一元二次方程7

合集下载

一元二次方程7

一元二次方程7
1、某种植物的主干长出若干树木的支干,每个 支干又长出同样数目的小分支,主干、支干、和小 分支的总数是91,每个支干长出多少小分支?
解:设每个支干长出x个小分支.
根据题意可列方程
1 + x + x2 =91 整理得 x2 + x -90 = 0
解得 x1=9, x2= -10(不符合题意舍去)
答:每个支干长出9个小分支.
课本p22 第5题
5.解:设菱形的一条对角线长为 x cm, 则另一条对角线长为(10-x)cm,
活动2:合作探究
有一个人患了流感,经过两轮传染后
共有121人患了流感,每轮传染中平均一个
人传染了几个?学.科.网
解:设每轮传染中平均一个人传染了x 个人.

列方程 1+x+x(1+x)=121

解方程,得 x1=10, x2=-12.

根据题意,舍x2=-12 .

答:每轮传染中平均一个人传染了10个.
解之得 x=8 三轮后总共为81 +81x8=729>700台, 故会超过。
巩固训练 p22
课本p22 第4题
某种植物的主干长出若干数目的支干,每个支干又
长出同样数目的小分支,主干,支干和小分支的总数是
91,每个支干长出多少个小分支?
…… ……
解:设每个支干长 出 x 个小分支,则
小 分
小 分
……
了x个人,用代数式表示,第一轮后共有 x 1 人患了流感;
第二轮传染中,这些人中的每个人又传染了x个人,用代数
式表示,第二轮后共有 x 1 x( x 1) 人患了流感.
列方程 1+x+x(1+x)=121

一元二次方程公式大全

一元二次方程公式大全

一元二次方程公式大全
1. 一元二次方程的一般式:ax²+bx+c=0(a≠0)。

2. 一元二次方程的根公式:x=[-b±√(b²-4ac)]/2a。

3.一元二次方程的顶点公式:x=-b/2a,y=c-b²/4a。

4.一元二次方程的轴对称式:y=a(x-h)²+k,其中(h,k)为顶点坐标。

5. 一元二次方程的判别式公式:Δ=b²-4ac;当Δ>0时,有两个不
相等的实根;当Δ=0时,有一个重根;当Δ<0时,无实根。

6.一元二次方程的解的性质公式:两根之和=-b/a,两根之积=c/a。

7. 一元二次方程的因式分解公式:ax²+bx+c=a(x-x₁)(x-x₂),其中x₁、x₂为方程的两个实根。

8. 一元二次方程的求导公式:y'=2ax+b,其中a、b为方程系数。

9. 一元二次方程的求和差公式:(x+y)²=x²+2xy+y²,(x-y)²=x²-
2xy+y²。

10. 一元二次方程的配方法公式:根据(a±b)²=a²±2ab+b²,将一元
二次方程化为完全平方形式。

一元二次方程讲义全

一元二次方程讲义全

一元二次方程讲义全一元二次方程讲义考点一、概念1)定义:只含有一个未知数,并且未知数的最高次数是2,这样的整式方程就是一元二次方程。

2)一般表达式:ax^2+bx+c=(a≠0)注:当b=0时可化为ax^2+c=0,这是一元二次方程的配方式。

3)四个特点:只含有一个未知数;且未知数次数最高次数是2;是整式方程。

要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。

如果能整理为ax^2+bx+c=(a≠0)的形式,则这个方程就为一元二次方程。

4)将方程化为一般形式:ax^2+bx+c=0时,应满足(a≠0)。

4)难点:如何理解“未知数的最高次数是2”:①该项系数不为0;②未知数指数为2;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。

典型例题:例1、下列方程中是关于x的一元二次方程的是()A。

(x+1)^3=2(x+1)B。

2√x+1-11=0C。

ax^2+bx+c=0D。

x^2+2x=x^2+1变式:当k≠0时,关于x的方程kx^2+2x=x^2+3是一元二次方程。

例2、方程(m+2)x^m+3mx+1=0是关于x的一元二次方程,则m的值为。

考点二、方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。

⑵应用:利用根的概念求代数式的值;典型例题:例1、已知2y^2+y-3的值为2,则4y^2+2y+1的值为。

例2、关于x的一元二次方程(a-2)x^2+x+(a^2-4)=0的一个根为-2,则a的值为。

说明:任何时候,都不能忽略对一元二次方程二次项系数的限制。

例3、已知关于x的一元二次方程ax^2+bx+c=0(a≠0)的系数满足a+c=b,则此方程必有一根为-1.说明:本题的关键点在于对“代数式形式”的观察,再利用特殊根“-1”巧解代数式的值。

例4、已知a,b是方程x^2-4x+m=0的两个根,b,c是方程y^2-8y+5m=0的两个根,则m的值为。

第7课 一元二次方程

第7课 一元二次方程

要点梳理
5.二元二次方程组的概念及解法: (1)二元二次方程组:由一个二元一次方程和一个二元 二次方程所组成的方程组或由两个二元二次方程组 成的方程组叫做二元二次方程组; (2)解二元二次方程组的思想是“消元”,即把多元通 过加减、代入、换元等方法转化为一元方程来解, 或“降次”利用因式分解转化为二元一次方程组或 一元一次方程来解.
解 ∵x=a,∴a2-2009a+1=0,
∴a2-2008a=a-1,a2+1=2009a,∴a220+091=22000099a=1a.
1 a2-a+1 (a2+1)-a 2009a-a
∴原式=a-1+a= a =
a
=a
=20a08a=2008.
探究提高
(1)利用方程根的概念,将方程的根代入原方程,再 解关于待定系数的方程,就可以求出待定系数的值; (2)采用整体的思想方法,结合一元二次方程根的定 义及分式加减运算的法则可得上题(2)中代数式的值.
知能迁移 1 用指定的方法解下列方程: (1)(2x-1)2=9;(用直接开平方法) (2)x2+3x-4=0;(用配方法) (解3)x2-x2+2x3-x-8=4=00;,(x用2+因3x式=分4,解法) (x42)+x(3xx++941=)+4+2(94x,-x1+)=3202.=(用245,公式法)
注意:(1)根的判别式“b2-4ac”只有在确认方程为一 元二次方程时才能使用;
(2)使用时,必须将一元二次方程转化一般式 ax2+bx+ c=0,以便确定 a、b、c 的值.
助学微博
一个防范
正确理解“方程有实根”的含义.如有一个实数根则原 方程为一元一次方程;若有两个实数根则原方程为一元二次 方程.在解题时,要特别注意“方程有实数根”、“有两个实 数根”等关键文字,挖掘出它们的隐含条件,以免陷入关键 字的“陷阱”.

一元二次方程式

一元二次方程式

四、一元二次方程式就一般而言,凡是使得方程式等号成立的数称之为方程式的解;而使得多项式的值为零的数称之为多项式的根。

因此,一元二次方程式的解就是所对应的二次多项式的根。

所以,我们也称此类方程式的解为根。

我们将首先介绍常见的一元二次方程式的三种解法:因式分解法、配方法和公式解。

然后,利用判别式来探讨两根的特性,最后再讨论根与系数之间的关系。

4-1 一元二次方程式的解法【因式分解法】因为一元二次方程式20ax bx c ++=(a 、b 和c 为实数且a ≠0)的左式为二次多项式,如果我们能将这个多项式因式分解成两个一次多项式的乘积,就很容易求得方程式的解。

我们以下面的例子来说明这种解法。

【范例1】求22151x x +=-的解。

【解】 利用移项可把原方程式改写为 2252x x -+= 0。

由因式分解,可得2252x x -+= (21)(2)x x -- 因此,原方程式改写为(21)(2)x x --= 0 所以,可得210x -=或20x -= 即12x =或2x =。

【类题练习1】求231030x x ++=的解。

【配方法】我们也可以利用平方根的概念来解方程式,例如将2420x x -+=改写为2(2)2x -=的形式,进而解得2x =2420x x -+=⇒242x x -=-两边同加22 ⇒22222222x x -⋅⋅+=-+左式可写成完全平方式 ⇒ 2(2)2x -=∵右式为正,两边开平方 ⇒ 2x -=⇒ 2x =上面的例子是利用配成完全平方式的方法,先将方程式改写成 (x -h )2=k 的形式。

当0≥k 时,我们就可以利用平方根的概念来解题: 即 2()0x h k -=≥两边同时开方 ⇒ x -h =移项 ⇒ x = h注:x = h ±表示x = h x = h我们将这个方法称为配方法,也就是配成完全平方的意思。

以下的例题继续来说明这种解法。

【范例2】求下列各方程式的解:(1) 2680x x -+= (2) 22460x x +-=【解】 (1) 2680x x -+=⇒2238x x -⋅⋅=-⇒22223383x x -⋅⋅+=-+⇒ 2(3)1x -=⇒31x -=±⇒ x -3 = 1或x -3 =-1⇒ x = 2或x = 4(2) 22460x x +-=⇒2230x x +-=⇒223x x +=⇒22221131x x +⋅⋅+=+⇒2(1)4x +=⇒12x +=±⇒12x +=或12x +=-⇒1x =或3x =-在上例中,我们当然也可用十字交乘法来做因式分解。

1.2一元二次方程的解法(7)-十字相乘法

1.2一元二次方程的解法(7)-十字相乘法
x x 1
-4
2
x-4x=-3x
解:x -3x-4 =(x+1)(x-4)
例1 (4)分解因式 x2+3x-10
x x -2
当常数项是负数 时,分解的两个 数异号,其中绝 对值较大数符号 与一次项系数符 号相一致。
因式分解时,不但要 注意首尾分解,而且 需十分注意一次项系 数,才能保证因式分 解的正确性。
用十字相乘法解下列方程:
• 配方法和公式法是解一元二次方程 重要方法,要作为一种基本技能来掌 握.而某些方程可以用分解因式法简 便快捷地求解.
5
2
-2x+5x=3x
解:x +3x-10 =(x-2)(x+5)
练习 因式分解:
(1)
x +5x+6
2
(2)
x - 10x + 9
2
课后练习:分解因式 (x-y)2+(x-y)-6
总结:
二次多项式x2+px+q在分解因式时: 如果常数项q是正数,那么把它分解成两个 同号因数,它们的符号与一次项系数p的符 号相同; 如果常数项q是负数,那么把它分解成两个 异号因数,其中绝对值较大的因数与一次 项系数p的符号相同; 对于分解的两个因数,还要看它们的和是 不是等于一次项系数。
2
(3)4 x 31x 45 0
2
(4) 3x 22x 24 0
2
习题
利用十字相乘法解一元二次方程:
() 1 x 3x 4 0; (2) x 7 x 6 0; (3) 2 x 5x 3 0.
2 2
2
() 1 x1 4, x 2 1 (2) x1 6, x2 1 1 (3) x1 2 , x 2 3

一元二次方程7个应用类型

一元二次方程7个应用类型

一元二次方程的应用题常见的几种类型1. 增长率问题 [增长率公式:b x a =2)1( ]例:某工厂在两年内将机床年产量由400台提高到900台。

求增长率。

1、某种产品的成本在两年内从16元降至9元,求平均每年降低的百分率。

2、某工厂一月份产值为50万元,采用先进技术后,第一季度共获产值182万元,二、三月份 平均每月增长的百分率是多少?3、某林场第一年造林100亩,以后造林面积逐年增长,第二年、第三年共造林375亩,后两年平均每年的增长率是多少?4、十月份营业额为5000元,十二月份上升到7200元,平均每月增长的百分率5、某商品连续两次降价10%后的价格为a 元,该商品的原价应为6、第一季度生产a台,第二季度生产b台,第二季度比第一季度增长的百分率?7、某工厂今年利润为a万元,比去年增长10%,去年的利润为万元。

2.面积问题[提示:面积问题一定要画图分析]例:一张长方形铁皮,四个角各剪去一个边长为4cm的小正方形,再折起来做成一个无盖的小盒子。

已知铁皮的长是宽的2倍,做成的小盒子的容积是1536cm3,求长方形铁皮的长与宽。

1、要建成一面积为130㎡的仓库,仓库的一边靠墙(墙宽16m),并在与墙平行的一边开一个宽1m的门,现有能围成32m的木板。

求仓库的长与宽各是多少?2、两个正方形,小正方形的边长比大正方形的边长的一半多1cm,大正方形的面积比小正方形的面积的2倍还多4cm2,求大、小两个正方形的边长。

3、要给一幅长30cm,宽25cm的照片配一个镜框,要求镜框的四条边宽度相等,且镜框所占面积为照片面积的四分之一,设镜框边的宽度为xcm,•则依据题意列出的方程是_________.3.定价问题[提示:单位利润×销量=总利润]例:某电视机专卖店出售一种新面市的电视机,平均每天售出50台,每台盈利400元。

为了扩大销售,增加利润,专卖店决定采取适当降价的措施。

经调查发现,如果每台电视机每降价 10元,平均每天可多售出5台。

第七讲--一元二次方程的性质

第七讲--一元二次方程的性质

则x1+x2=
推论

b a
c a x1x2=
若方程x2+px+q=0的两个根是x1、x2
p 则x1+x2=
q x个前提条件
(1)a≠0
(2)Δ≥0
3、以两个数x1,x2为根的一元二次方程 (二次项系数为1)是
X2-(x1+x2)x+x1x2=0
二、运用
(相等3)的已实知根关,于那x么的m方的程最14大x2整 (数m是 3()x
m2 0
D)
有两个不
(A)2 (B)-1 (C)0 (D)1
(4)设x1,x2是关于x的方程x2+px+q=0的两根, x1+1,x2+1是关于x的方程x2+qx+p=0的两根,则p,q的 值分别等于(C) (A)1、-3 (B)1、3 (C)-1、-3 (D)-1、3
(4)若aab≠1,且有95a2+2002a+9=0及9b2+2002b+5=0,则
; 计算机

思索自己的每一次选择,遥望童年的点点滴滴。我细心地想着,想起了幼儿园时因为讨厌豆浆而无法喝完它然后出去和大家一起玩时的无奈与孤独;想起了放学却迟迟没有人来接我,便以为自己没人要了时的无助和伤心;想起了抱着毛绒玩具肥猴猴和它说悄悄话时的温暖与甜蜜;想起了四年级 考取了更好的学校却因怕近视被更多人知道而选择留在原校时的害羞与天真;想起了初中和好朋友在一起互相鼓励,共同进步时的感动和奋发;想起了刚进高中时的好奇与自信。一路走来,时光在身后如白驹过隙,而童年则飞逝到更远的地方。就像无数颗从自己手心上诞生的星星,我无力挽留, 只好张开手指,任它飞去世上的任何地方。就这样,等我在将来漫漫的人生途中,寻遍世界的每个
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3. 2x2 + x – 6 = 0 ;
7. x2 – x +56 = 0 ;
4. 4x2+4x+10 =1-8x . 8. -3x2+22x-24=0.
根据题意,列出方程:
印度古算书中有这样一首诗:“一群猴子分两队, 高高兴兴在游戏,八分之一再平方,蹦蹦跳跳树林 里;其余十二叽喳喳,伶俐活泼又调皮.告我总数 共多少”?
次方程的步骤。 2.学习规范的解题过程。
教你解题
配方法
解:3x2 8x 3 0.
例: 解方程 3x2+8x-3=0.
x2 8 x 1 0.
1.化1:把二次项系数化为1;
3
x2 8 x 1.
2.移项:把常数项移到方程的右边;
x2
8
3
x
4
2
3 3
Hale Waihona Puke 4 2. 33.配方:方程两边都加上一 次项系数一半的平方;
x
4
2
5 2.
3 3
4.变形:方程左边分解因式,右边 合并同类项;
x 4 5. 33
5.开方:根据平方根意义,方程两 边开平方;
x 4 5.
133 x1 3 , x2 3.
6.求解:解一元一次方程; 7.定解:写出原方程的解.
1.解方程2x2 5x 2 0
2.解方程4x 1 3x2
1.理解配方法;知道“配方”是一种常用的数学方法. 2.会用配方法解简单的数字系数的一元二次方程. 3.能说出用配方法解一元二次方程的基本步骤. 4.通过用配方法将一元二次方程变形的过程,让学生进 一步体会转化的思想方法,并增强他们的数学应用意识 和能力.
自学指导
认真学习下面的例题。 要求: 1.掌握用配方法解二次项系数不是1的一元二
选做题 配方法的应用 用配方法求2y2-7y+2的最小值.
本节课你又学会了哪些新知识呢? 用配方法解二次项系数不是1的一元二次方程的步骤: 1.化1:把二次项系数化为1(方程两边都除以二次项系数);
2.移项:把常数项移到方程的右边; 3.配方:方程两边都加上一次项系数绝对值一半的平方; 4.变形:方程左边分解因式,右边合并同类; 5.开方:根据平方根意义,方程两边开平方; 6.求解:解一元一次方程; 7.定解:写出原方程的解. 用一元二次方程这个模型来解答或解决生活中的一些问题 (即列一元二次方程解应用题).
3.做一做 一小球以15m/s的初速度竖直向上弹出 ,它在空中的高度h(m)与时间t(s)满足关 系:
h=15t-5t2 . 小球何时能达到10m的高度?
当堂训练
用配方法解下列方程.
1. 4x2 - 12x - 1 = 0 ;
5. 3x2 - 9x +2 = 0 ;
2. 3x2 + 2x – 3 = 0 ; 6. 2x2 +6=7x ;
相关文档
最新文档