初中数学专题特训第三十讲:概率(含详细参考答案)
人教版初中数学概率专项训练解析含答案

人教版初中数学概率专项训练解析含答案一、选择题1.下列事件是必然事件的个数为事件()事件1:三条边对应相等的两个三角形全等;事件2:相似三角形对应边成比例;事件3:任何实数都有平方根;事件4:在同一平面内,两条直线的位置关系:平行或相交.A.1 B.2 C.3 D.4【答案】C【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】事件1:三条边对应相等的两个三角形全等是三角形全等的判定定理,是必然事件;事件2:相似三角形的对应边成比例,是必然事件;件3:正数和0有平方根,负数没有平方根,所以不是必然事件;事件4:在同一平面内,两条直线的位置关系为平行或相交,所以是必然事件.所以,必然事件有3个,故选:C.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.失分的原因是对事件类型的分类未熟练掌握.2.将一个小球在如图所示的地砖上自由滚动,最终停在黑色方砖上的概率为( )A.59B.49C.12D.13【答案】A【解析】【分析】根据题意,用黑色方砖的面积除以正方形地砖的面积即可.停在黑色方砖上的概率为:59,故选:A.【点睛】本题主要考查了简单概率的求取,熟练掌握相关方法是解题关键.3.下列事件是必然事件的是()A.某彩票中奖率是1%,买100张一定会中奖B.长度分别是3,5,6cm cm cm的三根木条能组成一个三角形C.打开电视机,正在播放动画片D.2018年世界杯德国队一定能夺得冠军【答案】B【解析】【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【详解】A、某彩票中奖率是1%,买100张一定会中奖,属于随机事件,不符合题意;B、由于6-5<3<5+6,所以长度分别是3cm,5cm,6cm的三根木条能组成一个三角形,属于必然事件,符合题意;C、打开电视机,正在播放动画片,属于随机事件,不符合题意;D、2018年世界杯德国队可能夺得冠军,属于随机事件,不符合题意.故选:B.【点睛】此题考查必然事件、不可能事件、随机事件的概念,理解概念是解题关键.4.某小组做“频率具有稳定性”的试验时,绘出某一结果出现的频率折线图如图所示,则符合这一结果的试验可能是()A.抛一枚硬币,出现正面朝上B.掷一个正六面体的骰子,掷出的点数是5C.任意写一个整数,它能被2整除D.从一个装有2个红球和1个白球的袋子中任取一球(这些球除颜色外完全相同),取到的是白球【解析】【分析】根据频率折线图可知频率在0.33附近,进而得出答案.【详解】A、抛一枚硬市、出現正面朝上的概率为0.5、不符合这一结果,故此选项错误;B、掷一个正六面体的骰子、掷出的点数是5的可能性为16,故此选项错误;C、任意写一个能被2整除的整数的可能性为12,故此选项错误;D、从一个装有2个红球1个白球的袋子中任取一球,取到白球的概率是13,符合题意,故选:D.【点睛】此题考查频率的折线图,利用频率估计事件的概率,正确理解频率折线图是解题的关键.5.从﹣1、2、3、﹣6这四个数中任取两数,分别记为m、n,那么点(),m n在函数6yx=图象的概率是()A.12B.13C.14D.18【答案】B【解析】【分析】根据反比例函数图象上点的坐标特征可得出mn=6,列表找出所有mn的值,根据表格中mn=6所占比例即可得出结论.【详解】Q点(),m n在函数6yx=的图象上,6mn∴=.列表如下:mn 的值为6的概率是41123=. 故选:B . 【点睛】本题考查了反比例函数图象上点的坐标特征以及列表法与树状图法,通过列表 找出 mn =6的概率是解题的关键.6.如图,AB 是半圆O 的直径,点C 、D 是半圆O 的三等分点,弦2CD =.现将一飞镖掷向该图,则飞镖落在阴影区域的概率为( )A .19B .29C .23D .13【答案】D 【解析】 【分析】连接OC 、OD 、BD ,根据点C ,D 是半圆O 的三等分点,推导出OC ∥BD 且△BOD 是等边三角形,阴影部分面积转化为扇形BOD 的面积,分别计算出扇形BOD 的面积和半圆的面积,然后根据概率公式即可得出答案. 【详解】解:如图,连接OC 、OD 、BD ,∵点C 、D 是半圆O 的三等分点, ∴»»»==AC CDDB , ∴∠AOC =∠COD =∠DOB =60°, ∵OC=OD ,∴△COD 是等边三角形, ∴OC=OD=CD , ∵2CD =,∴2OC OD CD ===,∴△BOD是等边三角形,则∠ODB=60°,∴∠ODB=∠COD=60°,∴OC∥BD,∴=V VBCD BODS S,∴S阴影=S扇形OBD22 6060223603603πππ⋅⨯===OD,S半圆O222222πππ⋅⨯===OD,飞镖落在阴影区域的概率21233ππ=÷=,故选:D.【点睛】本题主要考查扇形面积的计算和几何概率问题:概率=相应的面积与总面积之比,解题的关键是把求不规则图形的面积转化为求规则图形的面积.7.在一个不透明的袋子中装有6个除颜色外均相同的乒乓球,其中3个是黄球,2个是白球.1个是绿球,从该袋子中任意摸出一个球,摸到的不是绿球的概率是()A.56B.13C.23D.16【答案】A【解析】【分析】先求出摸出是绿球的概率,然后用1-是绿球的概率即可解答.【详解】解:由题意得:到的是绿球的概率是16;则摸到不是绿球的概率为1-16=56.故答案为A.【点睛】本题主要考查概率公式,掌握求不是某事件的概率=1-是该事件的概率是解答本题的关键.8.下列判断正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件【答案】C【分析】直接利用概率的意义以及随机事件的定义分别分析得出答案.【详解】A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、“a是实数,|a|≥0”是必然事件,故此选项错误.故选C.【点睛】此题主要考查了概率的意义以及随机事件的定义,正确把握相关定义是解题关键.9.将一枚质地均匀的骰子掷两次,则两次点数之和等于9的概率为()A.13B.16C.19D.112【答案】C【解析】【分析】【详解】解:画树状图为:共有36种等可能的结果数,其点数之和是9的结果数为4,所以其点数之和是9的概率=436=19.故选C.点睛:本题考查了列表法与树状图法求概率:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A的结果数目m,则事件A的概率P(A)=mn.10.从一副(54张)扑克牌中任意抽取一张,正好为K的概率为()A.227B.14C.154D.12【答案】A 【解析】用K 的扑克张数除以一副扑克的总张数即可求得概率. 【详解】解:∵一副扑克共54张,有4张K , ∴正好为K 的概率为454=227, 故选:A . 【点睛】此题考查概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=m n.11.已知实数0a <,则下列事件是随机事件的是( ) A .0a ≥ B .10a +>C .10a -<D .210a +<【答案】B 【解析】 【分析】根据事件发生的可能性大小判断相应事件的类型即可. 【详解】解:A 、∵任何数的绝对值都是非负数,∴0a ≥是必然事件,不符合题意;B 、∵0a <,∴1a +的值可能大于零,可能小于零,可能等于零是随机事件,符合题意;C 、∵0a <,∴a-1<-1<0是必然事件,故C 不符合题意;D 、∵21a +>0,∴210a +<是不可能事件,故D 不符合题意; 故选:B . 【点睛】本题考查随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.12.国家医保局相关负责人3月25日表示,2019年底前我国将实现生育保险基金并入职工基本医疗保险基金,统一征缴,就是通常所说的“五险变四险”.传统的五险包括:养老保险、失业保险、医疗保险、工伤保险、生育保险.某单位从这五险中随机抽取两种,为员工提高保险比例,则正好抽中养老保险和医疗保险的概率是( ) A .15B .110C .25D .225【答案】B 【解析】 【分析】根据题意先画出树状图得出所有等可能情况数和正好抽中养老保险和医疗保险的情况数,然后根据概率公式即可得出答案.【详解】用字母A、B、C、D、E分别表示五险:养老保险、失业保险、医疗保险、工伤保险、生育保险,画树状图如下:共有20种等可能的情形,其中正好抽中养老保险和医疗保险的有2种情形,所以,正好抽中养老保险和医疗保险的概率P=21 2010.故选B.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.13.有三张正面分别写有数字﹣2,1,3的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后把这张放回去,再从三张卡片中随机抽一张,以其正面的数字作为b的值,则点(a,b)在第一象限的概率为()A.16B.13C.12D.49【答案】D【解析】【分析】根据题意画出树状图,然后确定出总发生的可能数和符合条件的可能数,再用概率公式求解即可.【详解】根据题意,画出树状图如下:一共有6种情况,在第二象限的点有(-1,1)(-1,2)共2个,以,P=21 = 63.故选:B.【点睛】本题考查了列表法与树状图法,第一象限点的坐标特征,用到的知识点为:概率=所求情况数与总情况数之比.14.在10盒红色的笔芯中混放了若干支黑色的笔芯,每盒20支笔芯,每盒中混放入的黑色笔芯数如下表:下列结论:①黑色笔芯一共有16支;②从中随机取一盒,盒中红色笔芯数不低于14是必然事件;③从中随机取一盒,盒中黑色笔芯数不超过4的概率为0.7;④将10盒笔芯混在一起,从中随机抽取一支笔芯,恰好是黑色的概率是0.12.其中正确的结论有()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据表格的信息分别验证算出黑色笔芯的数量,由每盒黑色笔芯的数量可以算出每盒红色笔芯的数量,即可验证①②的正确性,再算出盒中黑色笔芯数不超过4的概率,即可判断③,用黑色的数量除以总的笔数,可验证④.【详解】解:① 根据表格的信息,得到⨯+⨯+⨯+⨯+⨯=,黑色笔芯数=021*********故①错误;② 每盒笔芯的数量为20支,∵每盒黑色笔芯的数量都≤6,∴每盒红色笔芯≥14,因此从中任取一盒,盒中红色笔芯数不低于14是必然事件,故②正确;③ 根据图表信息,得到黑色笔芯不超过4的一共有7盒,因此从中随机取一盒,盒中黑色笔芯数不超过4的概率为7÷10=0.7故③正确④ 10盒笔芯一共有10×20=200(支),由详解①知黑色笔芯共有24支,将10盒笔芯混在一起,从中随机抽取一支笔芯,恰好是黑色的概率是24÷200=0.12,故④正确;综上有三个正确结论, 故答案为C. 【点睛】本题主要考查了与概率有关的知识点. 在本题中求出黑色笔芯的数量是关键,求某事件的概率时,主要求该事件的数量与总数量的比值;还需要掌握必然事件的概念,即必然事件是一定会发生的事件.15.下列问题中是必然事件的有( )个(1)太阳从西边落山;(2)经过有信号灯的十字路口,遇见红灯;(3)221a b +=-(其中a 、b 都是实数);(4)水往低处流. A .1 B .2C .3D .4【答案】B 【解析】 【分析】先分析(1)(2)(3)(4)中有那个必然事件,再数出必要事件的个数,即可得到答案. 【详解】(1)太阳从西边落山,东边升起,故为必然事件;(2)经过有信号灯的十字路口,遇见红灯绿灯都有可能,故为随机事件;(3)220a b +≥(其中a 、b 都是实数),故221a b +=-为不可能事件;(4)水往低处流是必然事件; 因此,(1)(4)为必然事件, 故答案为A. 【点睛】本题的主要关键是理解必然事件的概念,再根据必然事件的概念进行判断;需要掌握: 必然事件:事先肯定它一定会发生的事件; 不确定事件:无法确定它会不会发生的事件; 不可能事件:一定不会发生的事件.16.数学老师拿出四张卡片,背面完全一样,正面分别画有:矩形、菱形、等边三角形、圆背面朝上洗匀后先让小明抽出一张,记下形状后放回,洗匀后再让小亮抽出一张请你计算出两次都抽到既是中心对称图形又是轴对称图形的概率是( ) A .34B .38C .916D .23【答案】C 【解析】 【分析】利用列表和画树状图可知所有的情况,在找出两次抽到的是既是中心对称图形又是轴对称图形的情况,利用求简单概率的公式即可求出. 【详解】由题意可知:四张卡片正面的四种图形分别为矩形、菱形、等边三角形、圆,除等边三角形外其余三种都既是中心对称图形,又是轴对称图形.设矩形、菱形、圆分别为Al、A2、A3,等边三角形为B,根据题意可画树状图如下图:如图所示,共有16种等可能情况的结果数,其中两次都抽到既是中心对称图形又是轴对称图形的情况为9种,所以两次都抽到既是中心对称图形又是轴对称图形的概率916P=,故选C.【点睛】本题主要考查了利用列表法和画树状图法求概率,熟知中心对称图形、轴对称图形的定义与画树状图的方法及求概率的公式是解题关键.17.某单位进行内部抽奖,共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.若每张抽奖券获奖的可能性相同,则1张抽奖券中奖的概率是()A.0.1 B.0.2 C.0.3 D.0.6【答案】D【解析】【分析】直接利用概率公式进行求解,即可得到答案.【详解】解:∵共准备了100张抽奖券,设一等奖10个,二等奖20个,三等奖30个.∴1张抽奖券中奖的概率是:102030100++=0.6,故选:D.【点睛】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.18.将分别标有“孔”“孟”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀.随机摸出一球,不放回;再随机摸出一球.两次摸出的球上的汉字能组成“孔孟”的概率是()A.B.C.D.【答案】B【解析】【分析】根据简单概率的计算公式即可得解.【详解】一共四个小球,随机摸出一球,不放回;再随机摸出一球一共有12中可能,其中能组成孔孟的有2种,所以两次摸出的球上的汉字能组成“孔孟”的概率是.故选B.考点:简单概率计算.19.下列说法正确的是( )A.打开电视机,正在播放“张家界新闻”是必然事件B.天气预报说“明天的降水概率为65%”,意味着明天一定下雨C.两组数据平均数相同,则方差大的更稳定D.数据5,6,7,7,8的中位数与众数均为7【答案】D【解析】【分析】根据必然事件的意义、概率的意义、方差的意义、中位数和众数的概念逐一进行判断即可.【详解】A.打开电视机,正在播放“张家界新闻”是随机事件,故A选项错误;B.天气预报说“明天的降水概率为65%”,意味着明天可能下雨,故B选项错误;C.两组数据平均数相同,则方差大的更不稳定,故C选项错误;D,数据5,6,7,7,8的中位数与众数均为7,正确,故选D.【点睛】本题考查了概率、方差、众数和中位数等知识,熟练掌握相关知识的概念、意义以及求解方法是解题的关键.20.一个不透明的袋子中装有白球4个,黑球若干个,这些球除颜色外其余完全一样.如果随机从袋中摸出一个球是白球的概率为13,那么袋中有多少个黑球()A.4个B.12个C.8个D.不确定【答案】C【解析】【分析】首先设黑球的个数为x个,根据题意得:4143=x+,解此分式方程即可求得答案.【详解】设黑球的个数为x个,根据题意得:41 43=x+,解得:x=8,经检验:x=8是原分式方程的解;∴黑球的个数为8.故选:C.【点睛】此题考查概率公式的应用.解题关键在于掌握概率=所求情况数与总情况数之比.。
初中数学知识归纳解概率问题

初中数学知识归纳解概率问题概率问题是初中数学中的重要内容,它涉及到随机事件发生的可能性。
了解概率的基本知识和解题方法,对学生的数学水平提升和逻辑思维能力的培养都具有重要意义。
本文将以归纳的方式,介绍几个常见的概率问题及其解法。
一、古典概型古典概型指的是具有等可能性的事件,其概率可以通过公式 P(A) = n(A) / n(S) 计算得出,其中 P(A) 为事件 A 的概率,n(A) 为事件 A 的样本点数,n(S) 为样本空间的样本点数。
例如,某学校运动会上,男生 1 班和女生 2 班各自选出一名代表参加 100 米赛跑。
如果我们想知道男生 1 班的代表获胜的概率,假设男生 1 班有 50 名学生,女生 2 班有 60 名学生,样本空间共有 50 * 60 = 3000 种可能的结果。
而男生 1 班的代表获胜只有 50 种可能的结果,所以男生 1 班的代表获胜的概率为 50 / 3000 = 1 / 60 。
二、排列组合排列和组合是解决一些复杂概率问题的基本工具。
在排列问题中,我们关注的是元素的顺序,而在组合问题中,我们只关注元素的组合方式。
例如,从 1 到 5 这 5 个数字中,选出 3 个数字组成一个三位数,问这个三位数是奇数的概率是多少?为了解决这个问题,我们先需要确定样本空间的大小,即从 1 到 5 这 5 个数字中取 3 个的排列数。
根据排列公式,可以计算得知样本空间的大小为 5P3 = 5! / (5-3)! = 60 。
接下来,我们需要确定事件 A 的可能结果,即将三个数字组成的三位数中的奇数个数为 1 个的排列数,根据排列公式可以计算得知 A 的大小为 4P1 = 4! / (4-1)! = 4 。
因此,奇数占比即概率为 4 / 60 = 1 / 15 。
三、事件的相互关系在实际问题中,有时我们需要计算多个事件同时发生或者某个事件发生的概率。
这时,我们可以利用事件的相互关系进行计算。
中考数学总复习第30课时概率

12/9/2021
第十四页,共二十四页。
命题
命题
命题
(mìng
tí)点1
(mìng
tí)点2
(mìng
tí)点3
命题点4
12/9/2021
第十五页,共二十四页。
命题
命题
命题
(mìng
tí)点1
(mìng
tí)点2
(mìng
tí)点3
命题点4
变式训练在某电视台举办的“红歌”比赛中,甲、乙、丙三位评委对选手的
答案:B
12/9/2021
第十一页,共二十四页。
命题
命题
命题
(mìng
tí)点1
(mìng
tí)点2
(mìng
tí)点3
命题点4
12/9/2021
第十二页,共二十四页。
命题
命题
命题
(mìng
tí)点1
(mìng
tí)点2
(mìng
tí)点3
命题点4
命题点2 用列举法求概率
【例2】 如图,有三张不透明的卡片,除正面写有不同的数字外,其他均相
tí)点1
(mìng
tí)点2
(mìng
tí)点3
命题点4
解:(1)画出树状图来说明评委给出A选手的所有可能结果:
(2)由上可知评委给出A选手所有可能的结果有8种,并且它们是等可能的.
故对于A选手,进入下一轮比赛的概率是 .
1
2
12/9/2021
第十七页,共二十四页。
命题
命题
命题
(mìng
tí)点1
同.将这三张卡片背面朝上洗匀后,第一次从中随机抽取一张,并把这张卡片标
中学初三数学概率试卷试题总结计划大全含答案

一、概率基础知识1.随机事件的定义:在相同条件下,可能发生也可能不发生的事件叫做随机事件。
2.必然事件的定义:在一定条件下一定发生的事件叫做必然事件。
3.不可能事件的定义:在一定条件下一定不发生的事件叫做不可能事件。
4.概率的定义:一个事件发生的可能性叫做这个事件的概率,用0到1之间的实数表示,其中0表示不可能发生,1表示必然发生。
二、概率计算方法1.直接计算法:如果一个事件包含的样本点数是有限的,可以直接计算每个样本点发生的可能性,然后求和得到事件的概率。
2.间接计算法:如果一个事件不包含所有样本点,可以通过计算不发生这个事件的概率,然后用1减去这个概率得到事件的概率。
3.条件概率:在条件B发生的条件下,事件A发生的概率叫做A 在B条件下的条件概率,用P(A|B)表示。
4.独立事件的概率:如果两个事件A和B相互独立,那么事件A 发生的条件下事件B发生的概率等于事件B发生的概率,即P(B|A)=P(B)。
三、典型题型及解题方法1.求一个事件的概率:直接根据定义计算,或者利用间接计算法。
例1:抛一枚硬币,求正面向上的概率。
解:因为硬币只有正反两面,所以正面向上和反面向上的概率都是1/2。
2.求条件概率:利用条件概率的定义,即P(A|B)=P(A∩B)/P(B)。
例2:抛两枚硬币,求第一枚硬币正面向上,第二枚硬币反面向上的条件概率。
解:第一枚硬币正面向上,第二枚硬币反面向上的样本点有(正,反)和(反,正),总共4个样本点,所以P(A∩B)=2/4=1/2。
第一枚硬币正面向上的概率是1/2,所以P(B)=1/2。
所以P(A|B)=(1/2)/(1/2)=1。
3.求独立事件的概率:利用独立事件的定义,即P(A∩B)=P(A)P(B)。
例3:抛两枚硬币,求第一枚硬币正面向上,第二枚硬币反面向上同时发生的概率。
解:第一枚硬币正面向上的概率是1/2,第二枚硬币反面向上的概率是1/2,所以P(A∩B)=1/2×1/2=1/4。
30概率数学

概率【课前热身】1. 在一个袋子中装有除颜色外其它均相同的2个红球和3个白球,从中任意摸出一个球,则摸到红球的概率是.2.在一种掷骰子攻城游戏中规定:掷一次骰子几点朝上,攻城者就向城堡走几步.某游戏者掷一次骰子就走六步的槪率是____________.3.在一个不透明的盒子中装有2个白球,n个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为23,则n .4.下列事件是必然事件的是()A.打开电视机,正在播放动画片B.2008年奥运会刘翔一定能夺得110米跨栏冠军C.某彩票中奖率是1%,买100张一定会中奖D.在只装有5个红球的袋中摸出1球,是红球5.随机掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则这个骰子向上的一面点数是奇数的概率为()A.12B.13C.14D.15【考纲解读】1.明确随机事件的含义,并能识别哪些是必然事件、哪些是不可能事件2.通过用列表、画树形图的方法计算事件的概率,体会在实践中获得事件发生的概率3.掌握各种分析一些简单事件发生的概率的方法【考点扫描】1.随机事件与确定事件在一定条件下,可能发生也可能不发生的事件称为随机事件2.必然事件与不可能事件3.概率与频率4.求概率的方法:(1)利用概率的定义直接求概率;(2)用树形图和列表法求概率;【典例精析】【例1】下列事件你认为是必然事件的是()A.中秋节的晚上总能看到圆圆的月亮; B.明天是晴天C.打开电视机,正在播广告; D.太阳总是从东方升起练1下列说法正确的是()A.“明天的降水概率为30%”是指明天下雨的可能性是30%B.连续抛一枚硬币50次,出现正面朝上的次数一定是25次C.连续三次掷一颗骰子都出现了奇数,则第四次出现的数一定是偶数D.某地发行一种福利彩票,中奖概率为1%,买这种彩票100张一定会中奖【例2】在中考体育达标跳绳项目测试中,1min跳160次为达标,•小敏记录了他预测时,1min跳的次数分别为145,155,140,162,164,•则他在该次预测中达标的概率是_________练2.1有一道四选一的选择题,某同学完全靠猜测获得结果,则这个同学答对的概率是_______练2.2在一所4000人的学校随机调查了100人,其中有76人上学之前吃早饭,•在这所学校里随便问一个人,上学之前吃过早餐的概率是________ 练2.3 书架上有数学书3本,英语书2本,语文书5本,从中任意抽取一本是数学书的概率是________【例3】(宁夏)张红和王伟为了争取到一张观看奥运知识竞赛的入场券,他们各自设计了一个方案:张红的方案是:转动如图所示的转盘,如果指针停在阴影区域,则张红得到入场券;如果指针停在白色区域,则王伟得到入场券(转盘被等分成6个扇形.若指针停在边界处,则重新转动转盘).王伟的方案是:从一副扑克牌中取出方块1、2、3, 将它们背面朝上重新洗牌后,从中摸出一张,记录 下牌面数字后放回,洗匀后再摸出一张.若摸出两 张牌面数字之和为奇数,则张红得到入场劵;若摸 出两张牌面数字之和为偶数,则王伟得到入场券.(1)计算张红获得入场券的概率,并说明张红的方案是否公平?(2)用树状图(或列表法)列举王伟设计方案的所有情况,计算王伟获得入场券的概率,并说明王伟的方案是否公平?练3 (泰安)如图,(1),A 、B 两个转盘分别被分成三个、四个相同的扇形,分别转动A 盘、B 盘各一次(若指针恰好指在分割线上,则重转一次,直到指针指向一个数字为止)。
中考数学专题训练统计与概率(含解析)

中考数学专题训练统计与概率(含解析)专题训练(统计与概率)(120分钟120分)一、选择题(本大题共20小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.下列调查中,调查方式选择正确的是( )A.为了了解全市中学生课外阅读情况,选择全面调查B.为了了解全国中学生“母亲节”孝敬母亲的情况,选择全面调查C.为了了解一批手机的使用寿命,选择抽样调查D.旅客上飞机前的安检,选择抽样调查【解析】选C.为了了解全市中学生课外阅读情况,选择抽样调查,A错误;为了了解全国中学生“母亲节”孝敬母亲的情况,选择抽样调查,B错误;为了了解一批手机的使用寿命,选择抽样调查,C正确;旅客上飞机前的安检,选择全面调查,D错误.2.2019年我市近9万多名考生参加中考,为了解这些考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是( )A.这1 000名考生是总体的一个样本B.1 000名考生是样本容量C.每位考生的数学成绩是个体D.近9万多名考生是总体【解析】选C.A.1 000名考生的数学成绩是总体的一个样本,故A错误;们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为( ) A. B. C. D.【解析】选C.因为布袋里装有5个红球,2个白球,3个黄球,所以从袋中摸出一个球是黄球的概率是.7.(2019·邵阳中考)“救死扶伤”是我国的传统美德.某媒体就“老人摔倒该不该扶”进行了调查,将得到的数据经统计分析后绘制成如图所示的扇形统计图.根据统计图判断下列说法,其中错误的一项是( )A.认为依情况而定的占27%B.认为该扶的在统计图中所对应的圆心角是234°C.认为不该扶的占8%D.认为该扶的占92%【解析】选D.认为依情况而定的占27%,故A正确;认为该扶的在统计图中所对应的圆心角是65%×360°=234°,故B正确;认为不该扶的占1-27%-65%=8%,故C正确;认为该扶的占65%,故D错误.8.(2019·连云港中考)小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( )A.方差B.平均数C.众数D.中位数【解析】选A.根据方差的意义,可知方差越小,数据越稳定,因此可知比较两人成绩稳定性的数据为方差.9.(2019·成都中考)学习全等三角形时,数学兴趣小组设计并组织了“生活中的全等”的比赛,全班同学的比赛结果统计如下表:得分(分) 60 70 80 90 100人数(人) 7 12 10 8 3则得分的众数和中位数分别为( )A.70分,70分B.80分,80分C.70分,80分D.80分,70分【解析】选C.根据表格中的数据,可知70出现的次数最多,可知其众数为70分;把数据按从小到大排列,可知其中间的两个的平均数为80分,故其中位数为80分.10.九年级(1)班和(2)班的第一次模拟考试的数学成绩统计如下表:班级参加人数中位数方差平均分(1)班50 120 103 122(2)班49 121 201 122根据上表分析得出如下结论:①两班学生成绩的平均水平基本一致;②(2)班的两极分化比较严重;③若考试分数≥120分为优秀,则(2)班优秀的人数一定多于(1)班优秀的人数.上述结论正确的( )A.①②③B.①②C.①③D.②③【解析】选B.由两班的平均数可得两班学生成绩的平均水平基本一致,故①正确;(2)班方差大于(1)班,因此(2)班的两极分化比较严重,故②正确;(2)班中位数为121,(2)班比(1)班少1人,无法判断哪个班优秀的人数多,故③错误.11.(2019·南充中考)某校数学兴趣小组在一次数字课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:成绩/分36 37 38 39 40人数/人 1 2 1 4 2下列说法正确的是( )A.这10名同学体育成绩的中位数为38分B.这10名同学体育成绩的平均数为38分C.这10名同学体育成绩的众数为39分D.这10名同学体育成绩的方差为2【解析】选C.10名学生的体育成绩中39分出现的次数最多,众数为39分; 排序后第5和第6名同学的成绩的平均值为中位数,中位数为=39分; 平均数==38.4分,方差=[(36-38.4)2+2×(37-38.4)2+(38-38.4)2+4×(39-38.4)2+2×(40- 38.4)2]=1.64;所以选项A,B,D错误.12.在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的( )A.中位数B.众数C.平均数D.方差【解析】选A.因为5位进入决赛者的分数肯定是5名参赛选手中最高的,而且5个不同的分数按从小到大排序后,中位数及中位数之前的共有3个数,故只要知道自己的分数和中位数就可以知道是否进入前3名了.13.若将30°,45°,60°的三角函数值填入表中,则从表中任意取一个值,是的概率为( )α30°45°60°sinαcosαtanαA. B. C. D.【解析】选D.∵表中共有9个数,有两个,∴从表中任意取一个值,是的概率为.α30°45°60°sinαcosαtanα 114.小洪根据演讲比赛中九位评委所给的分数制作了如下表格:平均数中位数众数方差8.5 8.3 8.1 0.15如果去掉一个最高分和一个最低分,那么表格中数据一定不发生变化的是A.平均数B.中位数C.众数D.方差【解析】选B.去掉一个最高分和一个最低分对中位数没有影响.15.(2019·金华中考)某校举行以“激情五月,唱响青春”为主题的演讲比赛.决赛阶段只剩下甲,乙,丙,丁四名同学,则甲,乙同学获得前两名的概率是( ) A. B. C. D.【解析】选D.画树状图得:所以一共有12种等可能的结果,甲,乙同学获得前两名的有2种情况,所以甲,乙同学获得前两名的概率是=.16.一个不透明的袋子中装有2个白球和若干个黑球,它们除颜色外完全相同,从袋子中随机摸出一球,记下颜色并放回,重复该实验多次,发现摸到白球的频率稳定在0.4,则可判断袋子中黑球的个数为( )A.2个B.3个C.4个D.5个【解析】选B.∵重复该试验多次,摸到白球的频率稳定在0.4,∴估计摸到白球的概率0.4,设袋子中黑球的个数为x,∴=0.4,解得x=3,∴可判断袋子中黑球的个数为3.17.(2019·眉山中考)下列说法错误的是( )A.给定一组数据,那么这组数据的平均数一定只有一个B.给定一组数据,那么这组数据的中位数一定只有一个C.给定一组数据,那么这组数据的众数一定只有一个D.如果一组数据存在众数,那么该众数一定是这组数据中的某一个【解析】选C.A.给定一组数据,那么这组数据的平均数一定只有一个,正确,不符合题意;B.给定一组数据,那么这组数据的中位数一定只有一个,正确,不符合题意;C.给定一组数据,那么这组数据的众数一定只有一个,错误,符合题意;D.如果一组数据存在众数,那么该众数一定是这组数据中的某一个,正确,不符合题意.18.一家鞋店在一段时间内销售了某种女式鞋子38双,其中各种尺码的鞋的销售量如表所示:鞋的尺码(单位:cm) 22.5 23 23.5 24 24.5销售量(单位:双) 3 6 12 9 8根据统计的数据,鞋店进货时尺寸码为23cm,23.5cm,24cm的鞋双数合理的比是A.1∶2∶4 B.2∶4∶5C.2∶4∶3D.2∶3∶4【解析】选C.鞋店进货时尺寸码为23cm,23.5cm,24cm的鞋双数合理的比为6∶12∶9=2∶4∶3.19.(2019·绍兴中考)下表记录了甲,乙,丙,丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环) 9.14 9.15 9.14 9.15方差 6.6 6.8 6.7 6.6根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择A.甲 B.乙 C.丙 D.丁【解析】选D.比较四名射击运动员成绩的平均数可得,乙和丁的成绩更好,而乙的方差>丁的方差,所以丁的成绩更稳定些.20.学校食堂午餐有10元,12元、15元三种价格的盒饭供选择,若经过统计发现10元、12元、15元的盒饭卖出数量恰好分别占50%,30%,20%,则卖出盒饭价格的中位数是( )A.10元B.11元C.12元D.无法确定【解析】选B.∵10元,12元,15元的盒饭卖出数量恰好分别占50%,30%、20%, ∴最中间的两个数是10元,12元,∴中位数是10和12的平均数,(10+12)÷2=11(元).二、填空题(本大题共4小题,满分12分,只要求填写最后结果,每小题填对得3分)21.(2019·重庆模拟)某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是________小时.【解析】由统计图可知,一共有6+9+10+8+7=40(人),所以该班这些学生一周锻炼时间的中位数是第20个和第21个学生对应的数据的平均数,所以该班这些学生一周锻炼时间的中位数是11小时.答案:1122.甲乙两地9月上旬的日平均气温如图所示,则甲乙两地这10天日平均气温方差大小关系为______ (填>或<).【解析】观察平均气温统计图可知:乙地的平均气温比较稳定,波动小,则乙地的日平均气温的方差小,故>.答案:>23.(2019·岱岳区模拟)从3,0,-1,-2,-3这五个数中,随机抽取一个数,作为函数y=(5-m2)x和关于x的方程(m+1)x2+mx+1=0中m的值,恰好使所得函数的图象经过第一、三象限,且方程有实数根的概率为________.【解析】因为所得函数的图象经过第一、三象限,所以5-m2>0,所以m2<5,所以3,0,-1,-2,-3中,3和-3均不符合题意,将m=0代入(m+1)x2+mx+1=0中得,x2+1=0,Δ=-4<0,无实数根;将m=-1代入(m+1)x2+mx+1=0中得,-x+1=0,x=1,有实数根;将m=-2代入(m+1)x2+mx+1=0中得,x2+2x-1=0,Δ=4+4=8>0,有实数根.故方程有实数根的概率为.答案:24.(2019·张店区一模)某校射击队从甲,乙,丙,丁四人中选拔一人参加市运会射击比赛.在选拔赛中,每人射击10次,他们10次成绩的平均数及方差如下表所示:甲乙丙丁平均数/环9.7 9.5 9.5 9.7方差 5.1 4.7 4.5 4.5请你根据表中数据选一人参加比赛,最合适的人选是________.【解析】因为=5.1,=4.7,=4.5,=4.5,所以>>=,因为丁的平均数大,所以最合适的人选是丁.答案:丁三、解答题(本大题共5个小题,满分48分.解答应写出必要的文字说明、证明过程或推演步骤)25.(8分)(2019·天津中考)某跳水队为了解运动员的年龄情况,做了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(1)本次接受调查的跳水运动员人数为________,图①中m的值为________.(2)求统计的这组跳水运动员年龄数据的平均数、众数和中位数.【解析】(1)4030(2)观察所给的条形统计图,因为==15(岁),所以这组数据的平均数为15岁;因为在这组数据中,16出现了12次,出现的次数最多,所以这组数据的众数为16岁;因为将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有=15(岁),所以这组数据的中位数为15岁.26.(8分)(2019·连云港中考)为落实“垃圾分类”,环卫部门要求垃圾要按A,B,C 三类分别装袋投放,其中A类指废电池,过期药品等有毒垃圾,B类指剩余食品等厨余垃圾,C类指塑料,废纸等可回收垃圾.甲投放了一袋垃圾,乙投放了两袋垃圾,这两袋垃圾不同类.(1)直接写出甲投放的垃圾恰好是A类的概率.(2)求乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率.【解析】(1)一共有3类,所以甲投放的垃圾恰好是A类的概率为.(2)列出树状图如图所示:由图可知,共有18种等可能结果,其中乙投放的垃圾恰有一袋与甲投放的垃圾是同类的结果有12种.所以,P(乙投放的垃圾恰有一袋与甲投放的垃圾是同类)==.即乙投放的垃圾恰有一袋与甲投放的垃圾是同类的概率是.27.(10分)(2019·安徽中考)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下:甲:9,10,8,5,7,8,10,8,8,7;乙:5,7,8,7,8,9,7,9,10,10;丙:7,6,8,5,4,7,6,3,9,5.(1)根据以上数据完成下表:平均数中位数方差甲8 8乙8 8 2.2丙 6 3(2)依据表中数据分析,哪位运动员的成绩最稳定,并简要说明理由.(3)比赛时三人依次出场,顺序由抽签方式决定.求甲、乙相邻出场的概率. 【解析】(1)平均数中位数方差甲 2乙丙 6(2)因为2<2.2<3,所以<<,这说明甲运动员的成绩最稳定.(3)三人的出场顺序有(甲乙丙),(甲丙乙),(乙甲丙),(乙丙甲),(丙甲乙),(丙乙甲)共6种,且每一种结果出现的可能性相等,其中,甲、乙相邻出场的结果有(甲乙丙),(乙甲丙),(丙甲乙),(丙乙甲)共4种,所以甲、乙相邻出场的概率P==. 28.(10分)在“书香八桂,阅读圆梦”读书活动中,某中学设置了书法、国学诵读、演讲、征文四个比赛项目(每人只参加一个项目),九(2)班全班同学都参加了比赛,该班班长为了了解本班同学参加各项比赛的情况,收集整理数据后,绘制以下不完整的折线统计图(图1)和扇形统计图(图2).根据图中的信息解答下列各题:(1)请求出九(2)班全班人数.(2)请把折线统计图补充完整.(3)南南和宁宁参加了比赛,请用“列表法”或“画树状图法”求出他们参加的比赛项目相同的概率.【解析】(1)全班总人数为=48(人).(2)由(1)可知,九(2)班全班人数为48人.从扇形统计图中可以得到国学诵读占总人数的百分比为50%,所以国学诵读的人数为48×50%=24(人).描点、连线,补充完整的折线统计图如图所示:(3)画树状图如图:列表如下:南南书法演讲国学诵读征文宁宁书法√演讲√国学诵读√征文√南南和宁宁参加比赛一共有16种可能的结果,每种结果出现的可能性相等,而他们参加比赛项目相同的情况有4种,记南南和宁宁参加相同比赛项目为事件A,则P(A)==.29.(12分)为全面开展“大课间”活动,某校准备成立“足球”“篮球”“跳绳”“踢毽”四个课外活动小组,学校体工处根据七年级学生的报名情况(每人限报一项)绘制了两幅不完整的统计图.请根据以上信息,完成下列问题:(1)m=________,n=________,并将条形统计图补充完整.(2)试问全校2019人中,大约有多少人报名参加足球活动小组?(3)根据活动需要,从“跳绳”小组的二男二女四名同学中随机选取两人到“踢毽”小组参加训练,请用列表或树状图的方法计算恰好选中一男一女两名同学的概率.【解析】(1)因为样本容量为15÷15%=100,所以“篮球”所占百分比为=25%,所以m=25;因为“跳绳”对应扇形的圆心角为×360°=108°,所以n=108.(2)全校报名参加足球活动小组的人数为2019×=600(人).(3)列表如下:男1 男2 女1 女2男1 ×(男1,男2) (男1,女1) (男1,女2)男2 (男2,男1) ×(男2,女1) (男2,女2)女1 (女1,男1) (女1,男2) ×(女1,女2)女2 (女2,男1) (女2,男2) (女2,女1) ×画树状图如下:因为所有可能出现的结果为12种,其中出现一男一女两名同学的结果为8种, 所以恰好选中一男一女两名同学的概率为=.。
中考数学复习专题32:概率及其求法(含中考真题解析)

专题32 概率及其求法☞解读考点1.在一个不透明的袋子中,装有红球、黄球、篮球、白球各1个,这些球除颜色外无其他差别,从袋中随机取出一个球,取出红球的概率为( )A . 12B . 13C . 14 D . 1【答案】C .考点:概率公式.2.下列事件是必然事件的为( ) A .明天太阳从西方升起 B .掷一枚硬币,正面朝上C .打开电视机,正在播放“河池新闻”D .任意一个三角形,它的内角和等于180° 【答案】D .3.若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是()A.15B.25C.35D.45【答案】C.【解析】试题分析:这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率=3 5.故选C.考点:1.概率公式;2.中心对称图形.4.在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是15,则n的值为()A.3 B.5 C.8 D.10 【答案】C.【解析】试题分析:∵摸到红球的概率为15,∴2125n=+,解得n=8.故选C.考点:概率公式.5.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.12 B.15 C.18 D.21【答案】B.【解析】试题分析:由题意可得,3a×100%=20%,解得,a=15.故选B.考点:利用频率估计概率.6.下列事件发生的概率为0的是()A.射击运动员只射击1次,就命中靶心B.任取一个实数x,都有0 x≥C.画一个三角形,使其三边的长分别为8cm,6cm,2cmD.抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为6 【答案】C.7.如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影,转动指针,指针落在有阴影的区域内的概率为a,如果投掷一枚硬币,正面向上的概率为b,关于a、b大小的正确判断是()A.a>b B.a=b C.a<b D.不能判断【答案】B.【解析】试题分析:∵正六边形被分成相等的6部分,阴影部分占3部分,∴a=36=12,∵投掷一枚硬币,正面向上的概率b=12,∴a=b,故选B.考点:几何概率.8.某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为()A.112B.512C.16D.12【答案】A.考点:概率公式.9.小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为()A.16B.13C.12D.23【答案】B.【解析】试题分析:小强和小华玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:∵由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).∴小明和小颖平局的概率为:39=13.故选B .考点:列表法与树状图法. 10.如图,随机闭合开关1S 、2S 、3S 中的两个,则灯泡发光的概率是( )A .43B .32C .31D .21【答案】B . 【解析】试题分析:列表如下:共有6种情况,必须闭合开关S3灯泡才亮,即能让灯泡发光的概率是46=23.故选B .考点:1.列表法与树状图法;2.图表型.11.在排球训练中,甲、乙、丙三人相互传球,由甲开始发球(记作为第一次传球),则经过三次传球后,球仍回到甲手中的概率是( )A .12B .14C .38 D .58【答案】B .考点:列表法与树状图法.12.)在盒子里放有三张分别写有整式a+1,a+2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A.13B.23C.16D.34【答案】B.【解析】试题分析:分母含有字母的式子是分式,整式a+1,a+2,2中,抽到a+1,a+2做分母时组成的都是分式,共有3×2=6种情况,其中a+1,a+2为分母的情况有4种,所以能组成分式的概率=46=23.故选B.考点:1.概率公式;2.分式的定义;3.综合题.13.从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数12yx图象上的概率是()A.12B.13C.14D.16【答案】D.【解析】试题分析:画树状图得:∵共有12种等可能的结果,点(a ,b )在函数12y x =图象上的有(3,4),(4,3),∴点(a ,b )在函数12y x =图象上的概率是:212=16.故选D .考点:1.列表法与树状图法;2.反比例函数图象上点的坐标特征.14.从长度分别为1、3、5、7的四条线段中任选三条作边,能构成三角形的概率为( )A .21B .31C .41D .51【答案】C .考点:1.列表法与树状图法;2.三角形三边关系.15.斯)如图,A .B 是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C ,恰好能使△ABC 的面积为1的概率是( )A .256B .51C .254D .257【答案】A .考点:1.概率公式;2.三角形的面积.16.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上数字为7,则从3、4、5、6、8、9中任选两数,与7组成“中高数”的概率是( )A .12B .23C .25D .35【答案】C . 【解析】试题分析:列表得:∵共有30种等可能的结果,与7组成“中高数”的有12种情况,∴与7组成“中高数”的概率是:1230=25.故选C .考点:1.列表法与树状图法;2.新定义.17.色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表:根据表中数据,估计在男性中,男性患色盲的概率为 (结果精确到0.01) 【答案】0.07. 【解析】试题分析:观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右,故男性中,男性患色盲的概率为0.07,故答案为:0.07. 考点:利用频率估计概率.18.“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).小亮随机地向大正方形内部区域投飞镖.若直角三角形两条直角边的长分别是2和1,则飞镖投到小正方形(阴影)区域的概率是 .【答案】15.考点:1.几何概率;2.勾股定理.19.写一个你喜欢的实数m 的值 ,使得事件“对于二次函数21(1)32y x m x =--+,当3x <-时,y 随x 的增大而减小”成为随机事件.【答案】答案不唯一,2m <-的任意实数皆可,如:﹣3. 【解析】试题分析:21(1)32y x m x =--+,12bx m a =-=-,∵当3x <-时,y 随x 的增大而减小,∴13m -<-,解得:2m <-,∴2m <-的任意实数皆可.故答案为:答案不唯一,2m <-的任意实数皆可,如:﹣3.考点:1.随机事件;2.二次函数的性质;3.开放型.20.有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽出一张,记卡片上的数字为a ,则使关于x 的不等式组43(1)122x x x x a ≥-⎧⎪⎨--<⎪⎩有解的概率为____.【答案】49.考点:1.解一元一次不等式组;2.含字母系数的不等式;3.概率公式;4.压轴题. 21.)从﹣3,﹣2,﹣1,0,4这五个数中随机抽取一个数记为a ,a 的值既是不等式组2343111x x +<⎧⎨->-⎩的解,又在函数2122y x x =+的自变量取值范围内的概率是 . 【答案】25.【解析】试题分析:∵不等式组2343111x x +<⎧⎨->-⎩的解集是:10132x -<<,∴a 的值是不等式组的解的有:﹣3,﹣2,﹣1,0,∵函数2122y x x =+的自变量取值范围为:2220x x +≠,即0x ≠且1x ≠-,∴a 的值在函数2122y x x =+的自变量取值范围内的有﹣3,﹣2,4;∴a 的值既是不等式组2343111x x +<⎧⎨->-⎩的解,又在函数2122y x x =+的自变量取值范围内的有:﹣3,﹣2;∴a 的值既是不等式组2343111x x +<⎧⎨->-⎩的解,又在函数2122y x x =+的自变量取值范围内的概率是:25.故答案为:25.考点:1.概率公式;2.解一元一次不等式组;3.函数自变量的取值范围;4.综合题. 22.)从﹣2,﹣1,0,1,2这5个数中,随机抽取一个数记为a ,则使关于x 的不等式组21162212x x a -⎧≥-⎪⎨⎪-<⎩有解,且使关于x 的一元一次方程32123x a x a-++=的解为负数的概率为 .【答案】35.考点:1.概率公式;2.一元一次方程的解;3.解一元一次不等式组;4.综合题;5.压轴题.23.如图,直线24y x=+与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB上,则点C′的坐标为.【答案】(﹣1,2).考点:1.一次函数图象上点的坐标特征;2.等边三角形的性质;3.坐标与图形变化-平移;4.数形结合.24.如图,在平面直角坐标系中,点A(0,4),B(3,0),连接AB,将△AOB沿过点B 的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为.【答案】1322y x =-+. 【解析】试题分析:∵A (0,4),B (3,0),∴OA=4,OB=3,在Rt △OAB 中,=5,∵△AOB 沿过点B 的直线折叠,使点A 落在x 轴上的点A′处,∴BA′=BA=5,CA′=CA ,∴OA′=BA′﹣OB=5﹣3=2,设OC=t ,则CA=CA′=4﹣t ,在Rt △OA′C 中,∵222''OC OA CA +=,∴2222(4)t t +=-,解得t=32,∴C 点坐标为(0,32),设直线BC 的解析式为y kx b =+,把B (3,0)、C (0,32)代入得3032k b b +=⎧⎪⎨=⎪⎩,解得:1232k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线BC 的解析式为1322y x =-+.故答案为:1322y x =-+. 考点:1.翻折变换(折叠问题);2.待定系数法求一次函数解析式;3.综合题.25.今年5月份,某校九年级学生参加了南宁市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(如表)和扇形统计图(如图),根据图表中的信息解答下列问题: (1)求全班学生人数和m 的值.(2)直接学出该班学生的中考体育成绩的中位数落在哪个分数段.(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.【答案】(1)50,18;(2)落在51﹣56分数段;(3)2 3.(2)∵全班学生人数:50人,∴第25和第26个数据的平均数是中位数,∴中位数落在51﹣56分数段;(3)如图所示:将男生分别标记为A1,A2,女生标记为B1P(一男一女)=46=23.考点:1.列表法与树状图法;2.频数(率)分布表;3.扇形统计图;4.中位数.26.某校为了选拔学生参加“汉字听写大赛”,对九年级一班、二班各10名学生进行汉字听写测试.计分采用10分制(得分均取整数),成绩达到6分或6分以上为及格,得到9分为优秀,成绩如表1所示,并制作了成绩分析表(表2).表1表2(1)在表2中,a= ,b= ;(2)有人说二班的及格率、优秀率均高于一班,所以二班比一班好;但也有人认为一班成绩比二班好,请你给出坚持一班成绩好的两条理由;(3)一班、二班获满分的中同学性别分别是1男1女、2男1女,现从这两班获满分的同学中各抽1名同学参加“汉字听写大赛”,用树状图或列表法求出恰好抽到1男1女两位同学的概率.【答案】(1)8,7.5;(2)一班的平均成绩高,且方差小,较稳定;(3)1 2.(3)列表得:∵共有6种等可能的结果,一男一女的有3种,∴P(一男一女)=36=12.考点:1.列表法与树状图法;2.加权平均数;3.中位数;4.众数;5.方差.27.城港)现有三张反面朝上的扑克牌:红桃2、红桃3、黑桃x(1≤x≤13且x为奇数或偶数).把牌洗匀后第一次抽取一张,记好花色和数字后将牌放回,重新洗匀第二次再抽取一张.(1)求两次抽得相同花色的概率;(2)当甲选择x为奇数,乙选择x为偶数时,他们两次抽得的数字和是奇数的可能性大小一样吗?请说明理由.(提示:三张扑克牌可以分别简记为红2、红3、黑x)【答案】(1)59;(2)一样.(2)他们两次抽得的数字和是奇数的可能性大小一样,∵x为奇数,两次抽得的数字和是奇数的可能性有4种,∴P(甲)=49,∵x为偶数,两次抽得的数字和是奇数的可能性有4种,∴P(乙)=49,∴P(甲)=P(乙),∴他们两次抽得的数字和是奇数的可能性大小一样.考点:列表法与树状图法.28.端午节是我国的传统节日,人们有吃粽子的习惯.某校数学兴趣小组为了了解本校学生喜爱粽子的情况,随机抽取了50名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图(注:每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题:(1)扇形统计图中,“很喜欢”所对应的圆心角为度;条形统计图中,喜欢“糖馅”粽子的人数为人;(2)若该校学生人数为800人,请根据上述调查结果,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和;(3)小军最爱吃肉馅粽子,小丽最爱吃糖馅粽子.某天小霞带了重量、外包装完全一样的肉馅、糖馅、枣馅、海鲜馅四种粽子各一只,让小军、小丽每人各选一只.请用树状图或列表法求小军、小丽两人中有且只有一人选中自己最爱吃的粽子的概率.【答案】(1)144,3;(2)600;(3)1 3.(2)学生有800人,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和为800×(1﹣25%)=600(人);(3)肉馅、糖馅、枣馅、海鲜馅四种粽子分别用A、B、C、D表示,画图如下:∵共12种等可能的结果,其中小军、小丽两人中有且只有一人选中自己最爱吃的粽子有4种,∴P(小军、小丽两人中有且只有一人选中自己最爱吃的粽子)=412=13.考点:1.列表法与树状图法;2.用样本估计总体;3.扇形统计图;4.条形统计图.29.某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛.各参赛选手的成绩如图:九(1)班:88,91,92,93,93,93,94,98,98,100九(2)班:89,93,93,93,95,96,96,98,98,99通过整理,得到数据分析表如下:(1)直接写出表中m、n的值;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有人说(2)班的成绩要好,请给出两条支持九(2)班成绩好的理由;(3)若从两班的参赛选手中选四名同学参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在四个“98分”的学生中任选二个,试求另外两个决赛名额落在同一个班的概率.【答案】(1)m=94,n=95.5;(2)①九(2)班平均分高于九(1)班;②九(2)班的成绩比九(1)班稳定;③九(2)班的成绩集中在中上游,故支持九(2)班成绩好(任意选两个即可);(3)1 3.(3)用A1,B1表示九(1)班两名98分的同学,C2,D2表示九(2)班两名98分的同学,画树状图,如图所示:所有等可能的情况有12种,其中另外两个决赛名额落在同一个班的情况有4种,则P(另外两个决赛名额落在同一个班)=412=13.考点:1.列表法与树状图法;2.加权平均数;3.中位数;4.众数;5.方差.30.为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数,从中抽取部分同学的成绩进行统计,并绘制成如图统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组(79.5~89.5)”的扇形的圆心角为度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为.【答案】(1)144;(2)640;(3)2 3.(2)估计该校获奖的学生数=16100%50×2000=640(人);(3)列表如下:所有等可能的情况有12种,其中选出的两名主持人“恰好为一男一女”的情况有8种,则P(选出的两名主持人“恰好为一男一女”)=812=23.故答案为:23.考点:1.列表法与树状图法;2.用样本估计总体;3.频数(率)分布直方图;4.扇形统计图.31.甲,乙,丙三位学生进入了“校园朗诵比赛”冠军、亚军和季军的决赛,他们将通过抽签来决定比赛的出场顺序.(1)求甲第一个出场的概率;(2)求甲比乙先出场的概率.【答案】(1)13;(2)12.考点:列表法与树状图法.32.(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”或“列表”等方式给出分析过程)(2)如果甲跟另外n(n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是(请直接写出结果).【答案】(1)13;(2)21nn.【解析】试题分析:(1)先画树状图,由树状图可得总结果与传到甲手里的情况,根据传到甲手里的情况比上总结过,可得答案;(2)根据第一步传的结果是n,第二步传的结果是2n,第三步传的结果是总结过是3n,传给甲的结果是n(n﹣1),根据概率的意义,可得答案.考点:列表法与树状图法.33.活动1:在一只不透明的口袋中装有标号为1,2,3的3个小球,这些球除标号外都相同,充分搅匀,甲、乙、丙三位同学丙→甲→乙的顺序依次从袋中各摸出一个球(不放回),摸到1号球胜出,计算甲胜出的概率.(注:丙→甲→乙表示丙第一个摸球,甲第二个摸球,乙最后一个摸球)活动2:在一只不透明的口袋中装有标号为1,2,3,4的4个小球,这些球除标号外都相同,充分搅匀,请你对甲、乙、丙三名同学规定一个摸球顺序:→ → ,他们按这个顺序从袋中各摸出一个球(不放回),摸到1号球胜出,则第一个摸球的同学胜出的概率等于,最后一个摸球的同学胜出的概率等于.猜想:在一只不透明的口袋中装有标号为1,2,3,…,n(n为正整数)的n个小球,这些球除标号外都相同,充分搅匀,甲、乙、丙三名同学从袋中各摸出一个球(不放回),摸到1号球胜出,猜想:这三名同学每人胜出的概率之间的大小关系.你还能得到什么活动经验?(写出一个即可)【答案】(1)13;(2)丙、甲、乙、14,14;(3)P(甲胜出)=P(乙胜出)=P(丙胜出),抽签是公平的,与顺序无关.(答案不唯一).【解析】试题分析:(1)画出树状图法,判断出甲胜出的概率是多少即可.试题解析:(1)如图1,,甲胜出的概率为:P(甲胜出)=1 3;(2)如图2,,对甲、乙、丙三名同学规定一个摸球顺序:丙→甲→乙,则第一个摸球的丙同学胜出的概率等于14,最后一个摸球的乙同学胜出的概率也等于14,故答案为:丙、甲、乙、14,14;(3)这三名同学每人胜出的概率之间的大小关系为:P(甲胜出)=P(乙胜出)=P(丙胜出).得到的活动经验为:抽签是公平的,与顺序无关.(答案不唯一).考点:列表法与树状图法.34.有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和﹣2;乙袋中有三个完全相同的小球,分别标有数字﹣1、0和2.小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x;再从乙袋中随机取出一个小球,记录下小球上的数字为y,设点P的坐标为(x,y).(1)请用表格或树状图列出点P所有可能的坐标;(2)求点P在一次函数1+=xy图象上的概率.【答案】(1)点P所有可能的坐标为:(1,﹣1),(1,0),(1,2),(﹣2,﹣1),(﹣2,0),(﹣2,2);(2)1 3.∴点P所有可能的坐标为:(1,﹣1),(1,0),(1,2),(﹣2,﹣1),(﹣2,0),(﹣2,2);(2)∵只有(1,2),(﹣2,﹣1)这两点在一次函数1+=xy图象上,∴P(点P在一次函数y=x+1的图象上)=26=13.考点:1.列表法与树状图法;2.一次函数图象上点的坐标特征.35.端午节是我国的传统节日,人们有吃粽子的习惯.某校数学兴趣小组为了了解本校学生喜爱粽子的情况,随机抽取了50名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图(注:每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题:(1)扇形统计图中,“很喜欢”所对应的圆心角为度;条形统计图中,喜欢“糖馅”粽子的人数为人;(2)若该校学生人数为800人,请根据上述调查结果,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和;(3)小军最爱吃肉馅粽子,小丽最爱吃糖馅粽子.某天小霞带了重量、外包装完全一样的肉馅、糖馅、枣馅、海鲜馅四种粽子各一只,让小军、小丽每人各选一只.请用树状图或列表法求小军、小丽两人中有且只有一人选中自己最爱吃的粽子的概率.【答案】(1)144,3;(2)600;(3)1 3.(2)学生有800人,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和为800×(1﹣25%)=600(人);(3)肉馅、糖馅、枣馅、海鲜馅四种粽子分别用A、B、C、D表示,画图如下:∵共12种等可能的结果,其中小军、小丽两人中有且只有一人选中自己最爱吃的粽子有4种,∴P(小军、小丽两人中有且只有一人选中自己最爱吃的粽子)=412=13.考点:1.列表法与树状图法;2.用样本估计总体;3.扇形统计图;4.条形统计图.【2014年题组】1.南平中考)一个袋中只装有3个红球,从中随机摸出一个是红球()A.可能性为13B.属于不可能事件C.属于随机事件D.属于必然事件【答案】D.【解析】试题分析:因为袋中只装有3个红球,所以从中随机摸出一个一定是红球,所以属于必然事件,故选D.考点:1.随机事件;2.可能性的大小.2.三明中考)小亮和其他5个同学参加百米赛跑,赛场共设1,2,3,4,5,6六个跑道,选手以随机抽签的方式确定各自的跑道.若小亮首先抽签,则小亮抽到1号跑道的概率是()A.16B.15C.12D.1【答案】A.考点:概率公式.3.长沙中考)100件外观相同的产品中有5件不合格,现从中任意抽取1件进行检测,抽到不合格产品的概率是.【答案】1 20.【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,∵100件外观相同的产品中有5件不合格,∴从中任意抽取1件进行检测,抽到不合格产品的概率是:51 10020.考点:概率公式.4.梅州中考)下列事件中是必然事件是()A、明天太阳从西边升起B、篮球队员在罚球线投篮一次,未投中C、实心铁球投入水中会沉入水底D、抛出一枚硬币,落地后正面向上【答案】C.【解析】试题分析:A、明天太阳从西边升起,是不可能事件;B、篮球队员在罚球线投篮一次,未投中,是随机事件;C、实心铁球投入水中会沉入水底,是必然事件;D、抛出一枚硬币,落地后正面向上,是随机事件.故选C.考点:必然事件.5.南通中考)在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在区域的可能性最大(填A或B或C).【答案】A.考点:1.几何概率;2.转换思想的应用.6.疆乌鲁木齐中考)在一个不透明的口袋中有颜色不同的红、白两种小球,其中红球3只,白球n 只,若从袋中任取一个球,摸出白球的概率为34,则n= .【答案】9. 【解析】试题分析:∵从3只红球,n 只白球的袋中任取一个球,摸出白球的概率为34,∴n 3n 34=+.解得:n=9,经检验:x=9是原分式方程的解. ∴n=9.考点:1.概率公式;2.分式方程的应用7.台州中考)抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同)在看不见的情况下随机摸出两只袜子,他们恰好同色的概率是 .【答案】13.【解析】试题分析:画树状图得:∵共有12种等可能的结果,它们恰好同色的有4种情况,∴它们恰好同色的概率是:41123=.考点:1.列表法或树状图法;2.概率.8.南京中考)从甲、乙、丙三名同学中随机抽取环保志愿者,求下列事件的概率: (1)抽取1名,恰好是甲; (2)抽取2名,甲在其中.【答案】(1)13;(2)23.(2)∵抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,∴抽取2名,甲在其中的概率为:2 3.考点:概率.9.古包头、乌兰察布中考)有四张正面分别标有数字2,1,﹣3,﹣4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上的数字记为m,再随机地摸取一张,将卡片上的数字记为n.(1)请画出树状图并写出(m,n)所有可能的结果;(2)求所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的概率.【答案】(1)答案见试题解析;(2)1 6.试题解析:解:(1)画树状图得:∴(m,n)共有12种等可能的结果:(2,1),(2,﹣3),(2,﹣4),(1,2),(1,﹣3),(1,﹣4),(﹣3,2),(﹣3,1),(﹣3,﹣4),(﹣4,2),(﹣4,1),(﹣4,﹣3).(2)∵当k 0<,b 0<时,函数y=kx+b 的图象经过第二、三、四象限,∴所选出的m ,n 能使一次函数y=mx+n 的图象经过第二、三四象限的有:(﹣3﹣4),(﹣4,﹣3).∴所选出的m ,n 能使一次函数y=mx+n 的图象经过第二、三四象限的概率为:21126 . 考点:1.树状图法;2.概率;3.一次函数图象与系数的关系.10.省中考)某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去. (1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果; (2)你认为这个规则公平吗?请说明理由. 【答案】(1)答案见试题解析;(2)这个游戏公平.考点:1.列表法或树状图法;2.概率;3.游戏公平性.☞考点归纳归纳 1:概率的有关概念 基础知识归纳: 1、确定事件必然发生的事件:在一定的条件下重复进行试验时,在每次试验中必然会发生的事件. 不可能发生的事件:有的事件在每次试验中都不会发生,这样的事件叫做不可能的事件. 2、随机事件:。
初中数学用频率估计概率解答题专题训练含答案

初中数学用频率估计概率解答题专题训练含答案试卷主标题姓名:__________班级:__________考号:__________一、解答题(共20题)1、一个不透明的袋中装有红、黄、白三种颜色球共100个,它们除颜色外都相同,其中黄球个数是白球个数的2倍少5个。
已知从袋中摸出一个球是红球的概率是。
(1)求袋中红球的个数;(2)求从袋中摸出一个球是白球的概率;(3)取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率。
2、某水果公司以2元/千克的成本购进10000千克柑橘,销售人员在销售过程中随机抽取柑橘进行“柑橘损坏率”统计,并绘制成如图5所示的统计图,根据统计图提供的信息解决下面问题:⑴柑橘损坏的概率估计值为,柑橘完好的概率估计值为;⑵估计这批柑橘完好的质量为千克;⑶如果公司希望销售这些柑橘能够获得25000元的利润,那么在出售(已去掉损坏的柑橘)时,每千克柑橘大约定价为多少元比较合适?3、小刚很擅长球类运动,课外活动时,足球队、篮球队都力邀他到自己的阵营,小刚左右为难,最后决定通过掷硬币来确定。
游戏规则如下:连续抛掷硬币三次,如果三次正面朝上或三次反面朝上,则由小刚任意挑选两球队;如果两次正面朝上一次正面朝下,则小刚加入足球阵营;如果两次反面朝上一次反面朝下,则小刚加入篮球阵营。
(1)用画树状图的方法表示三次抛掷硬币的所有结果。
(2)小刚任意挑选两球队的概率有多大?(3)这个游戏规则对两个球队是否公平?为什么?4、在初三综合素质评定结束后,为了了解年级的评定情况,现对初三某班的学生进行了评定等级的调查,绘制了如下男女生等级情况折线统计图和全班等级情况扇形统计图.(1)调查发现评定等级为合格的男生有2人,女生有1人,则全班共有名学生.(2)补全女生等级评定的折线统计图.(3)根据调查情况,该班班主任从评定等级为合格和A的学生中各选1名学生进行交流,请用树形图或表格求出刚好选中一名男生和一名女生的概率.5、有3张扑克牌,分别是红桃3、红桃4和黑桃5.把牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张.(1)列表或画树状图表示所有取牌的可能性;(2)甲、乙两人做游戏,现有两种方案:A方案:若两次抽得相同花色则甲胜,否则乙胜;B方案:若两次抽得数字和为奇数则甲胜,否则乙胜.请问甲选择哪种方案胜率更高?6、下面第一排表示了十张扑克牌中不同情况,任意摸一张,请你用第二排的语言来描述摸到红色扑克牌的可能性大小,并用线连起来.7、一个口袋中有9个红球和若干个白球,在不允许将球倒出来数的前提下,小明采用如下的方法估算其中白球的个数:从口袋中随机摸出一球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一球,记下颜色…,小明重复上述过程共摸了100次,其中40次摸到白球,请回答:(1)口袋中的白球约有多少个?(2)有一个游乐场,要按照上述红球、白球的比例配置彩球池,若彩球池里共有1200个球,则需准备多少个红球?8、小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)试验,他们共做了60次试验,试验的结果如下:朝上的点数 1 2 3 4 5 6 出现的次数 7 9 6 8 20 10 (1)分别计算“3点朝上”的频率和“5点朝上”的频率;(2)小颖说:“根据试验,一次试验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次.”小颖和小红的说法正确吗?为什么?9、某市某幼儿园六一期间举行亲子游戏,主持人请三位家长分别带自己的孩子参加游戏,主持人准备把家长和孩子重新组合完成游戏,A、B、C分别表示三位家长,他们的孩子分别对应的是a、b、c.(1)若主持人分别从三位家长和三位孩子中各选一人参加游戏,恰好是A、a的概率是多少(直接写出答案)(2)若主持人先从三位家长中任选两人为一组,再从孩子中任选两人为一组,四人共同参加游戏,恰好是两对家庭成员的概率是多少.(画出树状图或列表)10、甲布袋中有三个红球,分别标有数字1,2,3;乙布袋中有三个白球,分别标有数字2,3,4.这些球除颜色和数字外完全相同.小亮从甲袋中随机摸出一个红球,小刚从乙袋中随机摸出一个白球.(1)用画树状图(树形图)或列表的方法,求摸出的两个球上的数字之和为6的概率;(2)小亮和小刚做游戏,规则是:若摸出的两个球上的数字之和为奇数,小亮胜;否则,小刚胜.你认为这个游戏公平吗?为什么?11、网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”、“中评”、“差评”三种评价,假设这三种评价是等(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并列出了两幅不完整的统计图.利用图中所提供的信息解决以下问题:①小明一共统计了??个评价;②请将图1补充完整;③图2中“差评”所占的百分比是??;(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率.12、在一个不透明的盒子里装有黑、白两种颜色的球共40只,这些球除颜色外其余完全相同.小颖做摸球实验,搅匀后,她从盒子里随机摸出一只球记下颜色后,再把球放回盒子中,不断重复上述过程,下表是实验中的一组统计数据:摸球的次数n 100 200 300 500 800 1000 3000 摸到白球的次数m 65 124 178 302 481 599 1803 摸到白球的频率 0.65 0.62 0.593 0.604 0.601 0.599 0.601 (1)请估计:当n很大时,摸到白球的频率将会接近______;(精确到0.1)(2)若从盒子里随机摸出一只球,则摸到白球的概率的估计值为(3)试估算盒子里黑、白两种颜色的球各有多少只?13、某校九年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:(1)则样本容量容量是,并补全直方图;(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12的次数;(3)已知A组发言的学生中恰有1位女生,E组发言的学生中有2位男生,现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率.发言次数n A 0≤n<3 B 3≤n<6 C 6≤n<9 D 9≤n<12 E 12≤n <15 F 15≤n<1814、甲乙两名同学做摸球游戏,他们把三个分别标有1,2,3的大小和形状完全相同的小球放在一个不透明的口袋中.(1)求从袋中随机摸出一球,标号是1的概率;(2)从袋中随机摸出一球后放回,摇匀后再随机摸出一球,若两次摸出的球的标号之和为偶数时,则甲胜;若两次摸出的球的标号之和为奇数时,则乙胜;试分析这个游戏是否公平?请说明理由.15、有五张卡片,卡片上分别写有A、B、B、C、C,这些卡片除字母外完全相同,从中随机摸出一张,记下字母后放回,充分洗匀后,再从中摸出一张,请你利用树状图会列表的方法,求两次摸到卡片字母相同的概率;若从中随机摸出一张,记下字母后不放回,洗匀后再从中摸出一张,则两次摸到卡片字母相同的概率又是多少?16、宜城市2016年体育考试即将开始,某中学为了预测本校应届毕业生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图所示的部分频数分布直方图(从左到右依次为六个小组,每小组含最小值,不含最大值)和扇形统计图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年中考数学专题复习第三十讲概率【基础知识回顾】一、事件的分类:1、确定事件:在一定条件下,有些事件发生与否是可以事先这样的事件叫做确定事件,其中发生的事件叫做必发事件发生的时间叫做事件2、随机事件:在一定条件下,可能也可能的事件,称为随机事件二、概率的概念:一般地,对于一个随机事件A我们把刻画其发生可能性大小的称为随机事件概发生的记作【赵老师提醒:1、概率从数上刻画了一个随机事件发生的可能性的大小2、若A为必然事件,则P1 A1 = 若A为不可能事件,则P1 A1 = 若A为随机事件,则< P1 A1< 】三、概率的计算:1、较简单问题情景下的概率:在一次试验中,有几种等可能的结果,事件A包含其中的几种结果,则事件A发生的概率P1 A1=1、两步或两步以上的实验事件的概率计算方法:常用的方法有列举:例画等【赵老师提醒:当实验包含两步时,可采用列举或列表,当然也可以画树形图,当实验包含三步或三步以上时,一般用】法】四、用频率估计概率一般地,在大量重复实验中,如果事件A发生的频率mn会逐渐稳定在某个常数P附近,那么事件A发生的概率P1 A1=【赵老师提醒:1、频率就等于概率,频率是通过多次得到的数据,而概率是在理论上出来的,只有当重复实验次数足够多时,可以用实验频率估计2、要估计池塘中鱼的数目,可以先从中拿出m条做标记而后放回,待重分混合后,再从中取出几条,若其中有标记的有a条,则可估计池塘中鱼的数目为】【典型例题解析】考点一:生活中的确定事件和随机事件例1 (2012•资阳)下列事件为必然事件的是()A.小王参加本次数学考试,成绩是150分B.某射击运动员射靶一次,正中靶心C.打开电视机,CCTV第一套节目正在播放新闻D.口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球考点:随机事件.专题:计算题.分析:根据事件的分类的定义及分类对四个选项进行逐一分析即可.解答:解:A、小王参加本次数学考试,成绩是150分是随机事件,故本选项错误;B、某射击运动员射靶一次,正中靶心是随机事件,故本选项错误;C、打开电视机,CCTV第一套节目正在播放新闻是随机事件,故本选项错误.D、口袋中装有2个红球和1个白球,从中摸出2个球,其中必有红球是必然事件,故本选项正确;故选D.点评:本题考查的是随机事件,即在一定条件下,可能发生也可能不发生的事件,称为随机事件.对应训练1.(2012•孝感)下列事件中,属于随机事件的是()A.通常水加热到100℃时沸腾B.测量孝感某天的最低气温,结果为-150℃C.一个袋中装有5个黑球,从中摸出一个是黑球D.篮球队员在罚球线上投篮一次,未投中考点:随机事件.分析:随机事件就是可能发生也可能不发生的事件,依据定义即可求解.解答:解:A、C一定正确,是必然事件;B是不可能事件,D、篮球队员在罚球线上投篮未中属于随机事件.故选D.点评:本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.关键是理解随机事件是指在一定条件下,可能发生也可能不发生的事件.解答:解:(1)画树状图得:对应训练2.(2012•新疆)在边长为1的小正方形组成的网格中,有如图所示的A,B两点,在格点上任意放置点C,恰好能使得△ABC的面积为1的概率为()A.316B.38C.14D.516考点:概率公式;三角形的面积.3.(2012•山西)小江玩投掷飞镖的游戏,他设计了一个如图所示的靶子,点E、F分别是矩形ABCD的两边AD、BC上的点,EF∥AB,点M、N是EF上任意两点,则投掷一次,飞4.(2012•镇江)学校举办“大爱镇江”征文活动,小明为此次活动设计了一个以三座山为背景的图标(如图),现用红、黄两种颜色对图标中的A、B、C三块三角形区域分别涂色,一块区域只涂一种颜色.(1)请用树状图列出所有涂色的可能结果;A.0.96 B.0.95 C.0.94 D.0.90 考点:利用频率估计概率.对应训练考点四:概率的应用(游戏的)例6 (2012•黄冈)在一个口袋中有4个完全相同的小球,把它们分别标上1、2、3、4.小明先随机地摸出一个小球,小强再随机的摸出一个小球.记小明摸出球的标号为x,小强摸出的球标号为y.小明和小强在此基础上共同协商一个游戏规则:当x>y时小明获胜,否则小强获胜.①若小明摸出的球不放回,求小明获胜的概率.②若小明摸出的球放回后小强再随机摸球,问他们制定的游戏规则公平吗?请说明理由.考点:游戏公平性;列表法与树状图法.分析:(1)首先根据题意画出树状图,由树状图求得所有等可能的结果与小明获胜的情况,继而利用概率公式即可求得答案,注意此题属于不放回实验;(2)首先根据题意画出树状图,由树状图求得所有等可能的结果与小明、小强获胜的情况,继而利用概率公式求得其概率,比较概率,则可得到他们制定的游戏规则是否公平,注意此题属于放回实验.对应训练6.(2012•衡阳)在一个不透明的口袋里装有分别标有数字1,2,3,4四个小球,除数字不同外,小球没有任何区别,每次实验先搅拌均匀.(1)若从中任取一球,球上的数字为偶数的概率为多少?(2)若从中任取一球(不放回),再从中任取一球,请用画树状图或列表格的方法求出两个球上的数字之和为偶数的概率.(3)若设计一种游戏方案:从中任取两球,两个球上的数字之差的绝对值为1为甲胜,否则为乙胜,请问这种游戏方案设计对甲、乙双方公平吗?说明理由.考点:游戏公平性;概率公式;列表法与树状图法.分析:(1)由不透明的口袋里装有分别标有数字1,2,3,4四个小球,球上的数字为偶数的是2与4,利用概率公式即可求得答案;(2)首先画出树状图,然后由树状图求得所有等可能的结果与两个球上的数字之和为偶数的情况,利用概率公式即可求得答案;(3)分别求得甲胜与乙胜的概率,比较概率,即可得出结论.解答:解:(1)∵不透明的口袋里装有分别标有数字1,2,3,4四个小球,球上的数字为偶数的是2与4,【聚焦山东中考】1.(2012•聊城)“抛一枚均匀硬币,落地后正面朝上”这一事件是()A.必然事件B.随机事件C.确定事件D.不可能事件考点:随机事件.分析:根据随机事件的定义,随机事件就是可能发生,也可能不发生的事件,即可判断.解答:解:抛1枚均匀硬币,落地后可能正面朝上,也可能反面朝上,故抛1枚均匀硬币,落地后正面朝上是随机事件.故选B.点评:本题主要考查的是对随机事件概念的理解,解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,比较简单.2.(2012•济南)下列事件中必然事件的是()A.任意买一张电影票,座位号是偶数B.正常情况下,将水加热到100℃时水会沸腾C.三角形的内角和是360°A.0 B.C.D.A.B.C.D.1A.B.C.D.A.6B.3C.2D.3考点:列表法与树状图法.分析:首先根据题意列出表格,然后由表格求得所有等可能的与这两个乒乓球上的数字之和A.4B.4C.3D.2画树状图得:A.B.C.D.11.(2012•聊城)我市初中毕业男生体育测试项目有四项,其中“立定跳远”“1000米跑”“肺活量测试”为必测项目,另一项“引体向上”或“推铅球”中选一项测试.小亮、小明和大刚从“引体向上”或“推铅球”中选择同一个测试项目的概率是.考点:列表法与树状图法.分析:首先分别用A,B代表“引体向上”与“推铅球”,然后根据题意画树状图,继而求得所有等可能的结果与小亮、小明和大刚从“引体向上”或“推铅球”中选择同一个测试项目的情况,利用概率公式即可求得答案.解答:解:分别用13.(2012•菏泽)口袋内装有大小、质量和材质都相同的红色1号、红色2号、黄色1号、黄色2号、黄色3号的5个小球,从中摸出两球,这两球都是红色的概率是.考点:列表法与树状图法.分析:首先根据题意列出表格,然后根据表格求得所有等可能的情况与这两球都是红色的情况,利用概率公式即可求得答案.【备考真题过关】一、选择题1.(2012•张家界)下列不是必然事件的是()A.角平分线上的点到角两边的距离相等B.三角形任意两边之和大于第三边C.面积相等的两个三角形全等D.三角形内心到三边距离相等考点:随机事件.分析:必然事件就是一定发生的事件,即发生的概率是1的事件.据此判断即可解答.解答:解:A、为必然事件,不符合题意;B、为必然事件,不符合题意;C、为不确定事件,面积相等的三角形不一定全等,符合题意;D、为必然事件,不符合题意.故选C.点评:本题主要考查必然事件、不可能事件、随机事件的概念,理解概念是解决基础题的主要方法.用到的知识点为:必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.(2012•泰州)有两个事件,事件A:367人中至少有2人生日相同;事件B:抛掷一枚均匀的骰子,朝上的面点数为偶数.下列说法正确的是()A.事件A、B都是随机事件B.事件A、B都是必然事件C.事件A是随机事件,事件B是必然事件D.事件A是必然事件,事件B是随机事件考点:随机事件.分析:必然事件就是一定发生的事件,即发生的概率是1的事件.首先判断两个事件是必然事件、随机事件,然后找到正确的答案.解答:解:事件A、一年最多有366天,所以367人中必有2人的生日相同,是必然事件;事件B、抛掷一枚均匀的骰子,朝上的面点数为1、2、3、4、5、6共6种情况,点数为偶数是随机事件.故选D.点评:该题考查的是对必然事件的概念的理解;解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题.用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.3.(2012•绵阳)下列事件中,是随机事件的是()A.度量四边形的内角和为180°B.通常加热到100℃,水沸腾C.袋中有2个黄球,共五个球,随机摸出一个求是红球D.抛掷一枚硬币两次,第一次正面向上,第二次反面向上考点:随机事件.分析:随机事件是指在一定条件下,可能发生也可能不发生的事件,利用定义即可判断.解答:解:A、是不可能事件,故选项错误;B、是必然事件,故选项错误;C、是不可能事件,故选项错误;D、是随机事件,故选项正确.故选D.点评:本题考查了随机事件的定义,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.(2012•岳阳)下列说法正确的是()A.随机事件发生的可能性是50%B.一组数据2,2,3,6的众数和中位数都是2C.为了了解岳阳5万名学生中考数学成绩,可以从中抽取10名学生作为样本D.若甲组数据的方差S甲2=0.31,乙组数据的方差S乙2=0.02,则乙组数据比甲组数据稳定考点:可能性的大小;抽样调查的可靠性;中位数;众数;方差.分析:根据事件发生可能性的大小和概率的值的大小的关系以及中位数、众数、方差的定义分别进行判断即可.解答:解:A、随机事件发生的可能性是大于0,小于1,故本选项错误;B、一组数据2,2,3,6的众数是2,中位数是2.5,故本选项错误;C、为了了解岳阳5万名学生中考数学成绩,可以从中抽取10名学生的中考数学成绩作为样本,容量太小,故本选项错误;D、若甲组数据的方差S甲2=0.31,乙组数据的方差S乙2=0.02,则乙组数据比甲组数据稳定,故本选项正确;故选D.点评:此题考查了可能性大小,用到的知识点是可能性的大小、中位数、众数、方差等,解题的关键是根据有关定义判断出每一项的正误.5.(2012•河北)掷一枚质地均匀的硬币10次,下列说法正确的是()A.每2次必有1次正面向上B.可能有5次正面向上6.(2012•杭州)一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相同.若从中任意摸出一个球,则下列叙述正确的是()A.摸到红球是必然事件B.摸到白球是不可能事件C.摸到红球比摸到白球的可能性相等D.摸到红球比摸到白球的可能性大考点:可能性的大小;随机事件.分析:利用随机事件的概念,以及个数最多的就得到可能性最大分别分析即可.解答:解:A.摸到红球是随机事件,故此选项错误;B.摸到白球是随机事件,故此选项错误;C.摸到红球比摸到白球的可能性相等,根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故此选项错误;D.根据不透明的盒子中装有2个红球和1个白球,得出摸到红球比摸到白球的可能性大,故此选项正确;故选:D.点评:此题主要考查了随机事件以及可能性大小,利用可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等得出是解题关键.7.(2012•厦门)某种彩票的中奖机会是1%,下列说法正确的是()A.买一张这种彩票一定不会中奖B.买1张这种彩票一定会中奖C.买100张这种彩票一定会中奖A.B.C.D.9.(2012•深圳)端午节吃粽子是中华民族的传统习俗,妈妈买了2只红豆粽、3只碱水粽、5只干肉粽,粽子除内部馅料不同外其它均相同,小颖随意吃一个,吃到红豆粽的概率是()A.1B.1C.1D.1A.B.C.D.11.(2012•贵阳)一个不透明的盒子里有n个除颜色外其它完全相同的小球,其中有6个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后在放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么可以推算出n大约是()故选:D.点评:此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据黄球的频率得到相应的等量关系.12.(2012•宁波)一个不透明口袋中装着只有颜色不同的1个红球和2个白球,搅匀后从中摸出一个球,摸到白球的概率为()A.2B.1C.1D.013.(2012•凉山州)如图,有四张不透明的卡片除正面的算式不同外,其余完全相同,将它们背面朝上洗匀后,从中随机抽取一张,则抽到得卡片上算式正确的概率是()A.1B.1C.3D.115.(2012•兰州)用扇形统计图反应地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是108°,当宇宙中一块陨石落在地球上,则落在陆地上的概率是()A.0.2 B.0.3 C.0.4 D.0.516.(2012•呼和浩特)如图,在一长方形内有对角线长分别为2和3的菱形,边长为1的正六边形和半径为1的圆,则一点随机落在这三个图形内的概率较大的是()A.落在菱形内B.落在圆内17.(2012•大庆)如图所示,将一个圆盘四等分,并把四个区域分别标上I、Ⅱ、Ⅲ、Ⅳ,只有区域I为感应区域,中心角为60°的扇形AOB绕点0转动,在其半径OA上装有带指示灯的感应装置,当扇形AOB与区域I有重叠(原点除外)的部分时,指示灯会发光,否则不发光,当扇形AOB任意转动时,指示灯发光的概率为()A.1B.1C.2D.7故选D.18.(2012•玉林)一个盒子里有完全相同的三个小球,球上分别标上数字-1、1、2.随机摸出一个小球(不放回)其数字记为p,再随机摸出另一个小球其数字记为q,则满足关于x 的方程x2+px+q=0有实数根的概率是()A.12B.13C.23D.56考点:列表法与树状图法;根的判别式.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与满足关于x的方程x2+px+q=0有实数根的情况,继而利用概率公式即可求得答案.解答:解:画树状图得:19.(2012•桂林)中考体育男生抽测项目规则是:从立定跳远、实心球、引体向上中随机抽取一项;从50米、50×2米、100米中随机抽取一项.恰好抽中实心球和50米的概率是()A.1B.1C.2D.120.(2012•义乌市)义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是()A.3B.7C.3D.16解答:解:将一名只会二、填空题21.(2012•长沙)任意抛掷一枚硬币,则“正面朝上”是事件.考点:随机事件.分析:根据随机事件的定义,随机事件就是可能发生,也可能不发生的事件,即可判断.解答:解:抛掷1枚均匀硬币可能正面朝上,也可能反面朝上,故抛掷1枚均匀硬币正面朝上是随机事件.故答案为:随机.点评:本题主要考查的是对随机事件概念的理解,解决此类问题,要学会关注身边的事物,并用数学的思想和方法去分析、看待、解决问题,比较简单.26.(2012•重庆)将长度为8厘米的木棍截成三段,每段长度均为整数厘米.如果截成的三段木棍长度分别相同算作同一种截法(如:5,2,1和1,5,2),那么截成的三段木棍能构成三角形的概率是.考点:概率公式;三角形三边关系.分析:先求出将长度为8厘米的木棍截成三段,每段长度均为整数厘米,共有几种情况,再找出其中能构成三角形的情况,最后根据概率公式计算即可.解答:解:因为将长度为8厘米的木棍截成三段,每段长度均为整数厘米,共有5种情况,分别是1,2,5;1,3,4;2,3,3;4,2,2;1,1,6;因为1,2,5两边之和小于第三边,所以错误;因为1,3,4两边之和等于第三边,所以错误;因为2,3,3两边之和大于于第三边,所以正确;31.(2012•龙岩)鸡蛋孵出后,小鸡为雌与雄的概率相同.如果两个鸡蛋都成功孵化,则孵出的两只小鸡中都为雄鸡的概率为.解答:解:画树状图如下:33.(2012•宁德)一只昆虫在如图所示的树枝上爬行,假定昆虫的每个岔路口都会随机地选择一条路径,则停留在A叶面的概率是.解答:解:画树状图得:三、解答题39.(2012•张家界)第七届中博会于2012年5月18日至20日在湖南召开,设立了长沙、株洲、湘潭和张家界4个会展区,聪聪一家用两天时间参观两个会展区:第一天从4个会展区中随机选择一个,第二天从余下3个会展区中再随机选择一个,如果每个会展区被选中的机会均等.(1)请用画树状图或列表的方法表示出所有可能出现的结果;(2)求聪聪一家第一天参观长沙会展区,第二天参观张家界会展区的概率;(3)求张家界会展区被选中的概率.考点:列表法与树状图法.分析:(1)根据题意列表或画树状图,即可求得所有可能出现的结果;6336342.(2012•黔东南州)在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小完全相同,小明从布袋里随机取出一个小球,记下数字为x,小红在剩下的3个小球中随机取出一个小球,记下数字为y.(1)计算由x、y确定的点(x,y)在函数y=-x+5的图象上的概率.(2)小明和小红约定做一个游戏,其规则为:若x、y满足xy>6则小明胜,若x、y满足xy<6则小红胜,这个游戏公平吗?说明理由.若不公平,请写出公平的游戏规则.考点:游戏公平性;一次函数图象上点的坐标特征;列表法与树状图法.解答:解:文档下载后可编辑修改打印解答:解:41。