Iterative linear regression by sector renormalization of cDNA microarray data and cluster a

合集下载

linear regression知识点

linear regression知识点

linear regression知识点1.引言1.1 概述引言部分是文章的开头,用来介绍文章的背景和重要性。

在"概述"部分,我们可以对linear regression(线性回归)的基本概念和作用进行简单介绍。

概述:线性回归是机器学习领域中最简单且最常用的回归方法之一。

它是一种建立输入变量(自变量)和输出变量(因变量)之间线性关系的统计学模型。

线性回归可以帮助我们探索和理解数据,预测未知的因变量值,并在实际问题中做出决策。

线性回归的基本思想是基于已知的训练数据,通过拟合一条直线(或超平面)来近似描述输入和输出之间的关系。

这条直线可以用来做预测和回答各种问题。

线性回归的关键是通过最小化预测值与实际观测值之间的差距,找到最佳拟合直线。

线性回归不仅可以用于预测连续性数值型数据,还可以用于分类问题,例如将输出变量划分为两个或多个不同的类别。

尽管线性回归在实际问题中很常见,但它也有一些局限性,例如对于非线性关系的建模能力较弱。

为了克服这些局限性,研究人员还提出了各种改进方法。

本文将深入探讨线性回归的基本概念和原理,介绍线性回归模型的建立与求解过程,并探讨线性回归在实际应用中的场景和局限性,同时提出一些改进方法。

通过阅读本文,读者将能够全面了解线性回归的知识和应用,从而在实际问题中更好地应用和理解线性回归方法。

下面我们将详细介绍本文的结构和目的。

1.2 文章结构文章结构部分的内容可以描述整篇文章的组织和安排,可以按照以下内容进行阐述:在本篇文章中,我们将从引言、正文和结论三个部分来组织和阐述关于Linear Regression(线性回归)的知识点。

首先,在引言部分,我们将对线性回归进行概述,介绍其基本概念和原理。

同时,我们将阐明本篇文章的目的,即通过介绍线性回归的知识点,让读者对线性回归有一个全面的了解。

接着,在正文部分,我们将分为两个小节来详细讲解线性回归的知识点。

首先,我们将介绍线性回归的基本概念,包括线性回归的定义、特点以及模型表示等。

沈阳市勘察测绘研究院项目荣获2017年辽宁省测绘科学技术进步奖

沈阳市勘察测绘研究院项目荣获2017年辽宁省测绘科学技术进步奖

132城市勘测2018年4月[10]杨鸿森.基于总体最小二乘的红外图像去噪[J].激光与红外,2008,38(9):961〜964.[11] Van Huffel S,Vandewalle J.Analysis and Solution of theNongeneric Total Least Squares Problem[J].Siam Jour^nalon Matrix Analysis &Applictions,1988,9(3):360〜372.[12] Lemmerling P,De Moor B,van Huffel S.On the Equiva­lence of Constrained Total Least Squares and Structured To­tal Least Squares[J].IEEE Transactions on Signal Process-ing,1996,44(11):2908〜2911.[13] Burk h ard Schaffrin,Andreas Wieser.On Weighted totalLeast-squares Adjustment for Linear Regression[J].Jour­nal of Geodesy,2008,82:415〜421.[14] Zhang S L,Tong X H,Zhang K L,et al.A Solution to EIVModel with Inequality Constraints and its Geodetic Applica­tions[J]. Journal of Geodesy,2013,87: 89 〜99.[15] Mahboub V.On Weighted Total Least-squares for GeodeticTransformations[J].Journal of Geodesy,2012, 86: 359 〜367.[16]陶叶青,高井祥,姚'一■飞.基于中位数法的抗差总体最小二乘估计[J].测绘学报,2016,45(3):297〜301.[17]周江文,黄幼才,杨元喜等.抗差最小二乘法[M].武汉:华中理工大学出版社,1997.Solution for Control Traverse with Additional Gyro -s ideAdjustment Based on Robust Total Least SquaresSi Yajun,He Yanlanr(Jiansu Geologic Surveying and Institute , Nanjing 211102, China)Abstract :Control network with additional gyro-side is useful for accuracy of underground traverse,traditional meth­od for control traverse with additional gyro-side is to apply least squares estimation to compute parameters of model tak­ing gyro azimuth and observation data of traverse as variables. However,the method based on least squares estimation can not take into account the fact that both observation vector and coefficient matrix have random error,and the work environ­ment may lead that observation data has gross error which has influence on computing parameters of model. To overcome the shortage of traditional method,solution for control traverse based on total least squares is proposed in this paper. To take into account the condition that both observation vector and coefficient matrix of mathematical model have random er- ror,and to get over the influence that gross error existing in observation vector and coefficient matrix have,the iterative al­gorithm based on Lagrange function is presented to solve the problem,and Huber function is also applied to overcome the influence that gross error has on computing the parameters. At the last of paper,an instance of control traverse with gyro -side is used to demonstrate the proposed solution to be feasible,and differences of accuracy among the proposed solution and traditional algorithms are also discussed.Key words : gyroscopic orientation ; control traverse; robust estimation ; total least squares沈阳市勘察测绘研究院项目荣获2017年辽宁省测绘科学技术进步奖根据《辽宁省测绘科学技术进步奖评选办法》规定,辽宁省测绘地理信息学会开展了 2017年辽宁省测绘科学技术进 步奖评选工作。

英文单词

英文单词

Synopsis:概要,大纲Macroscopic:宏观的,肉眼可见的Interconnected:连通的,有联系的Inter-dendritic:晶间Ingots:钢锭,铸块Globular:球状的Substantially:实质上,大体上,充分地Qualitatively:定性地Bulging:膨胀,凸出,打气,折皱(在连铸中是鼓肚的意思!)Hydrogen induced cracking:氢致裂纹(HIC)Correlated to:相互关联Perform:完成,执行Bulk concentration:体积浓度Introduction:引言Accordingly:因此,相应地Countermeasure:对策,对抗措施Equiaxed crystal:等轴晶Aggromerate:聚合Permeability:渗透性Slab:厚板Plate:薄板Contraction:收缩,紧缩Conventional:传统的Inconsistency:不一致Susceptibility:敏感性Resolve:解决,分解Morphology:形态Interpret:解释,解读Areal fraction:面积分数Quench:淬火Dendrite tips:枝晶尖端Specimen:试样,样品Proportional:成比例的Coarsening:晶粒粗大Coalescence:合并,联合Nevertheless:不过,虽然如此Planar:二维的,平面的Cellular:细胞的,多孔的Interface:界面,接触面Refer to :适用于Constant:常量Approximation:近似值,近似法Apparatus:仪器,装置Diagram:图表,图解Derive from:源自,来自Longitudinal:纵向的,长度的Section:截面Magnification:放大率schematic:图解的curvature:弯曲arrowed:标有箭头的in essence:本质上,其实lagged 延迟radial heat 辐射热transient:短暂的crucible:坩埚internal diam:内部直径chromel alumel thermocouple:铬镍-铝镍热电偶allumina:氧化铝agitated ice water:激冷冰水given:考虑到electropolish:用电解法抛光transverse:横向的,横断的metallographic:金相的diffusion:扩散,传播coefficient:系数,率undercooling/supercooling:过冷interdendritic:枝晶间,树枝晶间的intragranular:晶内的granular:颗粒的,粒状的isotherm:等温线arc-welded:弧焊deposit:沉积物,存款inversely:相反地geometry:几何学justification:理由,辩护,认为正当somewhat:有点gradient:梯度,倾斜度recognised:承认,辨别substitute:代替exponent:指数excluding:不包括,将。

基于内脏脂肪面积预测女性低骨量的风险切点

基于内脏脂肪面积预测女性低骨量的风险切点

Chinese Journal of Tissue Engineering Research |Vol 25|No.35|December 2021|5577基于内脏脂肪面积预测女性低骨量的风险切点秦 迁1,杨 阳1,陈静锋1,王守俊2,丁素英1文题释义:定量CT :即定量X 射线计算机体层摄影技术,区别于传统CT 的特点是体模的运用,校正CT 值漂移,从而准确地测量出单位体积内的骨矿物质含量,弥补了CT 值只能代表相对骨密度的缺点,同时联合肺CT 测定,不增加辐射剂量。

生物电阻抗:文章采用生物电阻抗法测定人体体质成分,包含骨骼肌、脂肪、内脏脂肪面积等。

摘要背景:近几年肥胖尤其是腹型肥胖与骨密度的关系备受关注,有研究认为内脏脂肪面积是骨密度降低的危险因素,也有一些研究认为年龄和内脏脂肪面积及骨密度之间的关系存在交互作用。

目的:探讨人体成分各指标与骨密度的相关性,并预测低骨量的内脏脂肪面积风险切点。

方法:回顾性分析在郑州大学第一附属医院健康管理中心进行定量CT 和生物电阻抗测定的受检者的内脏脂肪面积及骨密度,采用Pearson 相关、多因素线性回归与Logistic 回归分析法分析人体成分各指标和骨密度及低骨量的相关性。

绘制受试者工作特征曲线,确定预测低骨量的内脏脂肪面积切点值。

结果与结论:①随着年龄的增加,骨密度逐渐下降,内脏脂肪面积逐渐增加,基础代谢率逐渐下降;②多因素线性回归分析显示年龄、内脏脂肪面积与骨密度呈负相关;③多因素Logistic 回归分析显示,绝经后女性内脏脂肪面积和低骨量相关;④受试者工作特征曲线预测绝经后女性低骨量的内脏脂肪面积切点值为117.85 cm 2;⑤提示内脏脂肪面积是除了年龄外预测低骨量的危险因子,有望在今后骨矿物质健康管理中发挥重要作用,应对达到内脏脂肪面积风险切点的绝经后女性早期加强减脂管理,以减少低骨量的发病率及医疗和经济负担。

关键词:低骨量;女性;骨密度;内脏脂肪面积;定量CT ;生物电阻抗缩略语:内脏脂肪面积:visceral fat area ,VFA ;受试者工作特征曲线:receiver operating characteristic curve ,ROCCut-off point of visceral fat area: predicting low bone mass in womenQin Qian 1, Yang Yang 1, Chen Jingfeng 1, Wang Shoujun 2, Ding Suying 11Health Management Center, 2Department of Endocrinology and Metabolic Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, ChinaQin Qian, Master, Physician, Health Management Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, ChinaCorresponding author: Ding Suying, Master, Chief nurse, Health Management Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, ChinaAbstractBACKGROUND: In recent years, concerns have been paid to the relationship between obesity, especially abdominal obesity, and bone mineral density. Studies have concluded that visceral fat area is a risk factor for reducing bone mineral density. There are also some studies suggesting an interaction between age, visceral fat area and bone mineral density.https:///10.12307/2021.283投稿日期:2020-07-25 送审日期:2020-07-28采用日期:2020-10-09在线日期:2021-04-02中图分类号: R459.9;R318;R683文章编号:2095-4344(2021)35-05577-05文献标识码:A郑州大学第一附属医院,1健康管理中心, 2内分泌与代谢病科,河南省郑州市 450052第一作者:秦迁,女,1989年生,河南省郑州市人,2016年郑州大学毕业,硕士,医师,主要从事骨质疏松方面的研究。

药品检验英语词汇对照学习

药品检验英语词汇对照学习

药品检验英语词汇对照学习药品标准质量标准标准品国际标准品参比标准对照品规格药品质量控制分析质量控制性状无臭异臭熔点熔距毛细管熔点测定热台熔点测定沸程凝点不溶性微粒颗粒细度膨胀度分子大小微晶结晶细度结晶性一般鉴别试验鉴别旋光计阿贝折射计浸入折射计限度检查有色杂质有关物质吸光度吸光系数吸光度比值澄清度氯化物硫酸盐重金属砷盐碘化物铁盐氰化物drug standard quality standard standard substance international standard substance reference standard reference substance specification drug quality control analytical quality control characteristics odorless foreign odor melting point melting range capillary melting point determi-nation hot stage melting point determi-nation boiling rangecongealing point particulate matter fineness of the particles swelling degree molecular size microcrystal crystal fineness crystallinity general identification test identification polarimeter Abbe refractometer immersion refractometer limit test foreign pigment related substance absorbance specific absorbance absorbance ratio clarity chloride sulfate heavy metal arsenic salt iodide iron salt cyanide 钡盐钙盐易碳化物易氧化物醚溶性酸性物酸中和容量热原异常毒性衰变放射性核纯度放射性浓度索氏[脂肪]抽提器丹氏浓缩器不皂化物羟值烷氧基测定范氏氨基氮测定法砷斑炽灼残渣蒸发残渣不挥发物总固体过氧化值干燥失重相溶解度分析装量差异最低装量含量测定含量均匀度溶出度崩解时限药物释放相对密度表观黏度比特性黏度运动黏度旋转黏度计落球黏度计稳定性试验总氮量比重瓶法韦氏比重秤法结冻试验抽针试验barium salt calcium salt readily carbonizable substance readily oxidizable substance ether-soluble acidic matter acid-neutralizing capacity pyrogen undue toxicity decay radionuclide purity radioactive concentration Soxhlet extractor Danish concentrator non-saponifiable matter hydroxyl value alkyloxy determination van Slyke method arsenic stain residue on ignition residue on evaporation non-volatile matter total solid peroxide value loss on drying phase solubility analysis content uniformity minimum fill assay uniformity of dosage units dissolution disintegration drug release relative density apparent viscosity specific intrinsic viscosity kinematic viscosity rotating cylinder viscometer falling sphere viscometer stability study nitrogen content pycnometric method hydrostatic method, Westphalbalancemethod freezing test consistence test 悬浮时间共沸法甲苯蒸馏法挥发油测定器滴定液标准比色液耐用性计算机辅助药物分析模式收敛特征特征选择试验集训练集校正集预示集岭回归响应面信号处理图象分析库检索变量校正多变量校正反向传播最优化方法窗口图解技术色谱响应函数色谱优化函数混合物设计统计技术叠加分辨率图示法数值分类法系统矩阵组合法双波长一元线性回归法多波长直线回归法系数倍率法最小二乘法自适应最小二乘偏最小二乘法非线性迭代偏最小二乘P矩阵法正交函数法卡尔曼滤波法suspension time azeotropic method toluene distillation method volatile oil determination apparatus volumetric solution, VS standard color solution ruggedness computational pharmaceutical analysis, computer-aided pharmaceutical analysis pattern convergence feature feature selection testset training set calibration set prediction set ridge regression response surface signal processing image analysis library searching variate calibration multivariate calibration back propagation optimization method window diagram technique chromatographic response function, CRF chromtographic optimization function, COF mixture design statistic technique overlapping resolution maps numerical taxonomy system matrix combination method dual-wavelength linear regression method multi-wavelength linear regression method K-ratio method, signal multiplier method least square method adaptive least square partial least square method nonlinear iterative partial least square P-matrix method orthogonal function method Kalman filtering method 适应卡尔曼滤波法卡尔曼增益线性学习机主成分分析主成分回归法逐步判别分析目标因子分析对应因子分析迭代目标转换因子分析法遗忘因子法特征向量投影非线性映射人工神经网络节点线性规划法共轭梯度法专家系统人工智能系统模型测量模型模型化与参数估计决策规则n维空间超平面相似性K最近邻域法快速傅里叶变换交互证实误差修正反馈法负反馈过程分析输出层输入层隐含层碘仿反应丙烯醛反应缩合反应异腈化苯N一溴丁二酰亚胺滴定法永停滴定法两相滴定剩余碱水解法催化热滴定adaptive Kalman filtering method Kalman gain linear learning machine principal component analysis, PCA principal component regression method stepwise discriminate analysis target factor analysis correspondence factor analysis iterative target transform factor analysis method forgetting factor method eigenvector projection nonlinear mapping artificial neural network node linear programming method conjugate gradientmethod expert system artificial intelligence system model measurement model modeling and parameterestimation decision rule n-dimensional space hyperplane similarity K-nearest neighbor method fast Fourier transform cross-validation error correct feed-back method negative feedback process analysis output layer input layer hidden layer iodoform reaction acrolein reaction condensation reaction phenyl isocyanide N-bromosuccinimide titration dead-stop titration diphasic titration residual basic hydrolysis method catalytic thermometric titration 非水催化热滴定提取重量法提取容量法四苯硼钠雷氏铵雷氏盐利伯曼试验马奎斯试验溴化氰试剂本内迪克特试剂茚三酮试剂酸性碘铂酸盐溶液曼德林试剂松柏醇试剂对氨基苯磺酸氨基磺酸氨基磺酸铵氨基蒽醌类染料苏丹蓝CN 苏丹绿4B 茜素青绿茜素亮紫3B 茜素亮紫R 氯胺T滴定法N- 溴代苯二甲酰亚胺滴定法席夫碱氧瓶燃烧法溴酸盐滴定法不可逆指示剂卡可基邻二氮菲本生阀二苯甲酮杜瓦瓶费林反应折光测定法铜刨花拓奎反应对萘酚苯甲醇溶剂蓝19 收敛酸锌收敛酸镉坚牢绿FCF 搔洛铬绿V150 nonaqueous catalytic thermometric titration extraction gravimetry extraction titration sodium tetraphenylborate ammonium reineckate Reinecke salt Liebermann test Marquis test cyanogen bromide reagent Benedict reagent ninhydrin reagent acidified iodoplatinate solution Mandelin reagent coniferyl alcohol reagent sulfanilic acid sulfamic acid ammonium sulfamate aminoanthraquinone dyes Sudan blue CN Sudan green 4B alizarin viridine alizarin brilliant violet 3B alizarin brilliant violet R chloramine-T titration, CAT titration N-bromophthalimide titration Schiff’s base oxygen flask combustion bromate titrationirreversible indicator cacodyl orthophenanthroline Bunsen valve benzophenone Dewar flask Fehling’s reaction refractometry copper turnings Thalleoquin reaction p-naphtholbenzein solvent blue 19 zinc styphnate cadmium styphnate fast green FCF solochrome green V150 热色效应呫吨硫色素反应拉尼镍2,6-二氯靛酚滴定法坂口试验麦芽酚反应莫利希试验缩合物埃光子能量外转换电子构型电子跃迁拉波特规律末端吸收肩峰曲折拐点桑德尔灵敏度深色效应浅色效应蓝移红移解线性方程组法等吸光点法二波长分光光度法三波长分光光度法导数分光光度法pH指示剂吸光度比值测定法多组分光谱分析电荷转移光谱荧光分析法分子荧光分析法流动吸收池微量吸收池长光程吸收池热谱带迈克尔森干涉仪荧胺丹酰氯猝灭荧光测定法化学发光免疫分析法荧光免疫分析thermochromism effectxanthene thiochrome reaction Raney nickel 2, 6--dichlorindophenol titration Sakaguchi test maltol reaction Molisch test condensation substance angstr?m, ? photon external conversion of energy electronic configuration electron transition Laport’s law end absorption shoulder peak deflection deflection point Sandell’s sensitivity hyperchromic effect hypsochromic effect blue shift red shift simultaneous equations method isosbestic point method dual wavelength spectrophotometry three wavelength spectrophotome-try derivative spectrophotometry pH indicator absorbance ratio method multicomponent spectrophotometry charge-transfer spectrum fluorimetry molecular fluorescent method flow cell, flow cuvette micro cell long path cell hot bands Michelson interferometer fluorescamine dansyl chloride, DANS-Cl quenchingfluorometry chemiluminescence immunoassay, CIA fluorescence immunoassay, FIA 酶免疫分析鲁米诺荧光偏振免疫分析胶束增敏荧光分析法伸缩振动弯曲振动变形振动对称伸缩振动不对称伸缩振动剪式振动平面摇摆振动非平面摇摆振动扭曲振动呼吸振动振动弛豫振动偶合基频吸收带倍频吸收带费米共振能斯特灯镍铬线圈硅碳棒双光束光学零位平衡系统电比率记录式电学零位平衡系统漫反射衰减全反射多次内反射光束聚焦装置聚苯乙烯薄膜波数压片法石蜡糊法膜法光管热电偶检测器戈雷检测器氘化三甘氨硫酸酯检测器碲化汞一碲化镉复合半导体检测器指纹区光谱检索谱线检索光谱差减法enzyme immunoassay, EIA luminol fluorescence polarization immuno-assay, FPIA micellar enhanced spectrofluoro-metric method stretching vibration bending vibration deformationvibration symmetrical stretching vibration asymmetrical stretching vibration scissoring vibration rocking vibration wagging vibration twisting vibration breathing vibration vibrational relaxation vibrational coupling basic frequency absorption band multiple frequency absorption band Fermi resonance Nernst glower nichrome coils globars double beam optical--null system ratio recording electric-null system diffuse-reflectance attenuated total reflectance, ATR multiple internal reflection, MIR beam condenser polystyrene film wave number [halide] disk method, wafer method, pellet method nujol mull method film method light pipe thermocouple detector Golay detector deuterated triglycine sulfate detector, DTGS detector mercury cadmium telluride detector, MCT detector finger print region spectral search spec-finder spectralsubtraction method 红外光吸收参比图谱光度滴定法酸性染料比色法氨基硫脲比色法钯离子比色法四氮唑比色法科伯试剂检测限系统适用性峰不对称度峰重叠分层胶束色谱法填料极性正相反相疏溶剂作用亲硅羟基作用硅胶氧化铝化学键合相十八烷基硅烷键合硅胶氨基硅烷键合硅胶离子交换纤维素微晶纤维素聚苯乙烯凝胶琼脂糖凝胶聚丙烯酰胺凝胶葡聚糖凝胶己烷磺酸钠十二烷基硫酸钠微量注射器柱超载积分仪色谱数据处理机色谱工作站高效薄层色谱法过压薄层色谱法带状色谱连续展开短床连续展开斑点再浓集infra-red reference spectra photometric titration acid-dye colorimetry thiosemicarbazide colorimetry palladium ion colorimetry tetrazoline colorimetry Kober reagent detectability system suitability peak asymmetry peak overlapping demixing micellar chromatography packing materialpolarity normal phase reversed phase solvophobic interaction silanophilic interaction silica gel alumina chemically bonded phase octadecylsilane chemically bonded silica amino chemically bonded silica ion-exchange cellulose microcrystalline cellulose polystyrene gel agarose gel polyacrylamide gel polydextran gel sodium hexanesulfonate sodium dodecylsulfate, SDS microsyringe column overload integrator chromatographic data processor chromatographic work station high performance thin--layer chromatography, HPTLC overpressure thin—layer chrom-atography strip chromatography continuous development short-bed continuous development spot reconcentration 原位定量法床外因素背材预制板硅胶H 硅胶G 荧光剂薄层板贮箱点样器微升毛细管模板热微量转移法试剂喷雾器紫外线灯线性扫描锯齿扫描干装柱法湿装柱法固定相涂布内标物科瓦茨保留指数官能团保留指数亚甲基单位有效碳数相特征常数罗尔施奈德相常数麦克雷诺兹相常数布朗三角图形法气体净化器戈雷柱熔融二氧化硅空心柱分流无分流尾吹气进样隔膜胶垫闪蒸进样法柱上进样器鸭嘴阀针导顶空浓缩进样器冷柱头进样器卡套聚氨酯卡套石墨卡套quantitation in situ extra--bed factor backing material precoated plate silica gel H silica gel G fluorescent agent plate storage rack sample applicator microcap template thermo micro-application sepa-ration, TAS reagent sprayer ultraviolet lamp linear scanning zigzag scanning dry packing method wet packing method stationary phase coating internal standard substance Kovats retention index functional retention index methylene unit, MU effective carbon number phase specific constantRohrschneider phase constant McReynolds phase constant Brown triangle method gas purifier Golay column fused-silica open tubular column,FSOT split splitless make-up gas injecting septum flash evaporating injection on-column injector duckbill valve needle guide head-space concentrating injector cold on-column injector ferrule polyurethane ferrule graphite ferrule 皂土一34 蒙脱土混合固定相高分子多孔小球热能分析器气[相色谱]-[傅里叶变换]红[外光谱]联用仪高分辨气相色谱法联接头流速程序高效液相色谱法再循环色谱法脱气在线脱气设备低压梯度泵往复隔膜泵齿轮泵注射泵单向阀进样阀柱切换质量分析检测器程序波长检测器光电二极管阵列检测器多维检测等高线色谱图三维色谱图二次化学平衡编辑对话衰减时间常数响应时间时间谱带展宽空间谱带展宽保留隘口重叠峰基线分离峰峰谷驼峰试样在线预处理手性固定相手性拆分离子抑制液[相色谱]-质[谱]联用仪bentone-34 montmorillonite clay mixed stationary phase porous polymer beads thermo-energy analyser, TEA gas chromatograph/ Fourier trans-form infrared spectrophotometer, GC/FTIR high resolution gas chromato-graphy, HRGC union flow programming high perfor-mance liquid chromatography recycle chromatography degassing on-line degasser low pressure gradient pump reciprocating diaphragm pump gear pump syringe pump check valve injection valve column switching mass analyser detector programmable wavelength detector photodiode array detector, DAD multidimensional detection contour chromatogram three-dimensional chromatogram second chemical equilibrium editing dialog attenuation time constant response time band broading intime band broading in space retention gap fused peaks, overlapped peaks baseline resolved peak peak valley rider peak sample on-line pretreatment chiral stationary phase, CSP chiral separation ion suppress liquid chromatograph/mass spectrometer, LC/MS 传送带接口直接液体进样热喷雾接口电喷雾接口液体离子蒸发单分散气雾形成接口柱前衍生化柱后衍生化衍生化反应小管重氮甲烷迁移时间平板电泳毛细管电泳胶束动电毛细管色谱法内电渗电迁移进样抽空进样静力进样柱上检测器示差脉冲极谱法电子电位计参比电极饱和甘汞电极氯化银电极指示电极银电极盐桥电解电流质谱图道尔顿相对强度极限前体全氟煤油离子一分子复合物双价离子麦氏重排拉曼效应棒图扇形磁场质谱仪名义质量准确质量磁阻moving belt interface direct liquid introduction, DLI thermospray interface, TSPinterfaceelectrospray interface, ESPinterface liquid ion evaporation, LIE monodisperse aerosol generation interface, MAGIC pre-column derivatization post-column derivatization derivatizing reaction vial diazomethane migration time disk electrophoresis capillary electrophoresis, CE micellar electrokinetic capillary chromatography, MECC,MEKC electroendosmosis electromigration injection vacuum injection hydrostatic injection on-column detector differential pulse polarography electronic potentiometer reference electrode saturated calomel electrode silver chloride electrode indicating electrode silver electrode salt bridge Faradaic current mass spectrum dalton relative intensity ultimate precursor polyfluoro kerosene, PFK ion-molecule complex doubly charged ion McLafferty rearrangement Raman effect bar graph magnetic sector mass spectrometernominal mass exact mass reluctance 叠片磁铁十倍程象电流分立二发射极软离子化方法灯丝准分子离子大气压离子化静电喷雾二次离子质谱法溅射现象近距碰撞等离子体解吸质谱法激光解吸质谱法粒子诱导质谱法直接进样杆加热贮槽进样器粒子束重建总离子流各向异性各向异性屏蔽软脉冲五重峰六重峰七重峰偕偶邻偶偏共振去偶选择去偶反门控去偶反磁性屏蔽J调制法谱编辑不灵敏核极化转移增益法无畸变极化转移增益法双量子转移实验laminated magnets decade image current discrete dynode soft ionization filament quasi-molecular ion atmospheric pressure ionization, API electrostatic spray secondary ion mass spectrometry,SIMS sputtering phenomenon near mass collision plasma desorption mass spectrometry, PDMS laser desorption mass spectrometry, LDMS particle induced================精选公文范文,管理类,工作总结类,工作计划类文档,欢迎阅读下载============== mass spectrometry direct inlet probe, DIP heatable reservoir inlet particle beam reconstruction total ion current,reconstruction TIC anisotropic anisotropic shielding soft pulse quintet sextet septet geminal coupling vicinal coupling off resonance decoupling selective decoupling inverted gated decoupling diamagnetic shielding J-modulation method spectral editing insensitive nucleus enhancementby polarization transfer, INEPT distortionless enhancement bypolarization transfer, DEPT double quantum transferexperiment--------------------精选公文范文,管理类,工作总结类,工作计划类文档,感谢阅读下载--------------------- ~ 21 ~。

英汉对照计量经济学术语

英汉对照计量经济学术语

计量经济学术语A校正R2(Adjusted R-Squared):多元回归分析中拟合优度的量度,在估计误差的方差时对添加的解释变量用一个自由度来调整。

对立假设(Alternative Hypothesis):检验虚拟假设时的相对假设。

AR(1)序列相关(AR(1) Serial Correlation):时间序列回归模型中的误差遵循AR(1)模型。

渐近置信区间(Asymptotic Confidence Interval):大样本容量下近似成立的置信区间。

渐近正态性(Asymptotic Normality):适当正态化后样本分布收敛到标准正态分布的估计量。

渐近性质(Asymptotic Properties):当样本容量无限增长时适用的估计量和检验统计量性质。

渐近标准误(Asymptotic Standard Error):大样本下生效的标准误。

渐近t 统计量(Asymptotic t Statistic):大样本下近似服从标准正态分布的t 统计量。

渐近方差(Asymptotic Variance):为了获得渐近标准正态分布,我们必须用以除估计量的平方值。

渐近有效(Asymptotically Efficient):对于服从渐近正态分布的一致性估计量,有最小渐近方差的估计量。

渐近不相关(Asymptotically Uncorrelated):时间序列过程中,随着两个时点上的随机变量的时间间隔增加,它们之间的相关趋于零。

衰减偏误(Attenuation Bias):总是朝向零的估计量偏误,因而有衰减偏误的估计量的期望值小于参数的绝对值。

自回归条件异方差性(Autoregressive Conditional Heteroskedasticity, ARCH):动态异方差性模型,即给定过去信息,误差项的方差线性依赖于过去的误差的平方。

一阶自回归过程[AR(1)](Autoregressive Process of Order One [AR(1)]):一个时间序列模型,其当前值线性依赖于最近的值加上一个无法预测的扰动。

人工智能词汇

人工智能词汇

常用英语词汇 -andrew Ng课程average firing rate均匀激活率intensity强度average sum-of-squares error均方差Regression回归backpropagation后向流传Loss function损失函数basis 基non-convex非凸函数basis feature vectors特点基向量neural network神经网络batch gradient ascent批量梯度上涨法supervised learning监察学习Bayesian regularization method贝叶斯规则化方法regression problem回归问题办理的是连续的问题Bernoulli random variable伯努利随机变量classification problem分类问题bias term偏置项discreet value失散值binary classfication二元分类support vector machines支持向量机class labels种类标记learning theory学习理论concatenation级联learning algorithms学习算法conjugate gradient共轭梯度unsupervised learning无监察学习contiguous groups联通地区gradient descent梯度降落convex optimization software凸优化软件linear regression线性回归convolution卷积Neural Network神经网络cost function代价函数gradient descent梯度降落covariance matrix协方差矩阵normal equations DC component直流重量linear algebra线性代数decorrelation去有关superscript上标degeneracy退化exponentiation指数demensionality reduction降维training set训练会合derivative导函数training example训练样本diagonal对角线hypothesis假定,用来表示学习算法的输出diffusion of gradients梯度的弥散LMS algorithm “least mean squares最小二乘法算eigenvalue特点值法eigenvector特点向量batch gradient descent批量梯度降落error term残差constantly gradient descent随机梯度降落feature matrix特点矩阵iterative algorithm迭代算法feature standardization特点标准化partial derivative偏导数feedforward architectures前馈构造算法contour等高线feedforward neural network前馈神经网络quadratic function二元函数feedforward pass前馈传导locally weighted regression局部加权回归fine-tuned微调underfitting欠拟合first-order feature一阶特点overfitting过拟合forward pass前向传导non-parametric learning algorithms无参数学习算forward propagation前向流传法Gaussian prior高斯先验概率parametric learning algorithm参数学习算法generative model生成模型activation激活值gradient descent梯度降落activation function激活函数Greedy layer-wise training逐层贪心训练方法additive noise加性噪声grouping matrix分组矩阵autoencoder自编码器Hadamard product阿达马乘积Autoencoders自编码算法Hessian matrix Hessian矩阵hidden layer隐含层hidden units隐蔽神经元Hierarchical grouping层次型分组higher-order features更高阶特点highly non-convex optimization problem高度非凸的优化问题histogram直方图hyperbolic tangent双曲正切函数hypothesis估值,假定identity activation function恒等激励函数IID 独立同散布illumination照明inactive克制independent component analysis独立成份剖析input domains输入域input layer输入层intensity亮度/灰度intercept term截距KL divergence相对熵KL divergence KL分别度k-Means K-均值learning rate学习速率least squares最小二乘法linear correspondence线性响应linear superposition线性叠加line-search algorithm线搜寻算法local mean subtraction局部均值消减local optima局部最优解logistic regression逻辑回归loss function损失函数low-pass filtering低通滤波magnitude幅值MAP 极大后验预计maximum likelihood estimation极大似然预计mean 均匀值MFCC Mel 倒频系数multi-class classification多元分类neural networks神经网络neuron 神经元Newton’s method牛顿法non-convex function非凸函数non-linear feature非线性特点norm 范式norm bounded有界范数norm constrained范数拘束normalization归一化numerical roundoff errors数值舍入偏差numerically checking数值查验numerically reliable数值计算上稳固object detection物体检测objective function目标函数off-by-one error缺位错误orthogonalization正交化output layer输出层overall cost function整体代价函数over-complete basis超齐备基over-fitting过拟合parts of objects目标的零件part-whole decompostion部分-整体分解PCA 主元剖析penalty term处罚因子per-example mean subtraction逐样本均值消减pooling池化pretrain预训练principal components analysis主成份剖析quadratic constraints二次拘束RBMs 受限 Boltzman 机reconstruction based models鉴于重构的模型reconstruction cost重修代价reconstruction term重构项redundant冗余reflection matrix反射矩阵regularization正则化regularization term正则化项rescaling缩放robust 鲁棒性run 行程second-order feature二阶特点sigmoid activation function S型激励函数significant digits有效数字singular value奇怪值singular vector奇怪向量smoothed L1 penalty光滑的L1 范数处罚Smoothed topographic L1 sparsity penalty光滑地形L1 稀少处罚函数smoothing光滑Softmax Regresson Softmax回归sorted in decreasing order降序摆列source features源特点Adversarial Networks抗衡网络sparse autoencoder消减归一化Affine Layer仿射层Sparsity稀少性Affinity matrix亲和矩阵sparsity parameter稀少性参数Agent 代理 /智能体sparsity penalty稀少处罚Algorithm 算法square function平方函数Alpha- beta pruningα - β剪枝squared-error方差Anomaly detection异样检测stationary安稳性(不变性)Approximation近似stationary stochastic process安稳随机过程Area Under ROC Curve/ AUC Roc 曲线下边积step-size步长值Artificial General Intelligence/AGI通用人工智supervised learning监察学习能symmetric positive semi-definite matrix Artificial Intelligence/AI人工智能对称半正定矩阵Association analysis关系剖析symmetry breaking对称无效Attention mechanism注意力体制tanh function双曲正切函数Attribute conditional independence assumptionthe average activation均匀活跃度属性条件独立性假定the derivative checking method梯度考证方法Attribute space属性空间the empirical distribution经验散布函数Attribute value属性值the energy function能量函数Autoencoder自编码器the Lagrange dual拉格朗日对偶函数Automatic speech recognition自动语音辨别the log likelihood对数似然函数Automatic summarization自动纲要the pixel intensity value像素灰度值Average gradient均匀梯度the rate of convergence收敛速度Average-Pooling均匀池化topographic cost term拓扑代价项Backpropagation Through Time经过时间的反向流传topographic ordered拓扑次序Backpropagation/BP反向流传transformation变换Base learner基学习器translation invariant平移不变性Base learning algorithm基学习算法trivial answer平庸解Batch Normalization/BN批量归一化under-complete basis不齐备基Bayes decision rule贝叶斯判断准则unrolling组合扩展Bayes Model Averaging/ BMA 贝叶斯模型均匀unsupervised learning无监察学习Bayes optimal classifier贝叶斯最优分类器variance 方差Bayesian decision theory贝叶斯决议论vecotrized implementation向量化实现Bayesian network贝叶斯网络vectorization矢量化Between-class scatter matrix类间散度矩阵visual cortex视觉皮层Bias 偏置 /偏差weight decay权重衰减Bias-variance decomposition偏差 - 方差分解weighted average加权均匀值Bias-Variance Dilemma偏差–方差窘境whitening白化Bi-directional Long-Short Term Memory/Bi-LSTMzero-mean均值为零双向长短期记忆Accumulated error backpropagation积累偏差逆传Binary classification二分类播Binomial test二项查验Activation Function激活函数Bi-partition二分法Adaptive Resonance Theory/ART自适应谐振理论Boltzmann machine玻尔兹曼机Addictive model加性学习Bootstrap sampling自助采样法/可重复采样Bootstrapping自助法Break-Event Point/ BEP 均衡点Calibration校准Cascade-Correlation级联有关Categorical attribute失散属性Class-conditional probability类条件概率Classification and regression tree/CART分类与回归树Classifier分类器Class-imbalance类型不均衡Closed -form闭式Cluster簇/ 类/ 集群Cluster analysis聚类剖析Clustering聚类Clustering ensemble聚类集成Co-adapting共适应Coding matrix编码矩阵COLT 国际学习理论会议Committee-based learning鉴于委员会的学习Competitive learning竞争型学习Component learner组件学习器Comprehensibility可解说性Computation Cost计算成本Computational Linguistics计算语言学Computer vision计算机视觉Concept drift观点漂移Concept Learning System /CLS观点学习系统Conditional entropy条件熵Conditional mutual information条件互信息Conditional Probability Table/ CPT 条件概率表Conditional random field/CRF条件随机场Conditional risk条件风险Confidence置信度Confusion matrix混杂矩阵Connection weight连结权Connectionism 连结主义Consistency一致性/相合性Contingency table列联表Continuous attribute连续属性Convergence收敛Conversational agent会话智能体Convex quadratic programming凸二次规划Convexity凸性Convolutional neural network/CNN卷积神经网络Co-occurrence同现Correlation coefficient有关系数Cosine similarity余弦相像度Cost curve成本曲线Cost Function成本函数Cost matrix成本矩阵Cost-sensitive成本敏感Cross entropy交错熵Cross validation交错考证Crowdsourcing众包Curse of dimensionality维数灾害Cut point截断点Cutting plane algorithm割平面法Data mining数据发掘Data set数据集Decision Boundary决议界限Decision stump决议树桩Decision tree决议树/判断树Deduction演绎Deep Belief Network深度信念网络Deep Convolutional Generative Adversarial NetworkDCGAN深度卷积生成抗衡网络Deep learning深度学习Deep neural network/DNN深度神经网络Deep Q-Learning深度Q 学习Deep Q-Network深度Q 网络Density estimation密度预计Density-based clustering密度聚类Differentiable neural computer可微分神经计算机Dimensionality reduction algorithm降维算法Directed edge有向边Disagreement measure不合胸怀Discriminative model鉴别模型Discriminator鉴别器Distance measure距离胸怀Distance metric learning距离胸怀学习Distribution散布Divergence散度Diversity measure多样性胸怀/差别性胸怀Domain adaption领域自适应Downsampling下采样D-separation( Directed separation)有向分别Dual problem对偶问题Dummy node 哑结点General Problem Solving通用问题求解Dynamic Fusion 动向交融Generalization泛化Dynamic programming动向规划Generalization error泛化偏差Eigenvalue decomposition特点值分解Generalization error bound泛化偏差上界Embedding 嵌入Generalized Lagrange function广义拉格朗日函数Emotional analysis情绪剖析Generalized linear model广义线性模型Empirical conditional entropy经验条件熵Generalized Rayleigh quotient广义瑞利商Empirical entropy经验熵Generative Adversarial Networks/GAN生成抗衡网Empirical error经验偏差络Empirical risk经验风险Generative Model生成模型End-to-End 端到端Generator生成器Energy-based model鉴于能量的模型Genetic Algorithm/GA遗传算法Ensemble learning集成学习Gibbs sampling吉布斯采样Ensemble pruning集成修剪Gini index基尼指数Error Correcting Output Codes/ ECOC纠错输出码Global minimum全局最小Error rate错误率Global Optimization全局优化Error-ambiguity decomposition偏差 - 分歧分解Gradient boosting梯度提高Euclidean distance欧氏距离Gradient Descent梯度降落Evolutionary computation演化计算Graph theory图论Expectation-Maximization希望最大化Ground-truth实情/真切Expected loss希望损失Hard margin硬间隔Exploding Gradient Problem梯度爆炸问题Hard voting硬投票Exponential loss function指数损失函数Harmonic mean 调解均匀Extreme Learning Machine/ELM超限学习机Hesse matrix海塞矩阵Factorization因子分解Hidden dynamic model隐动向模型False negative假负类Hidden layer隐蔽层False positive假正类Hidden Markov Model/HMM 隐马尔可夫模型False Positive Rate/FPR假正例率Hierarchical clustering层次聚类Feature engineering特点工程Hilbert space希尔伯特空间Feature selection特点选择Hinge loss function合页损失函数Feature vector特点向量Hold-out 留出法Featured Learning特点学习Homogeneous 同质Feedforward Neural Networks/FNN前馈神经网络Hybrid computing混杂计算Fine-tuning微调Hyperparameter超参数Flipping output翻转法Hypothesis假定Fluctuation震荡Hypothesis test假定考证Forward stagewise algorithm前向分步算法ICML 国际机器学习会议Frequentist频次主义学派Improved iterative scaling/IIS改良的迭代尺度法Full-rank matrix满秩矩阵Incremental learning增量学习Functional neuron功能神经元Independent and identically distributed/独Gain ratio增益率立同散布Game theory博弈论Independent Component Analysis/ICA独立成分剖析Gaussian kernel function高斯核函数Indicator function指示函数Gaussian Mixture Model高斯混杂模型Individual learner个体学习器Induction归纳Inductive bias归纳偏好Inductive learning归纳学习Inductive Logic Programming/ ILP归纳逻辑程序设计Information entropy信息熵Information gain信息增益Input layer输入层Insensitive loss不敏感损失Inter-cluster similarity簇间相像度International Conference for Machine Learning/ICML国际机器学习大会Intra-cluster similarity簇内相像度Intrinsic value固有值Isometric Mapping/Isomap等胸怀映照Isotonic regression平分回归Iterative Dichotomiser迭代二分器Kernel method核方法Kernel trick核技巧Kernelized Linear Discriminant Analysis/KLDA核线性鉴别剖析K-fold cross validation k折交错考证/k 倍交错考证K-Means Clustering K–均值聚类K-Nearest Neighbours Algorithm/KNN K近邻算法Knowledge base 知识库Knowledge Representation知识表征Label space标记空间Lagrange duality拉格朗日对偶性Lagrange multiplier拉格朗日乘子Laplace smoothing拉普拉斯光滑Laplacian correction拉普拉斯修正Latent Dirichlet Allocation隐狄利克雷散布Latent semantic analysis潜伏语义剖析Latent variable隐变量Lazy learning懒散学习Learner学习器Learning by analogy类比学习Learning rate学习率Learning Vector Quantization/LVQ学习向量量化Least squares regression tree最小二乘回归树Leave-One-Out/LOO留一法linear chain conditional random field线性链条件随机场Linear Discriminant Analysis/ LDA 线性鉴别剖析Linear model线性模型Linear Regression线性回归Link function联系函数Local Markov property局部马尔可夫性Local minimum局部最小Log likelihood对数似然Log odds/ logit对数几率Logistic Regression Logistic回归Log-likelihood对数似然Log-linear regression对数线性回归Long-Short Term Memory/LSTM 长短期记忆Loss function损失函数Machine translation/MT机器翻译Macron-P宏查准率Macron-R宏查全率Majority voting绝对多半投票法Manifold assumption流形假定Manifold learning流形学习Margin theory间隔理论Marginal distribution边沿散布Marginal independence边沿独立性Marginalization边沿化Markov Chain Monte Carlo/MCMC马尔可夫链蒙特卡罗方法Markov Random Field马尔可夫随机场Maximal clique最大团Maximum Likelihood Estimation/MLE极大似然预计/极大似然法Maximum margin最大间隔Maximum weighted spanning tree最大带权生成树Max-Pooling 最大池化Mean squared error均方偏差Meta-learner元学习器Metric learning胸怀学习Micro-P微查准率Micro-R微查全率Minimal Description Length/MDL最小描绘长度Minimax game极小极大博弈Misclassification cost误分类成本Mixture of experts混杂专家Momentum 动量Moral graph道德图/正直图Multi-class classification多分类Multi-document summarization多文档纲要One shot learning一次性学习Multi-layer feedforward neural networks One-Dependent Estimator/ ODE 独依靠预计多层前馈神经网络On-Policy在策略Multilayer Perceptron/MLP多层感知器Ordinal attribute有序属性Multimodal learning多模态学习Out-of-bag estimate包外预计Multiple Dimensional Scaling多维缩放Output layer输出层Multiple linear regression多元线性回归Output smearing输出调制法Multi-response Linear Regression/ MLR Overfitting过拟合/过配多响应线性回归Oversampling 过采样Mutual information互信息Paired t-test成对 t查验Naive bayes 朴实贝叶斯Pairwise 成对型Naive Bayes Classifier朴实贝叶斯分类器Pairwise Markov property成对马尔可夫性Named entity recognition命名实体辨别Parameter参数Nash equilibrium纳什均衡Parameter estimation参数预计Natural language generation/NLG自然语言生成Parameter tuning调参Natural language processing自然语言办理Parse tree分析树Negative class负类Particle Swarm Optimization/PSO粒子群优化算法Negative correlation负有关法Part-of-speech tagging词性标明Negative Log Likelihood负对数似然Perceptron感知机Neighbourhood Component Analysis/NCA Performance measure性能胸怀近邻成分剖析Plug and Play Generative Network即插即用生成网Neural Machine Translation神经机器翻译络Neural Turing Machine神经图灵机Plurality voting相对多半投票法Newton method牛顿法Polarity detection极性检测NIPS 国际神经信息办理系统会议Polynomial kernel function多项式核函数No Free Lunch Theorem/ NFL 没有免费的午饭定理Pooling池化Noise-contrastive estimation噪音对照预计Positive class正类Nominal attribute列名属性Positive definite matrix正定矩阵Non-convex optimization非凸优化Post-hoc test后续查验Nonlinear model非线性模型Post-pruning后剪枝Non-metric distance非胸怀距离potential function势函数Non-negative matrix factorization非负矩阵分解Precision查准率/正确率Non-ordinal attribute无序属性Prepruning 预剪枝Non-Saturating Game非饱和博弈Principal component analysis/PCA主成分剖析Norm 范数Principle of multiple explanations多释原则Normalization归一化Prior 先验Nuclear norm核范数Probability Graphical Model概率图模型Numerical attribute数值属性Proximal Gradient Descent/PGD近端梯度降落Letter O Pruning剪枝Objective function目标函数Pseudo-label伪标记Oblique decision tree斜决议树Quantized Neural Network量子化神经网络Occam’s razor奥卡姆剃刀Quantum computer 量子计算机Odds 几率Quantum Computing量子计算Off-Policy离策略Quasi Newton method拟牛顿法Radial Basis Function/ RBF 径向基函数Random Forest Algorithm随机丛林算法Random walk随机闲步Recall 查全率/召回率Receiver Operating Characteristic/ROC受试者工作特点Rectified Linear Unit/ReLU线性修正单元Recurrent Neural Network循环神经网络Recursive neural network递归神经网络Reference model 参照模型Regression回归Regularization正则化Reinforcement learning/RL加强学习Representation learning表征学习Representer theorem表示定理reproducing kernel Hilbert space/RKHS重生核希尔伯特空间Re-sampling重采样法Rescaling再缩放Residual Mapping残差映照Residual Network残差网络Restricted Boltzmann Machine/RBM受限玻尔兹曼机Restricted Isometry Property/RIP限制等距性Re-weighting重赋权法Robustness稳重性 / 鲁棒性Root node根结点Rule Engine规则引擎Rule learning规则学习Saddle point鞍点Sample space样本空间Sampling采样Score function评分函数Self-Driving自动驾驶Self-Organizing Map/ SOM自组织映照Semi-naive Bayes classifiers半朴实贝叶斯分类器Semi-Supervised Learning半监察学习semi-Supervised Support Vector Machine半监察支持向量机Sentiment analysis感情剖析Separating hyperplane分别超平面Sigmoid function Sigmoid函数Similarity measure相像度胸怀Simulated annealing模拟退火Simultaneous localization and mapping同步定位与地图建立Singular Value Decomposition奇怪值分解Slack variables废弛变量Smoothing光滑Soft margin软间隔Soft margin maximization软间隔最大化Soft voting软投票Sparse representation稀少表征Sparsity稀少性Specialization特化Spectral Clustering谱聚类Speech Recognition语音辨别Splitting variable切分变量Squashing function挤压函数Stability-plasticity dilemma可塑性 - 稳固性窘境Statistical learning统计学习Status feature function状态特点函Stochastic gradient descent随机梯度降落Stratified sampling分层采样Structural risk构造风险Structural risk minimization/SRM构造风险最小化Subspace子空间Supervised learning监察学习/有导师学习support vector expansion支持向量展式Support Vector Machine/SVM支持向量机Surrogat loss代替损失Surrogate function代替函数Symbolic learning符号学习Symbolism符号主义Synset同义词集T-Distribution Stochastic Neighbour Embeddingt-SNE T–散布随机近邻嵌入Tensor 张量Tensor Processing Units/TPU张量办理单元The least square method最小二乘法Threshold阈值Threshold logic unit阈值逻辑单元Threshold-moving阈值挪动Time Step时间步骤Tokenization标记化Training error训练偏差Training instance训练示例/训练例Transductive learning直推学习Transfer learning迁徙学习Treebank树库algebra线性代数Tria-by-error试错法asymptotically无症状的True negative真负类appropriate适合的True positive真切类bias 偏差True Positive Rate/TPR真切例率brevity简洁,简洁;短暂Turing Machine图灵机[800 ] broader宽泛Twice-learning二次学习briefly简洁的Underfitting欠拟合/欠配batch 批量Undersampling欠采样convergence收敛,集中到一点Understandability可理解性convex凸的Unequal cost非均等代价contours轮廓Unit-step function单位阶跃函数constraint拘束Univariate decision tree单变量决议树constant常理Unsupervised learning无监察学习/无导师学习commercial商务的Unsupervised layer-wise training无监察逐层训练complementarity增补Upsampling上采样coordinate ascent同样级上涨Vanishing Gradient Problem梯度消逝问题clipping剪下物;剪报;修剪Variational inference变分推测component重量;零件VC Theory VC维理论continuous连续的Version space版本空间covariance协方差Viterbi algorithm维特比算法canonical正规的,正则的Von Neumann architecture冯· 诺伊曼架构concave非凸的Wasserstein GAN/WGAN Wasserstein生成抗衡网络corresponds相切合;相当;通讯Weak learner弱学习器corollary推论Weight权重concrete详细的事物,实在的东西Weight sharing权共享cross validation交错考证Weighted voting加权投票法correlation互相关系Within-class scatter matrix类内散度矩阵convention商定Word embedding词嵌入cluster一簇Word sense disambiguation词义消歧centroids质心,形心Zero-data learning零数据学习converge收敛Zero-shot learning零次学习computationally计算(机)的approximations近似值calculus计算arbitrary任意的derive获取,获得affine仿射的dual 二元的arbitrary任意的duality二元性;二象性;对偶性amino acid氨基酸derivation求导;获取;发源amenable 经得起查验的denote预示,表示,是的标记;意味着,[逻]指称axiom 公义,原则divergence散度;发散性abstract提取dimension尺度,规格;维数architecture架构,系统构造;建筑业dot 小圆点absolute绝对的distortion变形arsenal军械库density概率密度函数assignment分派discrete失散的人工智能词汇discriminative有辨别能力的indicator指示物,指示器diagonal对角interative重复的,迭代的dispersion分别,散开integral积分determinant决定要素identical相等的;完整同样的disjoint不订交的indicate表示,指出encounter碰到invariance不变性,恒定性ellipses椭圆impose把强加于equality等式intermediate中间的extra 额外的interpretation解说,翻译empirical经验;察看joint distribution结合概率ennmerate例举,计数lieu 代替exceed超出,越出logarithmic对数的,用对数表示的expectation希望latent潜伏的efficient奏效的Leave-one-out cross validation留一法交错考证endow 给予magnitude巨大explicitly清楚的mapping 画图,制图;映照exponential family指数家族matrix矩阵equivalently等价的mutual互相的,共同的feasible可行的monotonically单一的forary首次试试minor较小的,次要的finite有限的,限制的multinomial多项的forgo 摒弃,放弃multi-class classification二分类问题fliter过滤nasty厌烦的frequentist最常发生的notation标记,说明forward search前向式搜寻na?ve 朴实的formalize使定形obtain获取generalized归纳的oscillate摇动generalization归纳,归纳;广泛化;判断(依据不optimization problem最优化问题足)objective function目标函数guarantee保证;抵押品optimal最理想的generate形成,产生orthogonal(矢量,矩阵等 ) 正交的geometric margins几何界限orientation方向gap 裂口ordinary一般的generative生产的;有生产力的occasionally有时的heuristic启迪式的;启迪法;启迪程序partial derivative偏导数hone 怀恋;磨property性质hyperplane超平面proportional成比率的initial最先的primal原始的,最先的implement履行permit同意intuitive凭直觉获知的pseudocode 伪代码incremental增添的permissible可同意的intercept截距polynomial多项式intuitious直觉preliminary预备instantiation例子precision精度人工智能词汇perturbation不安,搅乱theorem定理poist 假定,假想tangent正弦positive semi-definite半正定的unit-length vector单位向量parentheses圆括号valid 有效的,正确的posterior probability后验概率variance方差plementarity增补variable变量;变元pictorially图像的vocabulary 词汇parameterize确立的参数valued经估价的;可贵的poisson distribution柏松散布wrapper 包装pertinent有关的总计 1038 词汇quadratic二次的quantity量,数目;重量query 疑问的regularization使系统化;调整reoptimize从头优化restrict限制;限制;拘束reminiscent回想旧事的;提示的;令人联想的( of )remark 注意random variable随机变量respect考虑respectively各自的;分其他redundant过多的;冗余的susceptible敏感的stochastic可能的;随机的symmetric对称的sophisticated复杂的spurious假的;假造的subtract减去;减法器simultaneously同时发生地;同步地suffice知足scarce罕有的,难得的split分解,分别subset子集statistic统计量successive iteratious连续的迭代scale标度sort of有几分的squares 平方trajectory轨迹temporarily临时的terminology专用名词tolerance容忍;公差thumb翻阅threshold阈,临界。

多元统计回归分析的流程

多元统计回归分析的流程

多元统计回归分析的流程Statistical regression analysis is a fundamental tool for understanding the relationships between variables in a dataset. It is particularly important in multivariate analysis, where the interactions between several variables must be examined simultaneously. 多元统计回归分析旨在理解数据集中变量之间的关系,尤其在多变量分析中,需要同时考虑几个变量之间的相互作用。

The first step in multivariate statistical regression analysis is to define the research question or problem that needs to be addressed. This step is critical because it determines the variables to be included in the analysis and the type of regression model to be used. 多元统计回归分析的第一步是界定需要解决的研究问题或问题。

这一步至关重要,因为它确定了要包括在分析中的变量以及要使用的回归模型的类型。

Once the research question or problem is defined, the next step is to gather the relevant data. This may involve collecting data from existing sources or designing a new study to collect the necessary information. 数据收集是多元统计回归分析的下一步,这可能涉及从现有来源收集数据,或设计一项新的研究来收集必要的信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Iterative linear regression by sector: renormalization of cDNA microarray data and cluster analysis weighted by cross homology.David B. Finkelstein1, Jeremy Gollub1, Rob Ewing1, Fredrik Sterky1, Shauna Somerville1, J. Michael Cherry21 Department of Plant Biology, Carnegie Institution of Washington, Stanford CA2 Department of Genetics, Stanford University, Stanford CAAbstractTwo-color DNA microarray data has proven valuable in high-throughput expression profiling. However microarray expression ratios (log2ratios) are subject to measurement error from multiple causes. Transcript abundance is expected to be a linear function of signal intensity (y = x) where the typical gene is non-responsive. Once linearity is confirmed, applying the model by fitting log-scale data with simple linear regression reduces the standard deviation of the log2ratios. After which fewer genes are selected by filtering methods. Comparing the residuals of regression to leverage measures can identify the best candidate genes. Spatial bias in log2ratio, defined by printing pin and detected by ANOVA, can be another source of measurement error. Independently applying the linear normalization method to the data from each pin can easily eliminate this error. Less easily addressed is the problem of cross-homology which is expected to correlate to cross-hybridization. Pair-wise comparison of genes demonstrate that genes with similar sequences are measured as having similar expression. While this bias cannot be easily eliminated, the effect this probable cross-hybridization can be minimized in clustering by weighting methods introduced here.Introduction to the Iterative MethodEmpirical observations, validated by statistical tests, indicate that distinct classes of measurement error alter cDNA microarray data. When these measurement errors are detectable and conform to defined models, corrections can be applied during renormalization. However, supporting biological evidence may be required to validate any normalization method. For the Spellman and Sherlock cell cycle data [3], the spatial and signal intensity dependent measurement errors were corrected through renormalization. Re-analysis of the Spellman and Sherlock cell cycle data set begins with a new method of normalization that more accurately reduces the effects of outliers and spatial variation on the arrays. First, all background-corrected signal intensity values are log transformed. Then linear regression is performed where one the signal intensities of channel is predicted by the signals from the other channel. Spatial error is corrected by performing this regression independently for each sector. Slotted printing pins produced these sectors. The microarrays used in the Spellman experiments had four sectors printed with four distinct pins.The result is four linear intensity equations, one for each sector. Next residuals are calculated for each of the four regression lines. Outliers (those residuals where |e| > 2 x std dev of e) are temporarily removed and the four regression functions are recalculated. If the difference in fit between the new and old regression lines is less than .001, as measured by r-squared, then no further residuals are removed. Else, outliers are removed by the same test as above and the iterations continue. Once completely determined, the slope and intercept values are applied as correction factors to the log transformed channel 2 values. The result is that the function of log channel 1 and log channel 2 closely approximates y = x. Then these values are exponentiated, a new ratio is calculated and this ratio is put on the familiar log base2 scale. This renormalization alone has been demonstrated to substantially reduce the standard deviation of log2 ratios.Next, the detection of cross-hybridization was examined. Unlike sector bias, which is directly measurable, cross-hybridization is inferred from expression patterns. The yeast genome is fully sequenced, thus the sequences of PCR fragments were known. Therefore it is possible, with some error, to determine the likely number of transcripts that could cross-hybridize to a given PCR fragment. The correlation between the likelihood of cross-hybridization and the frequency of transcripts with cross-homology is difficult to assess without empirical evidence. It is important to note that modeling the molecular events during hybridization has proven difficult. Therefore, no analysis can be used to correct data. However, a technique can be applied as an informed post hoc method. In this way, such analysis may indicate where biological confirmation experiments are warranted, rather than supply a mathematical solution.Applying Linear NormalizationApplying a linear model presumes that the data is or should be linear with respect to intensity. The assumptions that the typical gene is non-responsive and that rare genes are no more likely to respond than abundant genes leads to the adoption of the linear model y = x. This assumption is probably valid for large-scale genome wide arrays, but not for small specialized arrays. Where y is expression under stress condition and x is the expression of genes under the control condition. Only a small class of genes is expected to respond to any given test. So this equation is valid for the typical case and invalid for the biologically responsive genes. We further presume that biologically responsive genes are sufficiently responsive to be distinguished from the typical gene using statistical tests. For these genes of biological interest the residuals of regression should be especially large.For cases where intensity functions are nonlinear (Roger Bumgarner, MGED3 , Stanford, CA)[5] then nonlinear lowess regression methods may be required in stead of the simple linear regression method employed here. In these cases, however, it is still those genes with the highest residuals from the fitted function that are of the greatest interest.In all tested cases, applying a linear model of error combined with the iterative removal of outlying residuals reduces the standard deviation of the final log2ratios. The range of the data is not substantially altered. However, the distribution of the data may change. Frequently, the kurtosis increases, meaning that the tails are more widely dispersed with respect to the standard deviation. and the skew may change in scale and indirection. Filtering iteratively normalized data without considering spatial bias, increased the number of genes that are consistently changed at the |log2_ratio|> 2 for 1 of 11 Elutriation arrays by 4.3% (an increase of 9 genes) when compared to data normalized by the SMD default method. When the iterative method is applied each sector to correct spatial problems the number of genes that pass filtering criterion actually decreases. In both cases the overall standard deviation of the data is reduced. Only independent empirical methods can determine whether the differences in analysis methods are removing false positives.Spatial MethodsObservation based on a spatial display tool developed for microarrays indicated that spatial problems may exist for several Spellman and Sherlock arrays. Renormalization by sector requires 4 parallel normalizations and assumes that functional groups of genes are not printed together. For many arrays the net result of spatial linear normalization is marginal. However, significant spatial effects have been detected in other cDNA arrays and therefore it is worth testing arrays for the effect.Spatial bias is detectable with a simple ANOVA (y = log2ratio and X = grid #) that yields an F-test and r-squared value. Non-parametric methods such as the Kruskal-Wallis test also serve this function [1]. Our current best estimate is that, if r-squared values are below .05, then spatial error is not significant. Best practice may indicate repeating experiments that are substantially altered, rather than applying sector specific normalization methods, which are post hoc and may only partially repair the effects.Applying the Linear Method by SectorFor each of the four independent sectors of each DNA microarray, the iterative simple linear regression technique is applied. As expected many arrays, are not substantially altered by this approach. However, in instances, where outlier sectors are significant, by ANOVA F-tests, differences in normalization are visually evident (Figure 1). Note that the four sectors each have independent patterns with respect to background corrected channel 2 intensity (CH2D). The differences between the SMD method and Iterative method are consistently greater at low intensities: below 150. Each pattern is at a minimum where the linear regression equation for a given sector is equal to the SMD global mean. In this case, there is a clear difference in the minimum of one pattern, which may indicate spatial bias in that sector.Figure 1.The absolute value of the difference between log2_ratio calculated by the SMD method and the Iterative method is plotted on the y-axis. The background-corrected channel 2 intensity is plotted on the x-axisFiltering resultsFiltering parameters: all spots that have an average intensity of 100 in each channel and a |log2_ratio|>2 in at least 1 array were selected.TABLE I.SMD Method Iterative Method Proportional Change α-Factor:3342690.805Elutriation:1791350.754CDC:120410990.913Note that the Iterative method consistently reduces the number of genes that pass the filters. It also consistently lowers the standard deviation of the log2_ratios in these studies. It does not, however, consistently improve the global correlation between the log2_ratios of any two arrays.Examples of Changed ArraysColumn1:SMD Method Column2:Iterative MethodRow AElut.expt. ID57Row BElut.expt.ID56Figure 2. The plots below show the spatial pattern of log2_ratios on two Elutriation arrays (SMD EXPID 56 (row B) and 57(row A) normalized by the SMD method on the left and by the Iterative method on the right. All spots with a log2_ratio greater than 1 appear in red. All spots with a ratio below 1 appear in green. Black spots indicate a flagged spot, white spots have a ratio of 1. Note that the iterative method (Column 2) partially corrects the spatial bias seen in the SMD method (Column1)for both expt. 56 and 57.Selecting Biologically Significant GenesOnce normalization is completed, significantly differential genes are identified by their expression ratios. Because the log 2ratios are rarely distributed normally, there are often more candidate genes identified than standard deviation methods would predict. When kurtosis is high, the proportion of differential genes at the tails of the distribution will also be high. Determining which ratios are false positives may be critical to reducing cost and effort of confirmation experiments [4].The analysis of residuals from simple linear regression affords a screen for these outliers. A linear regression function is subject to the influence individual measurements in direct proportion to their distance from the mean. That is, genes at the extremes have greater leverage (influence) on the predicted regression line then those near the mean of x. Measures of leverage will select a distinct group of genes from a line when compared to those found by residuals. Residuals that are distant from the predicted line may have little leverage if they are especially close to the mean. Since most genes are neitherespecially rare nor abundant, we expect most biological outliers to be near the mean of x (where x is the control state) and therefore have a high residual and a low leverage [2] If we plot leverage versus the square of the residual we can see a much smaller class of genes are significantly (by standard deviation measures) different by residual measures but not by leverage. Genes that are high in leverage and low in residuals are likely false positives, if they have a differential ratio. Genes that are high in both categories areambiguous, some can be reasonably expected to be authentically differential. Discerning between these genes is beyond the scope of this simple test.L e v e r a g eNormalized residual squared.000084.001343Figure 3. Leverage vs. residual squared plot of microarray data (from lvr2plotprocedure in STATA 6.0 Stata Corp, College Station, TX) .Sequence Similarity in Yeast ArraysThe degree to which cross-hybridization might influence microarray expression data was also examined. First, a preliminary analysis was performed that related sequence similarity to the degree of correlation between expression profiles. Several assumptions are made. First, it was assumed that the full length ORFs available from SGD (Saccharomyces Genome Database) approximate the targets actually used on the microarray. This assumption is deemed reasonable, as yeast primer pairs were designed to include as much of the ORFs as possible (Gavin Sherlock, pers. comm.). Second, it was assumed that the degree of sequence similarity between a pair of sequences, as measured by an alignment program such as BLASTN, would approximate the degree of cross-hybridization between those sequences.First, 2,690 ORFS were selected from the original 6,178 yeast ORFs. The selected ORFS were those with the fewest missing expression data values (that is ORFs with greater than 8 missing values across the 62 experiments were excluded). For all pairs of the 2,690 ORFs, the correlation coefficient between the expression profiles was calculated and a BLASTN alignment of the sequences created. For all pairs of ORFs with some degree of homology, the correlation coefficients were extracted and are plotted as two histograms in Figure 2. ORF pairs are divided according to their BLASTN e-values. Correlation coefficients for ORF pairs with BLASTN e-value greater than 1 X 10-4 are shown in white and those with BLASTN e-value less than 1 X 10-4 are in red.Relatively few ORF pairs showed significant sequence similarity. 1991 ORF pairs had e-values greater than 1 X 10-4 and 59 pairs had e-values less than 1 X 10-4. The set of 1991 ORF pairs had a mean pairwise correlation coefficient of 0.036, whereas the set of 59 ORF pairs with lower e-values had a mean pairwise correlation coefficient of 0.419.Figure 4. Pairwise correlation coefficients of the expression pattern across 62 experiments of yeast ORFS. Red comparisons are highly similar pairs. Note the relative rarity of cross homology and the relative high degree of co-expression amongst the highly similar ORFs.Despite the small numbers, it appears that ORF pairs with a higher degree of sequence similarity are also more likely to exhibit a higher degree of correlation between their expression profiles. The e-value indicates, but does not prove cross-hybridization. It is also possible that genes with high sequence similarity may have similar function and therefore may be authentically co-expressed. Cross-hybridization and the degree to which this may confound results from genome-wide microarray experiments should definitely be considered in the design of future microarrays by printing gene specific probes used wherever possible.Calculating the WeightsWeights were assigned to only those genes, which passed two criterion. The pairwise expression with another ORF had to exceed 1e-4 and their BLASTN score had to exceed 100. The BLASTN score was the morestringent criterion, resulting in no expression correlation below 1e-21. 782 pairwise comparisons passed this cut off, representing some 678 ORF's. Weights were firstcalculated for each pairwise comparison. If an ORF was part of more than one pairwisecomparison then the weights were multiplied. Weights were calculated as 0.5 +0.5(minimum exp/exp). In this case the minimum exponent of the data set was -21. If a given pairwise correlation value was 1e-42 then the weight would be 0.5 + 0.5(-21/-42) = 0.75. The maximum weight was 1 and the minimum weight was 0.16. This method is one of many that should give a reasonable approximation of the range of cross-hybridization. However, a method based on empirical evidence of cross-hybridization would be preferable.Figure 5. Histogram of the weights applied to potentially cross-hybridizing genes. Note that most weights were nearly 0.5, and only a small sub-population is weighted less than 0.25.Determining Best PracticeBest practice of microarray data analysis is directly tied to the application of the data. If the arrays are to be used as rapid screening tools, then sophisticated normalization and analysis may not be necessary. If, however, the object of the experiment is to model subtle biological patterns across gradients of time or treatment, much more complex analysis is required. Furthermore, while statistical measures are useful in measuring and correcting some errors, the most accurate means of determining gene transcript behavior will require empirical evidence. When DNA microarrays are designed to assist the statistical analysis, best practice can be achieved. For example, the replicate printing of a core control group of elements in several locations throughout an array would greatly simplify detection of spatial bias. Also, doping controls that consist of a class of non-homologous RNA transcripts could serve as independent verification of normalization methods. Finally, the correlation of expression amongst elements with high degrees of cross-homology does not prove cross-hybridization. In summary, thecombination of careful array design, empirical verification and accurate mathematical models of error will result in the best practice of microarray data analysis. AcknowledgementsWe would like to acknowledge the National Science Foundation (NSF) for providing functional genomics funding (grant number 9872638) and through it’s postdoctoral fellowship program in bioinformatics (David Finkelstein).References1. Kruskal WH, Wallis WA: The use of ranks in one-criterion variance analysis.Journal of the American Statistical Association 47: 583-621 (1952).2. Neter J, Wasserman W, Kutner MH: Applied Linear Statistical Models. Irwin,Homewood, Ill (1990).3. Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO,Botstein D, Futcher B: Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 9: 3273-97. (1998).4. Tusher VG, Tibshirani R, Chu G: Significance analysis of microarrays applied tothe ionizing radiation response. Proc Natl Acad Sci U S A 98: 5116-21. (2001). 5. Yang YH, Dudoit S, Luu P, Speed TP: Normalization for cDNA Microarray DataUC Berkeley Tech Report (2000).。

相关文档
最新文档