7、一元二次方程
一元二次方程

只含有一个未知数(即“元”),并且未知数的最高次数为2(即“次”)的整式方程叫做一元二次方程(英文名:quadratic equation of one unknown)。
一元二次方程的标准形式(即所有一元二次方程经整理都能得到的形式)是ax^2+bx+c=0(a,b,c为常数,x为未知数,且a≠0)。
求根公式:x=[-b±√(b^2-4ac)]/2a。
1方程定义只含有一个未知数,且未知数的最高次数是2次的整式方程叫做一元二次方程(quadratic equation of one variable 或a single-variable quadratic equation)。
一元二次方程有三个特点:(1)有且只含有一个未知数;(2)且未知数的最高次数是2;(3)是整式方程。
(两边都是整式)要判断一个方程是否为一元二次方程,先看它是否为整式方程。
若是,再对它进行整理。
如果能整理为ax^2+bx+c=0(a≠0)的形式,则这个方程就为一元二次方程。
里面要有等号,且分母里不含未知数。
b^2-4ac求解任何一元二次方程,都可以直接用求根公式x=(-b±√b^2-4ac)/2a。
其中是根的判别式。
也可以用其他特殊方法求根。
2方程形式2.1一般式y=ax²+bx+c(a、b、c是实数,a≠0)配方式a(x+b/2a)^2=(b^2-4ac)/4a两根式a(x-x1)(x-x2)=0公式法x=(-b±√b^2-4ac)/2a求根公式2.2十字相乘法x2+(p+q)x+pq=(x+p)(x+q)3解法3.1分解因式法因式分解法又分“提公因式法”;而“公式法”(又分“平方差公式”和“完全平方公式”两种),另外还有“十字相乘法”,因式分解法是通过将方程左边因式分解所得,因式分解的内容在八年级上学期学完。
如1.解方程:x²+2x+1=0解:利用完全平方公式因式解得:(x+1)²=0解得:x1= x2=-12.解方程x(x+1)-2(x+1)=0解:利用提公因式法解得:(x-2)(x+1)=0即x-2=0 或x+1=0∴x1=2,x2=-13.解方程x²-4=0解:(x+2)(x-2)=0x+2=0或x-2=0∴x1=-2,x2= 23.2十字相乘法公式:x²+(p+q)x+pq=(x+p)(x+q)例:1. ab+2b+a-b- 2=ab+a+b²-b-2=a(b+1)+(b-2)(b+1)=(b+1)(a+b-2)公式法(可解全部一元二次方程)求根公式首先要通过Δ=b²-4ac的根的判别式来判断一元二次方程有几个根1.当Δ=b²-4ac<0时x无实数根(初中)2.当Δ=b²-4ac=0时x有两个相同的实数根即x1=x23.当Δ=b²-4ac>0时x有两个不相同的实数根当判断完成后,若方程有根可根属于2、3两种情况方程有根则可根据公式:x={-b±√(b²-4ac)}/2a来求得方程的根配方法(可解全部一元二次方程)如:解方程:x²+2x-3=0解:把常数项移项得:x²+2x=3等式两边同时加1(构成完全平方式)得:x²+2x+1=4因式分解得:(x+1)²=4解得:x1=-3,x2=1用配方法的小口诀:二次系数化为一常数要往右边移一次系数一半方两边加上最相当开方法(可解部分一元二次方程)如:x²-24=1解:x²=25x=±5∴x1=5 x2=-5均值代换法(可解部分一元二次方程)ax²+bx+c=0同时除以a,得到x²+bx/a+c/a=0设x1=-b/(2a)+m,x2=-b/(2a)-m (m≥0)根据x1·x2=c/a求得m。
一元二次方程公式大全

一元二次方程公式大全
1. 一元二次方程的一般式:ax²+bx+c=0(a≠0)。
2. 一元二次方程的根公式:x=[-b±√(b²-4ac)]/2a。
3.一元二次方程的顶点公式:x=-b/2a,y=c-b²/4a。
4.一元二次方程的轴对称式:y=a(x-h)²+k,其中(h,k)为顶点坐标。
5. 一元二次方程的判别式公式:Δ=b²-4ac;当Δ>0时,有两个不
相等的实根;当Δ=0时,有一个重根;当Δ<0时,无实根。
6.一元二次方程的解的性质公式:两根之和=-b/a,两根之积=c/a。
7. 一元二次方程的因式分解公式:ax²+bx+c=a(x-x₁)(x-x₂),其中x₁、x₂为方程的两个实根。
8. 一元二次方程的求导公式:y'=2ax+b,其中a、b为方程系数。
9. 一元二次方程的求和差公式:(x+y)²=x²+2xy+y²,(x-y)²=x²-
2xy+y²。
10. 一元二次方程的配方法公式:根据(a±b)²=a²±2ab+b²,将一元
二次方程化为完全平方形式。
一元二次方程概念

把实际问题转化为一元二次方程模型.
教学步骤
师生活动
设计意图
回顾
课件展示:教师引导学生完成下列题目,复习一元一次方程的相关知识.
1.回顾一元一次方程的概念;一元一次方程中的“一元”是指?“一次”是指?
2.一元一次方程的一般形式是ax+b=0(a,b是常数,且a≠0).
3.什么是一元一次方程的解?如何判断一个数是不是一元一次方程的解?若已知x=1是方程ax+3=0的解,则a=-3.
A.ax2+bx+c=0B.(m-3)x2-2x=0
C.(a-1)xa2-1-x+2=0D.(m2+1)x2+2x-5=0
2.已知b(b≠0)为方程x2+ax-b=0的一个根,则下列正确的是(A)
A.a+b=1B.a-b=1
C.a+b=-1D.a-b=-1
通过练习,可巩固和加深对新知的理解,培养学生严谨的数学思维以及灵活应用所学知识解决数学问题的能力.
(2)是一元二次方程?
解:(1)当k-5=0且k+2≠0时,方程为一元一次方程,即k=5.
所以当k=5时,方程(k-5)x2+(k+2)x+5=0为一元一次方程.
(2)当k-5≠0时,方程为一元二次方程,即k≠5.
所以当k≠5时,方程(k-5)x2+(k+2)x+5=0为一元二次方程.
【变式训练】
1.下列方程中一定是一元二次方程的是(D)
(试一试)指出下列各方程的二次项、一次项和常数项.
①3x2+2x-1=0;②2x2=3;③ =0.
问题2:类比一元一次方程的解的定义,你能给一元二次方程的根下定义吗?
师生共同小结(板书):
一元二次方程的根:
使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根.
一元二次方程讲义全

一元二次方程讲义全一元二次方程讲义考点一、概念1)定义:只含有一个未知数,并且未知数的最高次数是2,这样的整式方程就是一元二次方程。
2)一般表达式:ax^2+bx+c=(a≠0)注:当b=0时可化为ax^2+c=0,这是一元二次方程的配方式。
3)四个特点:只含有一个未知数;且未知数次数最高次数是2;是整式方程。
要判断一个方程是否为一元二次方程,先看它是否为整式方程,若是,再对它进行整理。
如果能整理为ax^2+bx+c=(a≠0)的形式,则这个方程就为一元二次方程。
4)将方程化为一般形式:ax^2+bx+c=0时,应满足(a≠0)。
4)难点:如何理解“未知数的最高次数是2”:①该项系数不为0;②未知数指数为2;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论。
典型例题:例1、下列方程中是关于x的一元二次方程的是()A。
(x+1)^3=2(x+1)B。
2√x+1-11=0C。
ax^2+bx+c=0D。
x^2+2x=x^2+1变式:当k≠0时,关于x的方程kx^2+2x=x^2+3是一元二次方程。
例2、方程(m+2)x^m+3mx+1=0是关于x的一元二次方程,则m的值为。
考点二、方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。
⑵应用:利用根的概念求代数式的值;典型例题:例1、已知2y^2+y-3的值为2,则4y^2+2y+1的值为。
例2、关于x的一元二次方程(a-2)x^2+x+(a^2-4)=0的一个根为-2,则a的值为。
说明:任何时候,都不能忽略对一元二次方程二次项系数的限制。
例3、已知关于x的一元二次方程ax^2+bx+c=0(a≠0)的系数满足a+c=b,则此方程必有一根为-1.说明:本题的关键点在于对“代数式形式”的观察,再利用特殊根“-1”巧解代数式的值。
例4、已知a,b是方程x^2-4x+m=0的两个根,b,c是方程y^2-8y+5m=0的两个根,则m的值为。
一元二次方程(含答案)

第十六期:一元二次方程一元二次方程是在一元一次方程及分式方程的基础上学习的,一元二次方程根与系数的关系以及一元二次方程的应用是中考的重点。
题型多样,一般分值在6-9分左右。
知识点1:一元二次方程及其解法例1:方程0232=+-x x 的解是( )A .11=x ,22=xB .11-=x ,22-=xC .11=x ,22-=xD .11-=x ,22=x思路点拨:考查一元二次方程的解法,一元二次方程的解法有:一是因式分解法;二是配方法;三是求根公式法.此题可以用此三种方法求解,此题以因式分解法较简单,此式可以分解为(x -1)(x -2)=0,所以x -1=0或x -2=0,解得x 1=1,x 2=2.故此题选A.例2:若220x x --= )A .3B .3C D 3思路点拨:本题考查整体思想,即由题意知x 2-x=2, 所以原式=3323123222=+-+,选A. 练习:1.关于x 的一元二次方程2x 2-3x -a 2+1=0的一个根为2,则a 的值是( )A .1BC .D .2.如果1-是一元二次方程230x bx +-=的一个根,求它的另一根. 3.用配方法解一元二次方程:x 2-2x -2=0. 答案:1.D. 2.解:1-是230x bx +-=的一个根,2(1)(1)30b ∴-+--=.解方程得2b =-. ∴原方程为2230x x --=分解因式,得(1)(3)0x x +-=11x ∴=-,23x =.3.移项,得x 2-2x=2. 配方x 2-2x+12=2+12, (x -1)2=3. 由此可得x -1=±3, x 1=1+3,x 2=1-3. 最新考题1.(2009威海)若关于x 的一元二次方程2(3)0x k x k +++=的一个根是2-,则另一个根是______.2.(2009年山西省)请你写出一个有一根为1的一元二次方程: .3.(2009山西省太原市)用配方法解方程2250x x --=时,原方程应变形为( )A .()216x +=B .()216x -=C .()229x +=D .()229x -=答案:1.1; 2.答案不唯一,如21x = 3. B 知识点2:一元二次方程的根与系数的关系例1:如果21,x x 是方程0122=--x x 的两个根,那么21x x +的值为:(A )-1 (B )2 (C )21- (D )21+ 思路点拨:本题考查一元二次方程02=++c bx ax 的根与系数关系即韦达定理,两根之和是a b -, 两根之积是ac,易求出两根之和是2。
第7课 一元二次方程

要点梳理
5.二元二次方程组的概念及解法: (1)二元二次方程组:由一个二元一次方程和一个二元 二次方程所组成的方程组或由两个二元二次方程组 成的方程组叫做二元二次方程组; (2)解二元二次方程组的思想是“消元”,即把多元通 过加减、代入、换元等方法转化为一元方程来解, 或“降次”利用因式分解转化为二元一次方程组或 一元一次方程来解.
解 ∵x=a,∴a2-2009a+1=0,
∴a2-2008a=a-1,a2+1=2009a,∴a220+091=22000099a=1a.
1 a2-a+1 (a2+1)-a 2009a-a
∴原式=a-1+a= a =
a
=a
=20a08a=2008.
探究提高
(1)利用方程根的概念,将方程的根代入原方程,再 解关于待定系数的方程,就可以求出待定系数的值; (2)采用整体的思想方法,结合一元二次方程根的定 义及分式加减运算的法则可得上题(2)中代数式的值.
知能迁移 1 用指定的方法解下列方程: (1)(2x-1)2=9;(用直接开平方法) (2)x2+3x-4=0;(用配方法) (解3)x2-x2+2x3-x-8=4=00;,(x用2+因3x式=分4,解法) (x42)+x(3xx++941=)+4+2(94x,-x1+)=3202.=(用245,公式法)
注意:(1)根的判别式“b2-4ac”只有在确认方程为一 元二次方程时才能使用;
(2)使用时,必须将一元二次方程转化一般式 ax2+bx+ c=0,以便确定 a、b、c 的值.
助学微博
一个防范
正确理解“方程有实根”的含义.如有一个实数根则原 方程为一元一次方程;若有两个实数根则原方程为一元二次 方程.在解题时,要特别注意“方程有实数根”、“有两个实 数根”等关键文字,挖掘出它们的隐含条件,以免陷入关键 字的“陷阱”.
中考数学总复习第7课 一元二次方程

5.(2013·浙江衢州)如图 7-1,在长和宽分别是 a,b 的矩形纸片的四个 角都剪去一个边长为 x 的正方形. (1)用含 a,b,x 的代数式表示纸片剩余部分的面积; (2)当 a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方 形的边长.
图 7-1 【解析】 (1)面积=ab-4x2. (2)根据题意,得 ab-4x2=4x2(或 4x2=1ab龙江牡丹江)若关于 x 的一元二次方
程为 ax2+bx+5=0(a≠0)的解是 x=1,则 2013-a-b 的
值是
()
A.2018
B.2008
C .2014
D.2012
点评:(1)本题主要考查一元二次方程的解的概念,难度较小.
(2)解题的关键是把已知方程的解直接代入方程得到待定系数
3.解一元二次方程时,方程两边不能同时约去一个相同 的式子,因为这个式子可能为 0,如果约去,会造成漏 解.
【精选考题 2】 (2013·江苏无锡)解方程:x2-3x+2=0.
点评:(1)本题考查一元二次方程的解法,难度较小. (2)求解本题的关键是根据题目特征选择最适合的方法(因 式分解法)求解. 解析:x 2-3x +2=0,(x -1)(x -2)=0,∴x 1=1,x 2=2.
3.配方法:解一元二次方程时,先把方程的常数项移到方程的右边,再在方程两边同时 加上某一常数,使得左边刚好能配成一个完全平方式,即将方程化为(x+a)2=b 的形式, 如果 b≥0,就可以用直接开平方法来求出它的解,这种解一元二次方程的方法叫做配 方法.
4.公式法:一元二次方程 ax2+bx+c=0(a≠0)的求根公式:x=-b± b2-4ac(b2-4ac≥0). 2a
拓展提高
1.(2012·山东泰安)方程 2x2+5x-3=0 的解是
方程的七种类型

方程的七种类型方程是数学中的重要概念,它描述了数学对象之间的关系。
在代数学中,方程可分为七种类型,分别是一元一次方程、一元二次方程、一元三次方程、一元四次方程、二元一次方程、二元二次方程和二元三次方程。
本文将分别介绍这七种类型的方程。
一、一元一次方程一元一次方程是最简单的方程类型,它的形式为ax + b = 0,其中a和b是已知常数,x是未知数。
解一元一次方程的关键在于找到x 的值使得等式成立。
通过移项、合并同类项和化简等步骤,可以求解出x的值。
例如,方程2x + 3 = 7的解为x = 2。
二、一元二次方程一元二次方程是形如ax^2 + bx + c = 0的方程,其中a、b、c为已知常数,x是未知数。
解一元二次方程的方法有多种,常用的方法是配方法和求根公式。
配方法通过将方程变形为完全平方式,进而求解出x的值。
求根公式是通过使用二次根式来求解方程。
例如,方程x^2 - 5x + 6 = 0的解为x = 2或x = 3。
三、一元三次方程一元三次方程是形如ax^3 + bx^2 + cx + d = 0的方程,其中a、b、c、d为已知常数,x是未知数。
解一元三次方程的方法有多种,常用的方法是巴斯卡法和牛顿迭代法。
巴斯卡法通过将方程进行化简,然后使用求根公式求解出x的值。
牛顿迭代法是通过逐次逼近方程的解,直到满足一定的精度要求。
例如,方程x^3 - 3x^2 + 3x - 1 = 0的解为x = 1。
四、一元四次方程一元四次方程是形如ax^4 + bx^3 + cx^2 + dx + e = 0的方程,其中a、b、c、d、e为已知常数,x是未知数。
解一元四次方程的方法有多种,常用的方法是费拉里法和求根公式。
费拉里法通过将方程进行变形,进而转化为两个二次方程的形式,然后使用求根公式求解出x的值。
求根公式是通过使用四次根式来求解方程。
例如,方程x^4 - 10x^3 + 35x^2 - 50x + 24 = 0的解为x = 1或x = 2或x = 3或x = 4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
豪迈职校数学导学案
2.1 一元二次方程
班级:
命题人:张淑慧审核人:孙海森
学习目标
姓名:
1.理解什么是“一元二次方程” ;
2.会用配方法解一元二次方程;
一、回顾旧知:
1、同学们,你们知道什么是一元二次方程吗?你以前见过吗?判断下面几个例子是否为一元二次方程?并说明理由。
(1)
x 2
3x80
()
3x
2
20
2
(3)7x 6 0(4)8x29
2、根据上面的一元二次方程,你知道什么是一次项,什么是二次项,什么是常数项吗?你能说出一次项系数,二次项系数是什么吗?写写吧:
一元二次方程二次项二次项系数一次项一次项系数常数项(1)x23x 80
(2)3x220
(3)7x60
(4)8x29
二、探究新知:(预习课本 20-21 页,回答下列问题。
)
1、一元二次方程 ax2bx c 0 a 0 ,b24ac
(1)根的情况
000
2、你会用配方法解方程吗?观察课本21 页的四个例题的求解过程,试着自己总结一下用配方法解方程的一般步骤:
(1)
(2)
(3)
3、仿照课本 21 页例题的第 1 题,你会解下面的方程吗?(用你会的方法解一下吧)
( 1)x26x 7 0(2)x26x 70
三、课堂检测
1、说出下列一元二次方程的根
(1)x24
(2)( x 1)( x 2) 0
(3)x(x 3) 0
(4) ( x 1)2 0
(5)x2 1 0
第1页,共 4页第2页,共4页
(6)2()2()2 ( x 3)2
x 6x 7 0
783x 2x 1 0 2、用配方法解下列一元二次方程。
(1)x22x 8 0(2)x27 x 80
2
(4)t 2
3、已知关于 x 的方程x2ax a0 有两个相等的实数根,求实数 a 的值。
(3)2 x +3=7 x t 1 0
(5)x26x 9 0(6)x23x 30
四、我的收获:
第3页,共 4页第4页,共4页。