概率论与数理统计课后习题答案 (第二版上海交通大学数学系编 科学出版社)

合集下载

概率论与数理统计第二版课后答案

概率论与数理统计第二版课后答案

概率论与数理统计第二版课后答案第一章:概率论的基本概念与性质1.1 概率的定义及其性质1.概率的定义:概率是对随机事件发生的可能性大小的度量。

在概率论中,我们将事件A的概率记为P(A),其中P(A)的值介于0和1之间。

2.概率的基本性质:–非负性:对于任何事件A,其概率满足P(A) ≥ 0。

–规范性:对于样本空间Ω中的全部事件,其概率之和为1,即P(Ω) = 1。

–可列可加性:对于互不相容的事件序列{Ai}(即Ai∩Aj = ∅,i ≠ j),有P(A1∪A2∪…) = P(A1) + P(A2) + …。

1.2 随机事件与随机变量1.随机事件:随机事件是指在一次试验中所发生的某种结果。

–基本事件:对于只包含一个样本点的事件,称为基本事件。

–复合事件:由一个或多个基本事件组成的事件称为复合事件。

2.随机变量:随机变量是将样本空间Ω上的每个样本点赋予一个实数的函数。

随机变量可以分为两种类型:–离散型随机变量:其取值只可能是有限个或可列无穷个实数。

–连续型随机变量:其取值在某个区间内的任意一个值。

1.3 事件的关系与运算1.事件的关系:事件A包含于事件B(记作A ⊆ B)指的是事件B发生时,事件A一定发生。

如果A ⊆ B且B ⊆ A,则A与B相等(记作A = B)。

–互不相容事件:指的是两个事件不能同时发生,即A∩B = ∅。

2.事件的运算:对于两个事件A和B,有以下几种运算:–并:事件A和事件B至少有一个发生,记作A∪B。

–交:事件A和事件B同时发生,记作A∩B。

–差:事件A发生而事件B不发生,记作A-B。

第二章:条件概率与独立性2.1 条件概率与乘法定理1.条件概率:在事件B发生的条件下,事件A发生的概率称为事件A在事件B发生的条件下的条件概率,记作P(A|B)。

–条件概率的计算公式:P(A|B) = P(A∩B) / P(B)。

2.乘法定理:对于任意两个事件A和B,有P(A∩B) = P(A|B) * P(B) =P(B|A) * P(A)。

概率论与数理统计及其应用第二版课后答案

概率论与数理统计及其应用第二版课后答案

第1章 随机变量及其概率1,写出下列试验的样本空间:(1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。

(2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。

(3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。

(4) 抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰子,观察出现的各种结果。

解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{Λ=S ;(3)},,,,{ΛTTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。

2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求解:625.0)()()()(=-+=⋃AB P B P A P B A P ,375.0)()(])[()(=-=-=AB P B P B A S P B A P ,875.0)(1)(___--=AB P AB P ,5.0)(625.0)])([()()])([()])([(___=-=⋃-⋃=-⋃=⋃AB P AB B A P B A P AB S B A P AB B A P3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。

解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=⨯⨯,所以所求得概率为72.0900648=4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。

(1)求该数是奇数的概率;(2)求该数大于330的概率。

解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=⨯⨯个。

(1)该数是奇数的可能个数为48344=⨯⨯个,所以出现奇数的概率为48.010048= (2)该数大于330的可能个数为48454542=⨯+⨯+⨯,所以该数大于330的概率为48.010048=5,袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率。

概率论及数理统计及其应用第二版本课后标准答案.doc

概率论及数理统计及其应用第二版本课后标准答案.doc

第1章随机变量及其概率1,写出下列试验的样本空间:(1)连续投掷一颗骰子直至6个结果中有一个结果岀现两次,记录投掷的次数。

(2)连续投掷一颗骰子直至6个结果中有一个结果接连岀现两次,记录投掷的次数。

(3)连续投掷一枚硬币直至正面出现,观察正反面出现的情况。

(4)抛一枚硬币,若岀现H则再抛一次;若出现T,则再抛一颗骰子,观察岀现的各种结果。

角军:(1) S {2,3,4,5,6,7} ; (2) S {2,3,4,(3) S {H ,TH ,TTH ,TTTH , };(4) S {HH ,HT ,T1,T2,T3,T 4,T 5,T 6} □2,设A, B 是两个事件,已知P (A) 0.25, P (B) 0.5, P (AB) 0.125,,求P (A B), P (AB), P (AB), P [(A B)(AB)]。

解:P (A B) P (A) P OB) P (AB) 0.625 ,P (AB) P [(S A)B] P (B) P (AB) 0.375 ,P (AB) 1 P (AB) 0.875P [(A B)(AB)] P [(A B)(S AB )] P (A B) P [(A B)(AB)] 0.625 P (AB) 0.53,在100, 101, , 999这900个3位数中,任取一个3位数,求不包含数字1个概率。

解:在100, 101, , 999这900个3位数中不包含数字1的3位数的个数为8 9 9 648,所以所求得概率为648——0.729004,在仅由数字0, 1, 2, 3, 4, 5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。

(1)求该数是奇数的概率;(2)求该数大于330的概率。

解:仅由数字0, 1, 2, 3, 4, 5组成且每个数字之多出现一次的全体三位数的个数有5 5 4 100个。

(1)该数是奇数的可能个数为4 4 3 48个,所以出现奇数的概率为48——0.48100(2)该数大于330的可能个数为2 4 5 4 5 4 48,所以该数大于330的概率为48——0.481005,袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率。

概率论及数理统计及其应用第二版本课后答案.doc

概率论及数理统计及其应用第二版本课后答案.doc

第 1 章随机变量及其概率1,写出下列的本空:(1)投一骰子直至 6 个果中有一个果出两次,投的次数。

(2)投一骰子直至 6 个果中有一个果接出两次,投的次数。

(3)投一枚硬直至正面出,察正反面出的情况。

(4)抛一枚硬,若出 H 再抛一次;若出 T,再抛一骰子,察出的各种果。

解:(1)S{ 2,3,4,5,6,7} ;(2)S { 2,3,4, } ;(3)S { H ,TH ,TTH ,TTTH , } ;(4)S { HH , HT ,T1, T2, T3,T 4,T 5,T 6}。

2,A, B是两个事件,已知P(A) 0.25, P(B) 0.5, P( AB) 0.125, ,求___ ___P( A B), P( AB), P( AB), P[( A B)( AB)] 。

解: P( A B) P( A) P(B) P( AB) 0.625 ,P( AB) P[( S A) B] P( B) P( AB) 0.375 ,___P( AB) 1 P( AB) 0.875 ,___P[( A B)( AB)] P[( A B)(S AB )] P( A B) P[( A B)( AB)] 0.625 P( AB) 0.53,在 100,101,⋯, 999900 个 3 位数中,任取一个 3 位数,求不包含数字 1 个概率。

解:在 100,101,⋯,999900 个 3 位数中不包含数字 1 的 3 位数的个数 8 9 9 648 ,所以所求得概率6489000.724,在由数字 0,1,2,3,4,5 成且每个数字之多出一次的全体三位数中,任取一个三位数。

(1)求数是奇数的概率;(2)求数大于 330 的概率。

解:由数字 0,1,2,3,4,5 成且每个数字之多出一次的全体三位数的个数有 5 5 4 100 个。

(1)数是奇数的可能个数4 4 3 48 个,所以出奇数的概率480.48100(2)数大于 330 的可能个数 2 4 5 4 5 4 48,所以数大于330的概率480.481005,袋中有 5 只白球, 4 只球, 3 只黑球,在其中任取 4 只,求下列事件的概率。

概率论与数理统计(第二版)课后答案

概率论与数理统计(第二版)课后答案

各章大体题详解习题一一、选择题1. (A )A B A B B ⊂−−→=;(B )B A A B A B B ⊂−−→⊂−−→=; (C )AB A B A B B φ=−−→⊂−−→=;(D )AB B A φ=−−→⊂ 不必然能推出A B B =(除非A B =)所以 选(D )2. ()()()()()()()P A B P AB P AB P A P B P A P B -==--++ ()()()P A P B P AB =+-所以 选(C )3. )()()()()()()()|(A P B P A P B P A P B P AB P B A P B A ≥−→−==−→−⊂所以 选(B )4. 1)(0)()()()()(==−→−==B P A P B P A P AB P A P 或 所以 选(B )5. (A )若B A =,则φ=AB ,且φ==A A B A ,即B A ,不相容(B )若φ≠⊃B A ,且Ω≠A ,则φ≠AB ,且φ≠=A B A ,即B A ,相容 (C )若φφ≠=B A ,,则φ=AB ,且φ≠=B B A ,即B A ,相容 (D )若φ≠AB ,不必然能推出φ=B A 所以 选(D )6. (A )若φ≠AB ,不必然能推出)()()(B P A P AB P =(B )若1)(=A P ,且φ≠⊃B A ,则)()()()(B P A P B P AB P ==,即A,B 独立(C )若φ=AB ,1)(0<<A P ,1)(0<<B P ,则)()()(B P A P AB P ≠ (D )若1)(=A P ,则A 与任何事件都彼此独立 所以 选(B )7. 射击n 次才命中k 次,即前1-n 次射击恰好命中1-k 次,且第n 次射击时命中目标,所以 选(C )二、填空题8. C A C A C A A C A C A C A C A )())((= C C C C A A C C A C A C ==== ))(()()( 所以 C B =9. 共有44⨯种大体事件,向后两个邮筒投信有22⨯种大体事件,故所求概率为414422=⨯⨯ 10. 设事件A 表示两数之和大于21,则 样本空间}10,10|),{(<<<<=Ωy x y x ,}10,10,21|),{(<<<<>+=y x y x y x A 872121211=⋅⋅-==ΩS S P A 11. 由1.0)(,8.0)(=-=B A P A P ,得7.0)(=AB P ,故3.0)(=AB P 12. 由4.0)(,3.0)(,2.0)(===B A P B P A P ,得1.0)(=AB P ,故2.0)()()(=-=AB P B P A B P 13. 2.0)|()()(==A B P A P AB P ,故8.0)|()()(==B A P AB P B P14. )()()()()()()()(ABC P CA P BC P AB P C P B P A P C B A P +---++=)()()()()()()()()()()()(C P B P A P A P C P C P B P B P A P C P B P A P +---++=2719=15. 由于A,B 彼此独立,可得91)()()(==B P A P B A P ,)()(B A P B A P =,于是31)()(==B P A P ,故32)(=B P 三、计算题16.(1))},,(),,,(),,,(),,,(),,,(),,,(),,,(),,,{(T T T H T T T H T H H T T T H H T H T H H H H H =Ω;(2)}3,2,1,0{=Ω;(3)}1|),{(22≤+=Ωy x y x ;(4)}5:0,5:1,5:2,5:3,5:4,4:5,3:5,2:5,1:5,0:5{=Ω 17.(1)C B A ; (2))(C B A ; (3)C B A C B A C B A ; (4)AC BC AB ; (5)C B A ; (6)C B A ; (7)ABC18. 法一,由古典概率可知,所求概率为:2016420109⋅C ;法二,由伯努利定理可知,所求概率为:1644209.01.0⋅⋅C19. 只有唯一的一个六位数号码开能打开锁。

概率论与数理统计及其应用第二版课后答案

概率论与数理统计及其应用第二版课后答案
kCn(M1)nk。nM
7,将3只球(1~3号)随机地放入3只盒子(1~3号)中,一只盒子装一只球。若一只球装入与球同号的盒子,称为一个配对。
(1)求3只球至少有1只配对的概率。
(2)求没有配对的概率。
解:根据题意,将3只球随机地放入3只盒子的总的放法有3!=6种:123,132,213,231,312,321;没有1只配对的放法有2种:312,231。至少有1只配对的放法当然就有6-2=4种。所以
(1)该人两种症状都没有的概率;
(2)该人至少有一种症状的概率;
(3)已知该人有症状B,求该人有两种症状的概率。
解:(1)根据题意,有40%的人两种症状都没有,所以该人两种症状都没有的概率为120%30%10%40%;
(2)至少有一种症状的概率为140%60%;
(3)已知该人有症状B,表明该人属于由只有症状B的30%人群或者两种症状都有的10%的人群,总的概率为30%+10%=40%,所以在已知该人有症状B的条件下该人有两种症状的概率为
解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有554100个。(1)该数是奇数的可能个数为44348个,所以出现奇数的概率为
480.48 100
(2)该数大于330的可能个数为24545448,所以该数大于330的概率为
480.48 100
5,袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率。
1
概率论与数理统计及其应用习题解答
解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为899648,所以所求得概率为
6480.72 900
4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。(1)求该数是奇数的概率;(2)求该数大于330的概率。

概率论与数理统计习题全解

概率论与数理统计习题全解

习题11. 写出下列随机试验的样本空间:(1) 一射手射击运动中的气球,连续3次都击中,观察其射击次数; (2) 掷一颗匀称的骰子两次,观察前后两次出现的点数之和; (3) 观察某加油站一天内前来加油的人数;(4) 从编号1,2,3,4,5的5件产品中任意取出两件,观察取出哪两件产品; (5) 检查两件产品是否合格;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于9C ,最高气温不高于19C );(7) 在单位圆内任取两点,观察这两点的距离;(8) 在长为2的线段中任取一点,该点将线段分成两段,观察其中一段的长度。

解:(1){}1,2,3Ω=;(2){}2,3,4,5,6,7,8,9,10,11,12Ω=; (3){}n n Ω=为自然数;(4)()()()()()()()()()(){}1,2,1,3,1,4,1,5,2,3,2,4,2,5,3,4,3,5,4,5Ω=; (5)()()(){},,,,,Ω=合格合格合格不合格不合格不合格; (6)(){}1212,9,19t t t t Ω=≥≤; (7){}02,d d r r Ω=≤≤为圆半径; (8){}02l l Ω=<<。

2. 在计算机系中学生中任选一名学生,令事件A 表示被选学生是男生,事件B 表示该生是三年级学生,事件C 表示该生是运动员。

(1) 叙述事件ABC 的意义; (2) 在什么条件下ABC C =成立? (3) 什么时候关系式C B ⊂是正确的? 解:(1)ABC 表示不是运动员的三年级男生;(2)当所有三年级男生都是运动员时,ABC C =成立; (3)当运动员都是三年级学生时,C B ⊂是正确的。

3. 将下列事件用,,A B C 表示出来:(1) A 发生; (2) 只有A 发生;(3) A 与B 都发生而C 不发生; (4) 三个事件都发生;(5) 三个事件中至少有一个发生; (6) 三个事件中至少有两个发生; (7) 三个事件中恰好发生一个; (8) 三个事件中恰好发生两个; (9) 三个事件都不发生;(10) 三个事件中不多于两个事件发生; (11) 三个事件中不多于一个事件发生。

概率论与数理统计第二版_课后答案_科学出版社_参考答案_.doc

概率论与数理统计第二版_课后答案_科学出版社_参考答案_.doc

习题 2 参考答案X 2 3 4 5 6 7 8 9 10 11 12P1/36 1/18 1/12 1/95/36 1/65/361/91/12 1/18 1/36解:根据P( Xk) 1 ,得aek1 ,即 ae 11。

k 0k 01 e 1故 a e 1解:用 X 表示甲在两次投篮中所投中的次数, X~B(2, 用 Y 表示乙在两次投篮中所投中的次数 , Y~B(2, (1) 两人投中的次数相同P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}=0 0 1 1 2 2C 20.700.32C 20.400.62C 20.710.31C 20.410.61C 20.720.30C 2 0.420.60 0.3124(2) 甲比乙投中的次数多P{X>Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}=122 1C 20.710.31C 20.400.62 C 20.72 0.30 C 2 0.400.62 C 2 0.720.30 C 20.410.610.5628解 : ( 1) P{1≤X ≤3}= P{X=1}+ P{X=2}+ P{X=3}=1 2 3 21515 1551 2 1 (2)P{<X<}=P{X=1}+ P{X=2}=15 15511111[1 ( 1)k]1解:( 1)P{X=2,4,6, }=L =lim 44 242 62k3222k1 141 1 1( 2) P{X≥3}=1 ―P{X<3}=1―P{X=1}- P{X=2}= 12 4 4解:设 A i表示第i次取出的是次品,X的所有可能取值为0,1,2P{ X 0} P{ A1A2 A3 A4}P(A1)P(A2 | A1)P(A3 | A1 A2)P( A4 | A1A2 A3) =18 17 16 15 1220 19 18 17 19P{ X 1} P{ A1 A2 A3 A4 } P{ A1A2 A3 A4} P{ A1 A2 A3 A4} P{ A1 A2 A3A4}2 18 17 16 18 2 17 16 18 18 2 16 18 17 16 2 3220 19 18 17 20 19 18 17 20 19 18 17 20 19 18 17 95P{ X 2} 1 P{X 0} P{ X 1}12 32 3 195 9519解: (1) 设 X 表示 4 次独立试验中 A 发生的次数,则 X~B(4,3 4P( X 3) P( X 3) P( X 4) C4 0.430.61 C40.440.60 0.1792(2)设 Y 表示 5 次独立试验中 A 发生的次数,则 Y~B(5,30.43 0.62 4 50.450.60P( X 3) P(X 3) P( X 4) P(X 5) C5 C50.440.61 C5 0.31744 (1)X~P( λ)=P×3)= PP{X 0} 1.50 e 1.5 =e 1.50!(2)X~P( λ)=P×4)= P(2)P{X 2} 1 P{X 0} P{X 1} 1 20e2 21e2 1 3e 20! 1!解:设应配备名设备维修人员。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by mScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
Generated by CamScanner from
相关文档
最新文档