大学物理上海交通大学出版社符五久完整习题全解(上下册)

合集下载

上海交大版大学物理第三章参考答案

上海交大版大学物理第三章参考答案

版权归原著所有 本答案仅供参考习题33-1.如图,一质点在几个力作用下沿半径为20R m =的圆周运动,其中有一恒力0.6F i =N ,求质点从A 开始沿逆时针方向经3/4圆周到达B 的过程中,力F所做的功。

解:本题为恒力做功,考虑到B 的坐标为(R -,R ), ∴2020B A r r r i j ∆=-=-+,再利用:A F r =⋅∆,有:0.6(2020)12A i i j =⋅-+=-(焦耳)3-2.质量为m =0.5kg 的质点,在x O y 坐标平面内运动,其运动方程为x =5t 2,y =0.5(SI),从t =2s 到t =4s 这段时间内,外力对质点的功为多少?解:由功的定义:A F r =⋅∆ ,题意:250.5r t i j =+24(4)(2)60r r r i →∆=-=,220.5105d r F m i i d t==⋅=∴560300A i i J =⋅=。

3-3.劲度系数为k 的轻巧弹簧竖直放置,下端悬一小球,球的质量为m ,开始时弹簧为原长而小球恰好与地接触。

今将弹簧上端缓慢提起,直到小球能脱离地面为止,求此过程中外力的功。

解:由于小球缓慢被提起,所以每时刻可看成外力与弹性力相等,则:F k x =,选向上为正向。

当小球刚脱离地面时:max mg kx =,有:max mgx k=, 由做功的定义可知:max222122mg x k m g A k xd x k x k===⎰。

3-4.如图,一质量为m 的质点,在半径为R 的半球形容器中,由静止开始自边缘上的A 点滑下,到达最低点B 时,它对容器的正压力数值为N ,求质点自A 滑到B 的过程中,摩擦力对其做的功。

分析:f A 直接求解显然有困难,所以使用动能定理,那就要知道它的末速度的情况。

解:求在B 点的速度:2v N G m R -=,可得:R G N mv )(21212-=由动能定理: 2102f mgR A mv +=-∴11()(3)22f A N G R mgR N mg R =--=-3-5.一弹簧并不遵守胡克定律,其弹力与形变的关系为2(52.838.4)F x x i =-- ,其中F和x 单位分别为N 和m 。

大学物理(上海交通大学出版社——符五久)下册习题全解

大学物理(上海交通大学出版社——符五久)下册习题全解

第8章 真空中的静电场8-1 把某一电荷分成q 与Q-q 两个部分,且此两部分相隔一定距离,如果使这两部分有最大库仑斥力,则Q 与q 有什么关系?8-2 在边长为a 的正方形的四角,依次放置点电荷q 、2q 、一4q 和2q ,它的正中放着一个单位正电荷.求这个电荷受力的大小和方向.解 各点电荷在正方形中心产生的电场方向如图8-2所示,它们的大小为方向如图8-2所示,则在正方形中心处的场强为E 的方向指向-4q 。

该处单位正电荷的受力就等于该点的电场强度E 。

8-3 两根无限长的均匀带电直线相互平行,相距为2a ,线电荷密度分别为λ+和λ-,求每单位长度的带电直线所受的作用力.解 设带电直线1的线电荷密度为λ+,带电直线2的线电荷密度为λ-。

可得带电直线1在带电直线2处产生的场强为在带电直线2上取电荷dq ,由场强的定义得该电荷元受的作用力为带电直线1对带电直线2单位长度上的电荷的作用力为同理,带电直线2对带电直线1单位长度上的电荷的作用力为可见,两带电直线相互吸引。

8-4 —无限大带电平面,带有密度为σ的面电荷,如图所示.试证明:在离开平面为x 处一点的场强有一半是由图中半径为x 3的圆内电荷产生的.解 带电圆圆在轴线上的场强为8-5 (1)点电荷q 位于边长为a 的正立方体的中心,通过此立方体的每一面的电通量各是多少?(2)若点电荷移至正立方休的一个顶点上.那么通过每个面的电通量又各是多少?解 (1)点电荷q 位于正立方体的中心,正立方体的六个面对该电荷来说都是等同的。

因此通过每个面的电通量相等,且等于总电通量的1/6。

对正立方体的某一面,其电通量为(2)当点电荷移至正立方体的一个顶点上时,设想以此顶点为中心,作边长为2a 且与原边平行的大正方体,如图8—5所示。

与(1)相同,这个大正方体的每个面上的电通量都相等,且均等于06/εq 。

对原正方体而言,只有交于A 点的三个面上有电场线穿过,每个面的面积是大正方体一个面的面积的1/4,则每个面的电通量也是大正方体一个面的电通量的1/4,即024/εq ,原正方体的其他不A 点相交的三个面上的电通量均为零。

《大学物理学》答案(上海交大版)上下册

《大学物理学》答案(上海交大版)上下册

习 题1-1. 已知质点位矢随时间变化的函数形式为)ωt sin ωt (cos j i +=R r其中ω为常量.求:(1)质点的轨道;(2)速度和速率。

解:1) 由)ωt sin ωt (cos j i +=R r 知 t cos R x ω= t sin R y ω=消去t 可得轨道方程 222R y x =+2) j rv t Rcos sin ωωt ωR ωdtd +-==i R ωt ωR ωt ωR ωv =+-=2122])c o s ()s i n [(1-2. 已知质点位矢随时间变化的函数形式为j i r )t 23(t 42++=,式中r 的单位为m ,t 的单位为s .求:(1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。

解:1)由j i r )t 23(t 42++=可知2t 4x =t 23y +=消去t 得轨道方程为:2)3y (x -=2)j i rv 2t 8dtd +==j i j i v r 24)dt 2t 8(dt 11+=+==⎰⎰Δ3) j v 2(0)= j i v 28(1)+=1-3. 已知质点位矢随时间变化的函数形式为j i r t t 22+=,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

解:1)j i rv 2t 2dt d +== i va 2dtd ==2)212212)1t (2]4)t 2[(v +=+= 1t t 2dtdv a 2t +==n a ==1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。

解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为20121at t v y += (1) 图 1-420221gt t v h y -+= (2)21y y = (3) 解之t =初速度0v 水平抛出,求:1-5. 一质量为m 的小球在高度h 处以(1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的t d d r ,t d d v ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2)j i r )gt 21-h (t v (t)20+=(2)联立式(1)、式(2)得 22v 2gx h y -=(3)j i rgt -v t d d 0= 而 落地所用时间 gh 2t = 所以j i r 2gh -v t d d 0= j v g td d -= 2202y 2x )gt (v v v v -+=+=212220[()]g t dvdt v gt ==+1-6. 路灯距地面的高度为1h ,一身高为2h 的人在路灯下以匀速1v 沿直线行走。

《大学物理教程习题答案》上海交通大学出版社

《大学物理教程习题答案》上海交通大学出版社

习题11-1.已知质点位矢随时间变化的函数形式为(cos sin )r =R ωt i ωt j + 其中ω为常量.求:(1)质点的轨道;(2)速度和速率。

解:(1) 由(cos sin )r =R ωt i ωt j +,知:cos x R t ω= ,sin y R t ω=消去t 可得轨道方程:222x y R +=∴质点的轨道为圆心在(0,0)处,半径为R 的圆;(2)由d rv dt =,有速度:sin Rcos v R t i t j ωωωω=-+而v v =,有速率:1222[(sin )(cos )]v R t R t R ωωωωω=-+=。

1-2.已知质点位矢随时间变化的函数形式为24(32)r t i t j =++,式中r 的单位为m ,t 的单位为s 。

求:(1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。

解:(1)由24(32)r t i t j =++,可知24x t = ,32y t =+消去t 得轨道方程为:x =2(3)y -,∴质点的轨道为抛物线。

(2)由d rv dt =,有速度:82v t i j =+从0=t 到1=t 秒的位移为:11(82)42r v d t t i j d t i j ∆==+=+⎰⎰(3)0=t 和1=t 秒两时刻的速度为:(0)2v j =,(1)82v i j =+ 。

1-3.已知质点位矢随时间变化的函数形式为22r t i t j =+,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。

解:(1)由d r v dt =,有:22v t i j =+,d va dt =,有:2a i =;(2)而v v =,有速率:12222[(2)2]21v t t =+=+∴t dv a dt==,利用222t n a a a =+有: n a ==1-4.一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。

上海交大版大学物理上册答案

上海交大版大学物理上册答案

上海交大版大学物理上册答案第一章质点运动学【例题】例1-1 At= s 例1-2D 例1-3 D 例1-4 B 例1-5 33 例1-6 D 例1-7 C 例1-8 证明:dvdt?dvdx?dxdt?vdvdx??Kv ∴ d v /v =-Kdx 2?v1vv0dv???Kdx , ln0xvv0??Kx ∴v =v 0e-Kx例1-9 1 s m例1-10 B 【练习题】1-1 x=(y-3)2 1-2 -/s-6m/s 1-3 D 1-4 不作匀变速率运动.因为质点若作匀变速率运动,其切向加速度大小at必为常数,即at1?at2?at3,现在虽然a1?a2?a3,但加速度与轨道各处的切线间夹角不同,这使得加速度在各处切线方向的投影并不相等,即at1?at2?at3,故该质点不作匀变速率运动。

1-5 D 1-6证明:设质点在x处的速度为v a?1-7 16 R t 4 rad /s2 2 dvdt?dvdx?dxdtv?2?6x 2?vdv?0??2?6x?dx v20x?2x?x?3?12 1-8 Hv/(H-v) 1-9 C 第二章质点运动定律【例题】例2-1 B 例2-2 B 例2-3 解:(1) 子弹进入沙土后受力为-Kv,牛顿定律?Kmdt?dvvt ∴dxdt,??m0xKvdt?t?v0dvv?Kt/m∴v?v0e (2) 求最大深度v? dx?v0e?Kt/mdt?0dx??0v0e?Kt/ mdt∴x?(m/K)v0(1?e?Kt/m) xmax?mv0/K 例2-4 D 例2-5 答:(1) 不正确。

向心力是质点所受合外力在法向方向的分量。

质点受到的作用力中,只要法向分量不为零,它对向心力就有贡献,不管它指向圆心还是不指向圆心,但它可能只提供向心力的一部分。

即使某个力指向圆心,也不能说它就是向心力,这要看是否还有其它力的法向分量。

(2) 不正确。

作圆周运动的质点,所受合外力有两个分量,一个是指向圆心的法向分量,另一个是切向分量,只要质点不是作匀速率圆周运动,它的切向分量就不为零,所受合外力就不指向圆心。

上海交大版大学物理参考答案

上海交大版大学物理参考答案

上海交大版大学物理参考答案公司内部档案编码:[OPPTR-OPPT28-OPPTL98-版权归原着所有 本答案仅供参考习题99-1.在容积3V L =的容器中盛有理想气体,气体密度为ρ=L 。

容器与大气相通排出一部分气体后,气压下降了。

若温度不变,求排出气体的质量。

解:根据题意,可知: 1.78P atm =,01P atm =,3V L =。

由于温度不变,∴00PV PV =,有:001.783PVV L P ==⨯, 那么,逃出的气体在1atm 下体积为:' 1.78330.78V L L L =⨯-=,这部分气体在1.78atm 下体积为:''V =0'0.7831.78PV L P ⨯= 则排除的气体的质量为:0.783'' 1.3 1.71.78g Lm V g L ρ⨯∆==⨯= 。

根据题意pV RT ν=,可得:mpV RT M=,1V p RT p M m ρ==9-2.有一截面均匀的封闭圆筒,中间被一光滑的活塞分割成两边。

如果其中的一边装有某一温度的氢气,为了使活塞停留在圆筒的正中央,则另一边装入的同一温度的氧气质量为多少 解:平衡时,两边氢、氧气体的压强、体积、温度相同,利用pV RT ν=,知两气体摩尔数相同,即:H O νν=,∴O H HOm mM M =,代入数据有: 1.6O m kg = 。

9-3.如图所示,两容器的体积相同,装有相同质量的氮气和氧气。

用一内壁光滑的水平细玻璃管相通,管的正中间有一小滴水银。

要保持水银滴在管的正中间,并维持氧气温度比氮气温度高30o C ,则氮气的温度应是多少则体积和压强相同,如图。

由:mol mpV RT M =,有:2222(30)O N O N m m R T RT M M +=, 而:20.032O M kg =,20.028N M kg =,可得:30282103028T K ⨯==+ 。

上海交大版大学物理习题册下册答案

上海交大版大学物理习题册下册答案

大学物理(下册)答案第十一章 静电场【例题精选】例11-1 如图所示,在坐标(a ,0)处放置一点电荷+q ,在坐标(-a ,0)处放置另一点电荷-q .P 点是x 轴上的一点,坐标为(x ,0).当x >>a 时,该点场强的大小为:(A)x q 04επ. (B) 30x qa επ. (C) 302x qa επ. (D) 204x qεπ. [ B ]例11-2半径为R 的均匀带电球体的静电场中各点的电场强度的大小E 与距球心的距离r的关系曲线为:[ B ]例11-3 半径为R 的“无限长”均匀带电圆柱面的静电场中各点的电场强度的大小E 与距轴线的距离r 的关系曲线为:[ B ]例11-4一半径为R 的带有一缺口的细圆环,缺口长度为 d (d<<R)环上均匀带有正电,电荷为q ,如图所示.则圆心O 处的场强大小E = ;场强方向为 .()30220824Rqdd R R qd εεπ≈-ππ 从O 点指向缺口中心点. 例11-5 均匀带电直线长为d ,电荷线密度为+λ,以导线中点O 为球心,R 为半径(R >d )作一球面,如图所示,则通过该球面的电场强度通量为______。

带电直线的延长线与球面交点P 处的电场强度的大小为_____,方向________。

0/ελd ; ()2204d R d-πελ ;沿矢径OP例11-6 有一边长为a 的正方形平面,在其中垂线上距中心O 点a /2处,EO r(A) E ∝1/r有一电荷为q 的正点电荷,如图,则通过该平面的电场强度通量为 (A)03εq . (B) 04επq (C) 03επq . (D) 06εq [ D ] 例11-7 两块“无限大”的均匀带电平行平板,其电荷面密度分别 为σ( σ>0)及-2 σ,如图所示。

试写出各区域的电场强度E 。

Ⅰ区E 的大小__________________,方向____________。

(整理)大学物理上海交通大学第四版-下册课后题全部答案.

(整理)大学物理上海交通大学第四版-下册课后题全部答案.

习题1111-1.直角三角形ABC的A点上,有电荷C108.191-⨯=q,B点上有电荷C108.492-⨯-=q,试求C点的电场强度(设0.04mBC=,0.03mAC=)。

解:1q在C点产生的场强:1124ACqE irπε=,2q在C点产生的场强:2224BCqE jr=,∴C点的电场强度:44122.710 1.810E E E i j=+=⨯+⨯;C点的合场强:4123.2410VE m==⨯,方向如图:1.8arctan33.73342'2.7α===。

11-2.用细的塑料棒弯成半径为cm50的圆环,两端间空隙为cm2,电量为C1012.39-⨯和方向。

解:∵棒长为2 3.12l r d mπ=-=,∴电荷线密度:911.010q C mlλ--==⨯⋅可利用补偿法,若有一均匀带电闭合线圈,则圆心处的合场强为0,有一段空隙,则圆心处场强等于闭合线圈产生电场再减去md02.0=长的带电棒在该点产生的场强,即所求问题转化为求缺口处带负电荷的塑料棒在O点产生的场强。

解法1:利用微元积分:21cos4O xRddERλθθπε=⋅,∴2000cos2sin2444OdE dR R Rααλλλθθααπεπεπε-==⋅≈⋅=⎰10.72V m-=⋅;解法2:直接利用点电荷场强公式:由于d r<<,该小段可看成点电荷:112.010q d Cλ-'==⨯,则圆心处场强:1191222.0109.0100.724(0.5)OqE V mRπε--'⨯==⨯⨯=⋅。

方向由圆心指向缝隙处。

11-3.将一“无限长”带电细线弯成图示形状,设电荷均匀分布,电荷线密度为λ,四分之一圆弧AB的半径为R,试求圆ix心O 点的场强。

解:以O 为坐标原点建立xOy 坐标,如图所示。

①对于半无限长导线A ∞在O 点的场强:有:00(cos cos )42(sin sin )42Ax A y E R E R λπππελπππε=-=-⎧⎪⎪⎨⎪⎪⎩②对于半无限长导线B ∞在O 点的场强:有:00(sin sin )42(cos cos )42B x B y E R E R λπππελπππε=-=-⎧⎪⎪⎨⎪⎪⎩③对于AB 圆弧在O 点的场强:有:20002000cos (sin sin )442sin (cos cos )442AB x AB y E d R R E d R R ππλλπθθππεπελλπθθππεπε==-=⎧⎪⎪⎨⎪⎪=--⎩⎰⎰∴总场强:04O x E R λπε=,04O y E R λπε=,得:0()4O E i j R λπε=+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第8章真空中的静电场8-1把某一电荷分成q 与Q-q 两个部分,且此两部分相隔一定距离,如果使这两部分有最大库仑斥力,则Q 与q 有什么关系?8-2在边长为a 的正方形的四角,依次放置点电荷q 、2q 、一4q 和2q ,它的正中放着一个单位正电荷.求这个电荷受力的大小和方向.解各点电荷在正方形中心产生的电场方向如图8-2所示,它们的大小为方向如图8-2所示,则在正方形中心处的场强为E 的方向指向-4q 。

该处单位正电荷的受力就等于该点的电场强度E 。

8-3两根无限长的均匀带电直线相互平行,相距为2a ,线电荷密度分别为λ+和λ-,求每单位长度的带电直线所受的作用力.解设带电直线1的线电荷密度为λ+,带电直线2的线电荷密度为λ-。

可得带电直线1在带电直线2处产生的场强为在带电直线2上取电荷dq ,由场强的定义得该电荷元受的作用力为带电直线1对带电直线2单位长度上的电荷的作用力为同理,带电直线2对带电直线1单位长度上的电荷的作用力为可见,两带电直线相互吸引。

8-4—无限大带电平面,带有密度为σ的面电荷,如图所示.试证明:在离开平面为x 处一点的场强有一半是由图中半径为x 3的圆内电荷产生的.解带电圆圆在轴线上的场强为8-5(1)点电荷q 位于边长为a 的正立方体的中心,通过此立方体的每一面的电通量各是多少?(2)若点电荷移至正立方休的一个顶点上.那么通过每个面的电通量又各是多少?解(1)点电荷q 位于正立方体的中心,正立方体的六个面对该电荷来说都是等同的。

因此通过每个面的电通量相等,且等于总电通量的1/6。

对正立方体的某一面,其电通量为(2)当点电荷移至正立方体的一个顶点上时,设想以此顶点为中心,作边长为2a 且与原边平行的大正方体,如图8—5所示。

与(1)相同,这个大正方体的每个面上的电通量都相等,且均等于06/εq 。

对原正方体而言,只有交于A 点的三个面上有电场线穿过,每个面的面积是大正方体一个面的面积的1/4,则每个面的电通量也是大正方体一个面的电通量的1/4,即024/εq ,原正方体的其他不A 点相交的三个面上的电通量均为零。

8-6实验表明,在靠近地面处有相当强的电场,E 垂直于地面向下,大小约为100N /C ;在离地面1.5km 高的地方,E 也是垂直于地面向下,大小约为25N /C.(1)试计算从地面到此高度的大气中的平均电荷体密度;(2)如果地球上的电荷全部分布在表面,求地面上的电荷面密度.解(1)设平均电荷体密度为ρ,在靠近地表面附近取底面积为S ∆,高为h 高斯柱面(图8—6(a)),根据高斯定理得(2)设地面的电荷面密度为σ.在地表面取底面积为S ∆,高为h 的高斯柱面(图8—6(b)),根据高斯定理得8-7一半径为R 的带电球,其电荷体密度为)/1(0R r -=ρρ,0ρ为一常量,r 为空间某点至球心的距离.试求:(1)球内、外的场强分布;(2)r 为多大时,场强最大?等于多少?解由于电荷球对称分都,故电场也球对称分布。

利用高斯定理.取半径为r 的同心高斯球面。

8-8如图所示,一个均匀分布的正电荷球层,电荷体密度为ρ,球层内表面半径为R 1,外表面半径为R 2.试求:(1)A 点的电势;(2)B 点的电势.解内电荷的球对称分布,用高斯定理可求出各区域的电场强度E 。

8-9一个细玻璃捧,被弯成半径为R 的半圆形,其上均匀分布有电量q +,试求圆心O 处电场强度及电势.分析此题电量是连续分布的,此类问题的解题思路是将整个带电体分割成无限多的电荷元,先计算任意一个电荷元在给定点产生的场强和电势,再用积分法求给定点的总场强和总电势.如何取微元并建立微分式是难点,此外,用积分法求解电场强度时要注意,场强积分是矢量积分,应先把d E 在坐标轴上进行投影,求出d E 的各分量x dE 、y dE 、z dE ,再对各分量进行积分.解选择如图所示坐标系.在细玻璃棒取一长为d l 的线元,此线元与圆心的连线与y 轴的夹角为θ,所张圆心角为d θ,则该线元所带电量dq 为8-10一半径为R 的无限长圆柱形带电体,其体电荷密度)(R r Ar ≤=ρ,A 为正常数.试求:(1)圆柱体内外各点场强大小的分布;(2)选距轴线距离为)(R l l >处为零势0点,计算圆柱体内外各点的电势分布.8-11如图所示,一半径为R1的均匀带电绝缘固体球.电荷体密度为ρ,从球中挖去一半径为R2的球形空腔,,空腔中心O'与球心O的距离为a,试求:(1)空腔中心O'处的电场强度.(2)空腔中心O'处的电势.8-12电量q 均匀分布在长度为2L 的细直导线上,如图所示.(1)求其延长线上距离线段中心为x 处(x >L)的电势(设无限远处电势为零);(2)利用电势梯度求该点的电场强度.分析本题可用电势叠加原理求电势.解(1)取如图所示的坐标系,在带电直线上取一线d l ,该线元所含电荷为dq =dl Lq dl 2=λ,电荷元dq 在延长线上x 处产生的电势为8-13如图所示,一带电均匀的平面圆环,内外半径分别为R 1和R 2,电荷面密度为)0(>σσ.一质子被加速后,自P 点沿圆环轴线处射向圆心O ,若质子达到O 点时的速度恰好为零,试求质子位于P 点的动能E k .(忽略重力影响,OP =L)分析这是一道力学与静电学的综合习题.根据动能定理,质子在OP 上运动时受到电场力做的功等于质子动能的增量.电场力做的功有两种求解方法:一种是利用电势差求解,即W =e (V P —V O );另外一种方法是利用功的定义求解,即⎰⋅=O P d e W l E 。

第一种方法需要求O 、P 两点的电势,第二种方法需要求OP 上的场强。

第9章电场与物质的相互作用9-1面积很大的导体平板A与均匀带电平面B平行放置,如图所示.已知A与B相距d,两者相对部分的面积为S.(1)设B面带电量为q,A板的电荷面密度为1σ及2σ,求A板σ及2σ.与B面的电势差.(2)若A板带电量为Q,求19-2半径为R1的导体球带有电荷小球外有一个内、外半径分别为R2、R3的同心导体球壳,壳上带有电荷Q,如图所示.(1)求两球的电势V l及V2;(2)求两球的电势差V∆;(3)用导线把球和壳连接在一起后,V l、V2及V∆分别是多少?(4)在情形(1)、(2)中,若外球接地,则V l、V2及V∆分别是多少?(5)设外球离地面很远,若内球接地,情况如何?9-3如图所示,半径为R的金属球与地相连接,在与球心相距d=2R处有一点电荷q(q >0).问球上的感应电荷q′有多少(设金属球距地间及其他物体很远)?9-4已知铜的摩尔质量M=63.75g.mol-1,密度 =8.9g.cm-3,在铜导线里,假设每一个铜原子贡献一个自由电子.为了技术安全,铜线内最大电流密度m j =6.0A.mm -2,求此时铜线内电子的漂移速率d υ.9-5有两个半径分别为R 1和R 2的同心球壳,其间充满了电导率为σ的介质,若在两球壳间维持恒定的电势差U ,求两球壳间的电流.(答案:12124R R R UR I -=πσ)9-6在如图所示的电路中,已知电池A 的电动势A ε=24v ,内阻R A =2Ω,电池B 的电动势B ε=12V .内阻R B =1Ω,外阻R =3Ω.试计算:(1)电路中的电流;(2)电池A 的端电压U 12;(3)电池B 的端压U 34;(4)电池A 所消耗的化学能功率以及所输出的有效功率;(5)输入电池B 的功率及转变为化学能的功率;(6)电阻R 所产生的热功率.9-7一段含源电路如图所示,已知I1=1A,1ε=1.5V,r1=5Ω,R1=10Ω;I2=0.8A,ε=2.0V,r2=3Ω,R2=15Ω;I3=1.2A,3ε=3.0V,r3=4Ω,R3=20Ω.求a、b两2点的电势差U ab.分析本题可直接应用一段含源电路的欧姆定律求解,但应注意电阻上电压降和电源电动势的符号规定。

9-8半径为R的导体球,带有电荷Q,球外有一均匀电介质的同心球壳,球壳的内、外半径分别为a和b,相对介电常量为rε,如图所示.求:(1)各区域的电场强度E.电位移矢量D及电势V,绘出E(r)、D(r)及V(r)图线;(2)介质内的电极化强度P和介质表面上的极化电荷面密度σ'.9-9—块大的均匀电介质平板放在一电场强度为E 0的均匀电场中,电场方向与板的夹角为θ.如图所示.已知板的相对介电常量是r ε,求板面的面束缚电荷密度.解在电介质内束缚电荷产生的电场方向与板面垂直。

设板面的顶束缚电荷密度为σ'、则电介质内束缚电荷产生的场强为9-10两共轴的导体圆筒,内筒半径为R 1,外筒的内半径为R 2(R 2<2R 1),其间有两层均匀介质,分界面的半径为r ,内层介电常量为1ε,外层介电常量为)2(212εεε=,两介质的击穿场强都是E m ,当电压升高时,哪层介质先击穿?证明:两筒最大电势差为122ln 21rR R r E V m m =解设两导体圆筒上电荷线密度分别为λ和λ-,则空间电场分布为9-11为了测量电介质材料的相对介电常量.将一块厚为1.5cm 的平板材料慢慢地插进一电容器的距离为2.0cm 的两平行板之间.在插入过程中,电容器的电荷保持不变.插入之后,两板间的电势差减小为原来的60%,求电介质的相对介电常量.9-12某计算机键盘的每一个键下面连有一小块金属片,它下面隔一定空气隙有另一块小的固定金属片.这样两片金属片就组成一个小电容器(如图).当键被按下时,此小电容器的电容就发生变化,与之相连的电子线路就能检测出是哪个键被按下了,从而给出相应的信号.设每个金属片的面积为50.0mm 2,两金属片间的距离是0.600mm.如果电子线路能检测出的电容变化是0.250PF ,那么键需要按下多大的距离才能给出必要的信号?9-13如图所示、—平行板电容器充以两种电介质,试证其电容为2210r r d A C εεε+=.9-14如图所示.一平板电容器,两极板相距d,面积为S.电势差为U,板间放有—层厚为t的介质,其相对介电常量为rε,介质两边都是空气.略去边缘效应,求:(1)介质中的电场强度E、电位移矢量D和极化强度P的大小;(2)极板上的电量Q;(3)极板和介质间隙中的场强大小;(4)电容.9-15两个同轴的圆柱面,长度均为l,半径分别为a、b,两圆柱面之间充有介电常量为ε的均匀电介质.当两个圆柱面带有等量异号电荷+Q、-Q时,求:(1)半径为r(a<r<b)处的电场能量密度;(2)电介质中的总能量,并由此推算出圆柱形的电容器的电容.第10章稳恒磁场10-1如图(a)所示,电流I均匀地流过宽为b的无限长平面导体薄板,求(1)通过板的中线并与板面垂直的直线上P点的磁感应强度;(2)若b为无穷大,电流线密度为j,结果如何?10-2如图(a)所示,半球面半径为R,均匀带电,电荷面密度为σ,当其绕对称轴以角速度ω旋转时,求球心处的磁感应强度.10-3在半径为R的无限长金属圆柱体内部挖去一半径为R'的无限长圆柱体,两柱体的轴线平行,相距d,有电流沿轴线方向流动,且均匀分布在空心柱体的截面上,电流密度为j.试证明空腔中的磁场是均匀的.分析这是一个非对称的电流分布,其磁场分布不满足轴对称,因而不能直接用安培环路定理求解,但可以利用补偿法求空腔内的磁场.将如图所示的载流导体视作两根半径分别为R和R′的实心圆柱导体,电流密度相同,方向相反,这时空腔内任一点磁感应强度B=B1+B2,其中B1、B2分别是半径为R和R′的实心圆柱体在该点激发的磁感应强度,它们分别可由安培环路定理求得.10-4半径为R的平面圆形线圈中载有电流I2,另一无限长导线AB中载有电流I1,若AB与圆心相距d(d>R)且与线圈共面,求圆形线圈所受的磁力.分析圆电流处于无限长直电流产生的非均匀磁场中,但由对称性分析仍可知线圈在y方向所受合力为零.在圆电流上选取电流元,由安培定律分解积分可求得线圈所受磁力.10-5一半径为R的薄圆盘,放在磁感应强度为B0的均匀磁场中,B0的方向与盘平行,在圆盘表面上,电荷面密度为σ,若圆盘以角速度ω绕通过盘心并垂直盘面的轴转动,求:(1)圆盘在盘心处产生的磁感应强度;(2)圆盘产生的磁矩;(3)圆盘所受的磁力矩.10-6如图所示,两带电粒子同时射入均匀磁场,速度方向皆与磁场垂直.(1)如果两粒子质量相同,速率分别是υ和2υ;(2)如果两粒子速率相同,质量分别是m和2m;那么,哪个粒子先回到原出发点?10-7图(a)是一个磁流体发电机的示意图.将气体加热到很高温度,使之电离而成为等离子体,并让它通过平行板电极1、2之间,在这里有一垂直于纸面向里的磁场B.试说明υ的电压(υ为气体流速,d为电极间距).问哪个电极是正这两极之间会产生一个大小为Bd极?解等离子体在磁场中受磁力作用,正、负电荷受的磁力方向如图(b )所示。

相关文档
最新文档