可以设想把构件的质量按一定条件用集中于构件上某几个选定点的假想集中质量来代替,这样便只需求各集中质量的惯性力,而无需求惯性力偶距,从而使构件惯性力的确定简化
质量代换法的特点:代换前后构件质量不变;代换前后构件的质心位置不变;代换前后构件对质心轴的转动惯量不变
铰链四杆机构有曲柄的条件:
1、最短杆与最长杆长度之和小于或等于其他两杆长度之和
2、连架杆与机架中必有一杆为最短杆
在曲柄摇杆机构中改变摇杆长度为无穷大而形成的曲柄滑块机构
在曲柄滑块机构中改变回转副半径而形成偏心轮机构
曲柄摇杆机构中只有取摇杆为主动件是,才可能出现死点位置,处于死点位置时,机构的传动角为0
急回运动:当平面连杆机构的原动件(如曲柄摇杆机构的曲柄)等从动件(摇杆)空回行程的平均速度大于其工作行程的平均速度
极为夹角:机构在两个极位时原动件AB所在的两个位置之间的夹角θ
θ=180°(K-1)/(K+1)
压力角:力F与C点速度正向之间的夹角α
传动角:与压力角互余的角(锐角)
行程速比系数:用从动件空回行程的平均速度V2与工作行程的平均速度V1的比值
K=V2/V1=180°+θ/(180°—θ)
平面四杆机构中有无急回特性取决于极为夹角的大小
试写出两种能将原动件单向连续转动转换成输出构件连续直线往复运动且具有急回特性的连杆机构:偏置曲柄滑块机构、摆动导杆加滑块导轨(牛头刨床机构)
曲柄滑块机构:偏置曲柄滑块机构、对心曲柄滑块机构、双滑块四杆机构、正弦机构、偏心轮机构、导杆机构、回转导杆机构、摆动导杆机构、曲柄摇块机构、直动滑杆机构
机构的倒置:选运动链中不同构件作为机架以获得不同机构的演化方法
刚性冲击:出现无穷大的加速度和惯性力,因而会使凸轮机构受到极大的冲击
柔性冲击:加速度突变为有限值,因而引起的冲击较小
在凸轮机构机构的几种基本的从动件运动规律中等速运动规律使凸轮机构产生刚性冲击,等加速等减速,和余弦加速度运动规律产生柔性冲击,正弦加速度运动规律则没有冲击
在凸轮机构的各种常用的推杆运动规律中,等速只宜用于低速的情况;等加速等减速和余弦加速度宜用于中速,正弦加速度可在高速下运动
凸轮的基圆半径是从转动中心到理论轮廓的最短距离,凸轮的基圆的半径越小,则凸轮机构的压力角越大,而凸轮机构的尺寸越小
齿廓啮合的基本定律:相互啮合传动的一对齿轮,在任一位置时的传动比,都与其连心线O1O2被其啮合齿廓在接触点处的公法线所分成的两线段长成反比
渐开线:当直线BK沿一圆周作纯滚动时直线上任一一点K的轨迹AK
渐开线的性质:
1、发生线上BK线段长度等于基圆上被滚过的弧长AB
2、渐开线上任一一点的发线恒于其基圆相切
3、渐开线越接近基圆部分的曲率半径越小,在基圆上其曲率半径为零
4、渐开线的形状取决于基圆的大小
5、基圆以内无渐开线
6、同一基圆上任意弧长对应的任意两条公法线相等
渐开线函数:invαK=θk=tanαk-αk
渐开线齿廓的啮合特点:
1、能保证定传动比传动且具有可分性
传动比不仅与节圆半径成反比,也与其基圆半径成反比,还与分度圆半径成反比
I12=ω1/ω2=O2P/O1P=rb2/rb1
2、渐开线齿廓之间的正压力方向不变
渐开线齿轮的基本参数:模数、齿数、压力角、(齿顶高系数、顶隙系数)
记P180表10-2
一对渐开线齿轮正确啮合的条件:两轮的模数和压力角分别相等
一对渐开线齿廓啮合传动时,他们的接触点在实际啮合线上,它的理论啮合线长度为两基圆的内公切线N1N2 渐开线齿廓上任意一点的压力角是指该点法线方向与速度方向间的夹角
渐开线齿廓上任意一点的法线与基圆相切
根切:采用范成法切制渐开线齿廓时发生根切的原因是刀具齿顶线超过啮合极限点N1
一对涡轮蜗杆正确啮合条件:中间平面内蜗杆与涡轮的模数和压力角分别相等
重合度:B1B2与Pb的比值ξα;
齿轮传动的连续条件:重合度大于或等于许用值
定轴轮系:如果在轮系运转时其各个轮齿的轴线相对于机架的位置都是固定的
周转轮系:如果在连续运转时,其中至少有一个齿轮轴线的位置并不固定,而是绕着其它齿轮的固定轴线回转
复合轮系:包含定轴轮系部分,又包含周转轮系部分或者由几部分周转轮系组成
定轴轮系的传动比等于所有从动轮齿数的连乘积与所有主动轮齿数的连乘积的比值
中介轮:不影响传动比的大小而仅起着中间过渡和改变从动轮转向的作用。