角平分线的性质学案1

合集下载

2022年人教版《一元二次方程(导学案)》精品学案

2022年人教版《一元二次方程(导学案)》精品学案

第二十一章一元二次方程——一元二次方程的相关概念一、新课导入1.导入课题:情景:要设计一座高2m的人体雕像,使它的上部(腰以上)与下部(腰以下)的高度比等于下部与全部(全身)的高度比,则雕像的下部应设计多少米高?问题1:列方程解应用题的一般步骤是什么?(导出审题的关键是寻找等量关系)问题2:你能画出示意图表示这个问题吗?(用线段AB表示雕像的高度,雕像上部的高度表示为AC,下部的高度表示为BC,在黑板上画出示意图,把这个问题转化为数学问题)问题3:能反映问题的等量关系的是哪一句话?(根据题意导出关系式BC2=2AC)问题4:设雕像下部高BC=x m,请说出你所列的方程,并化简.这个方程是一元一次方程吗?它有什么特点?这个方程就是本节课我们将要学习的一元二次方程.(板书课题)2.学习目标:(1)会设未知数,列一元二次方程.(2)了解一元二次方程及其根的概念.(3)能熟练地把一元二次方程化成一般形式,并准确地指出各项系数.3.学习重、难点:重点:一元二次方程的一般形式及相关概念.难点:寻找等量关系.二、分层学习1.自学指导:(1)自学内容:教材第1页到第2页的问题1、问题2.(2)自学时间:5分钟.(3)自学方法:先寻找问题中的等量关系,再根据等量关系列出方程.(4)自学参考提纲:①问题1中,要制作一个无盖的方盒,四角都要剪去一个相同的正方形,我们设正方形边长为x cm,则盒底的宽为(50-2x) cm,盒底的长为(100-2x) cm,根据矩形的面积公式及方盒的底面积3600 cm2可列方程为(100-2x)(50-2x)=3600,你能把它整理为课本上的方程②吗?试说明具体经过哪几步变形得到.先去括号5000-100x-200x+4x2=3600移项合并同类项4x2-300x+1400=0系数化为1(两边同除以4) x2-75x+350=0②问题2中,本次排球比赛的总比赛场数为28场.设邀请x支队参赛,则每支队与其余(x-1) 支队都要赛一场.整个比赛中总比赛场数是多少?你是怎样算出来的?本题的等量关系是什么?你列出的方程是x(x-1)=28.你能把它整理为课本上的方程③吗?试说明具体经过哪几步变形得到.去括号x2-12x=28系数化为1(两边同乘以2) x2-x=562.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:观察了解学生是否会寻找等量关系,是否会化简方程.②差异指导:简要说明问题2中单循环比赛与双循环比赛的区别,对不会寻找等量关系的学生给予辅导,说明化简方程的基本要求.(2)生助生:同桌之间、小组内交流、研讨.4.强化:(1)总结寻找等量关系的策略,简要指出哪些公式经常被我们作为寻找等量关系的依据.(2)练习:根据下列问题列方程①一个圆的面积是2πm2,求半径.πr2=2π②一个直角三角形的两条直角边相差3cm,面积为9cm2,求较长的直角边的长.1x(x-3)=92③4个完全相同的正方形面积之和是25,求正方形的边长x. 4x2=25④一个长方形的长比宽多2,面积是100,求长方形的长x. x(x-2)=100⑤把长为1的木条分成两段,使较短一段的长与全长的积等于较长一段的长的平方,求较短一段的长x.x=(1-x)21.自学指导:(1)自学内容:教材第3页的内容.(2)自学时间:5分钟.(3)自学方法:观察方程①②③,从方程所含的未知数的个数及其次数等方面找出它们共同的特点.(4)自学参考提纲:①结合一元一次方程的定义,请对一元二次方程进行定义:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.②一元二次方程的一般形式是a x2+b x+c=0(a≠0),为什么要规定a≠0?因为a=0时,未知数的最高次数小于2.③同桌之间相互说说方程①②③的二次项,二次项系数,一次项,一次项系数,常数项各是什么.方程①x2+2x-4=0 二次项:x2二次项系数:1 一次项:2x 一次项系数:2常数项:-4方程②x2-75x+350=0 二次项:x2二次项系数:1 一次项:-75x 一次项系数:-75 常数项:350方程③x2-x=56 二次项:x2二次项系数:1 一次项:-x 一次项系数:-1常数项:-56④举例说明什么是一元二次方程的根.⑤自学例题,说说把一元二次方程化为一般形式,要经过哪些变形?去括号,移项,合并同类项.2.自学:学生可参考自学指导进行自学.3.助学:(1)师助生:①明了学情:观察学生在回答一元二次方程各项及各项系数时,是否注意了符号.②差异指导:提醒学生一元二次方程的每一项(系数)都应包括它前面的符号.(2)生助生:生生互动交流、订正错误.4.强化:(1)交流总结:确定一元二次方程各项的系数时,若方程不是一般形式,要先经过去括号、移项、合并同类项等步骤把它化成一般形式,通常习惯把二次项系数化为正数,且各项系数均为整数且互质,在指出各项系数时,一定要带上各项前面的符号.(2)练习:①将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数,一次项系数及常数项:5x2-1=4x;4x2=81;解:原式化为5x2-4x-1=0解:原式化为4x2-81=0二次项系数:5一次项系数:-4常数项:-1二次项系数:4一次项系数:0常数项:-81 4x(x+2)=25;(3x-2)(x+1)=8x-3.解:原式化为4x2+8x-25=0解:原式化为3x2-7x+1=0二次项系数:4一次项系数:8常数项:-25二次项系数:3一次项系数:-7常数项:1②若方程(m-1)x2+x=1是关于x的一元二次方程,则m的取值范围是m≥0且m≠1.三、评价1.学生的自我评价(围绕三维目标):这节课你学到了哪些知识?还有什么困惑?2.教师对学生的评价:(1)表现性评价:点评学生参与学习的情况,回答问题,小组互动情况以及存在的问题等.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):(1)注重知识的前后联系,在温故而知新的过程中孕育新知,按照由特殊到一般的规律,降低学生理解的难度.(2)教师创设情境,给出实例,学生积极主动探究,教师引导与启发、点拨与设疑相结合,师生互动,体现教师的组织者、引导者与合作者的地位.(3)增设例题难度,让学生产生困惑,避免今后犯类似错误,增加课堂练习,巩固知识.(4)对于一元二次方程的根的概念形成过程,要让学生大胆猜测,经过思考、讨论、分析的过程,让学生在交流中体会成功.(时间:12分钟满分:100分)一、基础巩固(70分)1.(10分)一元二次方程3x2=5x的二次项系数和一次项系数分别是(C)A. 3,5B. 3,0C. 3,-5D. 5,02.(10分)下列哪些数是方程x2+x-12=0的根?-4,-3,-2,-1,0,1,2,3, 4.解:-4,33.(20分)将下列方程化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数和常数项.(1)3x2+1=6x;(2)4x2=81-5x;解:原式化为3x2-6x+1=0 解:原式化为4x2+5x-81=0二次项系数:3 二次项系数:4一次项系数:-6 一次项系数:5常数项:1 常数项:-81(3)x(x+5)=5x-10; (4)(3x-2)(x+1)=x(2x-1).解:原式化为x2+10=0 解:原式化为x2+2x-2=0二次项系数:1 二次项系数:1一次项系数:0 一次项系数:2常数项:10 常数项:-24.(30分)根据下列问题列方程,并将其化成一元二次方程的一般形式.(1)一个长方形的长比宽多1cm,面积是132cm2,长方形的长和宽各是多少?解:设长方形的长为x cm,则宽为(x-1)cm,根据题意,得x(x-1)=132,整理,得x2-x-132=0.2的平方的长方形?解:设长方形的长为xx)m.根据题意,得xx)=0.06,整理,得50x2-25x+3=0.(3)参加一次聚会的每两人都握了一次手,所有人共握手10次.有多少人参加这次聚会?解:设有x人参加了这次聚会,根据题意,得x(x-1)=10整理,得x2-x-20=0二、综合应用(20分)5.(20分)在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为x cm,则x满足的方程是(B)A. x2+130x-1400=0B. x2+65x-350=0C. x2-130x-1400=0D. x2-65x-350=0三、拓展延伸(10分)6.(10分)如果2是方程x2-c=0的一个根,求常数c及方程的另一个根.解:将2代入原方程中,得22-c=0,得c=4.将c=4代入原方程,得x2x=±2.即方程的另一个根为-2.角的平分线的性质(一)教学目标(一)教学知识点角平分线的画法、角平分线的性质1.(二)能力训练要求1.掌握角平分线的性质1 2.会用尺规作一个已知角的平分线.(三)情感与价值观要求在利用尺规作图的过程中,培养学生动手操作能力与探索精神.教学重点利用尺规作已知角的平分线.角平分线的性质1.教学难点角的平分线的性质1教学方法引导发现、讲练结合法.教具准备多媒体课件教学过程一.提出问题,创设情境问题:图中哪条线段的长可以表示点P 到直线l 的距离 ?导入新课,明确学习目标如果老师手里只有直尺和圆规,你能帮忙设计一个作角的平分线的操作方案吗?二.合作交流 探究新知探究1想一想:下图是一个平分角的仪器,其中AB=AD ,BC=DC .将点A 放在角的顶点,AB 和AD 沿着角的两边放下,沿AC 画一条射线AE ,AE 就是角平分线.你能说明它的道理吗? 教师活动:播放多媒体课件,演示角平分仪器的操作过程,使学生直观了解得到射线AC 的方法.学生活动:观看多媒体课件,讨论操作原理.[生1]要说明AC 是∠DAC 的平分线,其实就是证明∠CAD=∠CAB .[生2]∠CAD 和∠CAB 分别在△CAD 和△CAB 中,那么证明这两个三角形全等就可以了.[生3]我们看看条件够不够.AB AD BC DC AC AC =⎧⎪=⎨⎪=⎩所以△ABC ≌△ADC (SSS ).所以∠CAD=∠CAB .即射线AC 就是∠DAB 的平分线.[生4]原来用三角形全等,就可以解决角相等.线段相等的一些问题.看来温故是可以知新的.试一试:老师再提出问题:通过上述探究,能否总结出尺规作已知角的平分线的一般方法.自己动手做做看.然后与同伴交流操作心得.(分小组完成这项活动,教师可参与到学生活动中,及时发现问题,给予启发和指导,使讲评更具有针对性)讨论结果展示:作已知角的平分线的方法:已知:∠AOB .求作:∠AOB 的平分线.作法:(1)以O 为圆心,适当长为半径作弧,分别交OA 、OB 于M 、N .(2)分别以M、N为圆心,大于12MN的长为半径作弧.两弧在∠AOB内部交于点C.(3)作射线OC,射线OC即为所求.(教师根据学生的叙述,作多媒体课件演示,使学生能更直观地理解画法,提高学习数学的兴趣).点拨:1.在上面作法的第二步中,去掉“大于12MN的长”这个条件行吗?2.第二步中所作的两弧交点一定在∠AOB的内部吗?(设计这两个问题的目的在于加深对角的平分线的作法的理解,培养数学严密性的良好学习习惯)学生讨论结果总结:1.去掉“大于12MN的长”这个条件,所作的两弧可能没有交点,所以就找不到角的平分线.2.若分别以M、N为圆心,大于12MN的长为半径画两弧,两弧的交点可能在∠AOB•的内部,也可能在∠AOB的外部,而我们要找的是∠AOB内部的交点,•否则两弧交点与顶点连线得到的射线就不是∠AOB的平分线了.3.角的平分线是一条射线.它不是线段,也不是直线,•所以第二步中的两个限制缺一不可.4.这种作法的可行性可以通过全等三角形来证明.探究2:做一做1[师]请同学们拿出准备好的折纸与剪刀,自己动手,剪一个角,把剪好的角对折,使角的两边叠合在一起,再把纸片展开,你看到了什么?把对折的纸片再任意折一次,然后把纸片展开,又看到了什么?[生]我发现第一次对折后的折痕是这个角的平分线;再折一次,又会出现两条折痕,而且这两条折痕是等长的.这种方法可以做无数次,所以这种等长的折痕可以折出无数对. [师]你的叙述太精彩了.这说明角的平分线除了有平分角的性质,还有其他性质,今天我们就来研究这个问题.做一做2角平分线的性质即已知角的平分线,能推出什么样的结论.操作:1.折出如图所示的折痕PD、PE.2.你与同伴用三角板检测你们所折的折痕是否符合图示要求.画一画:按照折纸的顺序画出一个角的三条折痕,并度量所画PD、PE是否等长?拿出两名同学的画图,请大家评一评,以达明确概念的目的.[生]同学乙的画法是正确的.同学甲画的是过角平分线上一点画角平分线的垂线,而不是过角平分线上一点画两边的垂线段,所以同学甲的画法不符合要求.[生甲]噢,对,我知道了.[师]同学甲,你再做一遍加深一下印象.教师提出问题:你能叙述所画图形的性质吗?生回答后,教师进一步引导:观察操作得到的结论有时并不可靠,你能否用推理的方法验证你的结论呢?证一证:引导学生证明角平分线的性质 1,分清题设、结论,将文字变成符号并加以证明(一生板演)说一说: 引导学生结合图形从文字和符号的角度分别叙述问题1:你能用文字语言叙述所画图形的性质吗?[生]角平分线上的点到角的两边的距离相等.问题2:(出示)能否用符号语言来翻译“角平分线上的点到角的两边的距离相等”这句话.学生通过讨论作出下列概括:∵ OC平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE.于是我们得角的平分线的性质:在角的平分线上的点到角的两边的距离相等.三、用一用:1、如图,△ABC的角平分线BM、CN相交于点P.此例放到第二课时讲求证:点P到三边AB、BC、CA的距离相等.[师生共析]点P到AB、BC、CA的垂线段PD、PE、PF的长就是P点到三边的距离,•也就是说要证:PD=PE=PF.而BM、CN分别是∠B、∠C的平分线,•根据角平分线性质和等式的传递性可以解决这个问题.证明:过点P作PD⊥AB,PE⊥BC,PF⊥AC,垂足为D、E、F.因为BM是△ABC的角平分线,点P在BM上.所以PD=PE.同理PE=PF.所以PD=PE=PF.即点P到三边AB、BC、CA的距离相等.巩固所学及时点拨四.丰收乐园学生充分交流、各抒己见教后反思:本节知识的应用主要存在以下问题:1、对距离把握不到位,点到直线的垂线段长才叫距离2、不会直接使用角平分线的性质,而是使用全等将性质再证一3、采用角平分线性质解题强调三个条件。

11.1.2三角形的高、中线、角平分线学案使用

11.1.2三角形的高、中线、角平分线学案使用

11.1.2三角形的高,中线,角平分线导学案主备人:张伟班级:________ 使用人:________ 时间8月26日【学习目标】1.认识并会画出三角形的高线、三角形的角平分线、三角形的中线、并利用其解决相关问题;2、认识三角形的稳定性,并会用其解决一些实际问题【重点】1、认识三角形的高线、中线与角平分线。

并会画出图形。

2、三角形的稳定性【难点】1、画出三角形的高线、中线与角平分线.2、三角形的稳定性的理解一、【温故而知新】下列长度的三个线段能否组成三角形?(1)3,6,8 (2)1,2,3 (3)6,8,2二、【预习检测】知识点1:认识并会画三角形的高线,利用其解决相关问题自学课本4页三角形的高并完成下列各题:1、作出下列三角形三边上的高:2、上面第1图中,AD是△ABC的边BC上的高,则∠ADC=∠ = °3、由作图可得出如下结论:(1)三角形的三条高线所在的直线相交于点;(2)锐角三角形的三条高相交于三角形的;(3)钝角三角形的三条高所在直线相交于三角形的;(4)直角三角形的三条高相交三角形的;练习一:如图所示,画△ABC的一边上的高,下列画法正确的是().知识点二:认识并会画三角形的中线,利用其解决相关问题自学课本4页下方三角形的中线并完成下列各题:1、作出下列三角形三边上的中线2、AD是△ABC的边BC上的中线,则有BD = =21,3、由作图可得出如下结论:(1)三角形的三条中线相交于点,这个交点叫做三角形的(2)锐角三角形的三条中线相交于三角形的;(3)钝角三角形的三条中线相交于三角形的;(4)直角三角形的三条中线相交于三角形的;练习二:如图,D、E是边AC的三等分点,图中有个三角形,BD是三角形中边上的中线,BE是三角形中________上的中线;知识点三:认识并会画三角形的角平分线,利用其解决相关问题自学课本5页三角形的角平分线并完成下列各题:1、作出下列三角形三角的角平分线:2、AD是△ABC中∠BAC的角平分线,则∠BAD=∠ =3、由作图可得出如下结论:(1)三角形的三条角平分线相交于点;(2)锐角三角形的三条角平分线相交三角形的;(3)钝角三角形的三条角平分线相交三角形的;(4)直角三角形的三条角平分线相交三角形的 .练习三:如图,已知∠1=21∠BAC,∠2 =∠3,则∠BAC的平分线为,∠ABC的平分线为 .总结:三角形的高、中线、角平分线都是一条线段。

专题06 角的平分线的性质(解析版)八年级上册数学精品学案(人教版)

专题06 角的平分线的性质(解析版)八年级上册数学精品学案(人教版)

专题06 角的平分线的性质1、如图,把两根钢条AA′,BB′的中点连在一起,可以做成一个测量内槽宽的卡钳,卡钳的工作原理利用了三角形全等判定定理.【答案】SAS.2.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90∘),点C在DE上,点A和B分别与木墙的顶端重合,求两堵木墙之间的距离.【答案】解:由题意得:AC=BC,∠ACB=90∘,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90∘,∴∠ACD+∠BCE=90∘,∠ACD+∠DAC=90∘,∴∠BCE=∠DAC,在ΔADC和ΔCEB中,{∠ADC=∠CEB ∠DAC=∠BCEAC=BC,∴ΔADC≅ΔCEB(AAS);由题意得:AD=EC=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.知识梳理知识点一:角的平分线的性质角的平分线的性质:角的平分线上的点到角两边的距离相等.要点诠释:用符号语言表示角的平分线的性质定理:若CD平分∠ADB,点P是CD上一点,且PE⊥AD于点E,PF⊥BD于点F,则PE=PF.例题精讲例1、已知:如图,AD是△ABC的角平分线,且,则△ABD与△ACD的面积之比为()A.3:2 B. C.2:3 D.【答案】B;提示:∵AD是△ABC的角平分线,∴点D到AB的距离等于点D到AC的距离,又∵,则△ABD与△ACD的面积之比为例2、已知:如图,在ABC∆中,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F.求证:AE=AF.:3:2AB AC=3:22:3:3:2AB AC=3:2【答案】 证明:∵AD 平分∠BAC ,DE ⊥AB 于E ,DF ⊥AC 于F.∴DE =DF (角平分线上的点到角两边的距离相等)90AED AFD ∠=∠=︒(垂直定义)在Rt AED ∆和Rt AFD ∆中 DE DF AD AD =⎧⎨=⎩∴Rt AED ∆≌Rt AFD ∆(HL )∴AE AF =巩固练习1、如图,AD 是△ABC 的角平分线,DF ⊥AB ,垂足为F ,DE =DG ,△ADG 和△AED 的面积分别为50和39,则△EDF 的面积为:( )A.11B.5.5C.7D.3.5【答案】解: 过D 点作DH ⊥AC 于H ,∵AD 是△ABC 的角平分线,DF ⊥AB ,DH ⊥AC∴DF =DH在Rt △EDF 和Rt △GDH 中DE =DG ,DF =DH∴Rt △EDF ≌Rt △GDH同理可证Rt △ADF 和Rt △ADH∴AED EDF ADG GDH S =S S S +-△△△△∴EDF ADG AED 2=S S S -△△△=50-39=11,∴△EDF 的面积为5.52、如图,AD 是∠BAC 的平分线,DE ⊥AB ,交AB 的延长线于点E ,DF ⊥AC 于点F ,且DB =DC. 求证:BE =CF.【答案】证明:∵DE ⊥AE ,DF ⊥AC ,AD 是∠BAC 的平分线,∴DE =DF ,∠BED =∠DFC =90°在Rt △BDE 与Rt △CDF 中,DB DCDE DF =⎧⎨=⎩,∴Rt △BDE ≌Rt △CDF (HL )∴BE =CF知识点二:角的平分线的判定角平分线的判定:角的内部到角两边距离相等的点在角的平分线上.要点诠释:用符号语言表示角的平分线的判定:若PE ⊥AD 于点E ,PF ⊥BD 于点F ,PE =PF ,则PD 平分∠ADB例题精讲例3、如图,AC=DB ,△PAC 与△PBD 的面积相等.求证:OP 平分∠AOB .【答案】证明:作PM ⊥OA 于M ,PN ⊥OB 于N12PAC S AC PM =△∵,12PBD S BD PN =△,且PAC S =△PBD S △∴ 12AC PM 12BD PN =又∵AC =BD∴PM =PN又∵PM ⊥OA ,PN ⊥OB∴OP 平分∠AOB巩固练习1、已知:如图,CD ⊥AB 于D ,BE ⊥AC 于E ,CD 、BE 交于O ,∠1=∠2.求证:OB =OC.【答案】证明:∵CD ⊥AB ,BE ⊥AC ,∠1=∠2.∴OD =OE在Rt △ADO 与Rt △AEO 中,OD OEAO AO =⎧⎨=⎩∴Rt △ADO ≌Rt △AEO (HL )∴AD =AE在Rt △ADC 与Rt △AEB 中,DAC EABAD AEADC AEB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴Rt △ADC ≌Rt △AEB (ASA )∴CD =BE∴CD -OD =BE -OE ,即OC =OB.知识点三:角的平分线的尺规作图角平分线的尺规作图(1)以O为圆心,适当长为半径画弧,交OA于D,交OB于E.(2)分别以D、E为圆心,大于12DE的长为半径画弧,两弧在∠AOB内部交于点C.(3)画射线OC.射线OC即为所求.例题精讲1、如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC 于点D,若CD=4,AB=15,则△ABD的面积是()A.15 B.30 C.45 D.60【答案】B;【解析】由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,又∵∠C=90°,∴DE=CD,∴△ABD的面积=AB•DE=×15×4=30.知识点四:三角形角平分线的性质三角形三条角平分线交于三角形内部一点,此点叫做三角形的内心且这一点到三角形三边的距离相等.三角形的一内角平分线和另外两顶点处的外角平分线交于一点.这点叫做三角形的旁心.三角形有三个旁心.所以到三角形三边所在直线距离相等的点共有4个.如图所示:△ABC 的内心为1P ,旁心为234,,P P P ,这四个点到△ABC 三边所在直线距离相等.知识点五:角的平分线的性质综合应用例4、如图,四边形ABDC 中,∠D=∠ABD=90゜,点O 为BD 的中点,且OA 平分∠BAC .(1)求证:OC 平分∠ACD ;(2)求证:OA ⊥OC ;(3)求证:AB+CD=AC .【答案】证明:(1)过点O 作OE ⊥AC 于E ,∵∠ABD=90゜,OA 平分∠BAC ,∴OB=OE ,∵点O 为BD 的中点,∴OB=OD ,∴OE=OD,∴OC平分∠ACD;(2)在Rt△ABO和Rt△AEO中,,∴Rt△ABO≌Rt△AEO(HL),∴∠AOB=∠AOE,同理求出∠COD=∠COE,∴∠AOC=∠AOE+∠COE=×180°=90°,∴OA⊥OC;(3)∵Rt△ABO≌Rt△AEO,∴AB=AE,同理可得CD=CE,∵AC=AE+CE,∴AB+CD=AC.巩固练习已知:如图,在ΔABC中,AD是△ABC的角平分线,E、F分别是AB、AC上一点,并且有∠EDF+∠EAF=180°.试判断DE和DF的大小关系并说明理由.【答案】证明:过点D 作DM ⊥AB 于M ,DN ⊥AC 于N ,∵AD 是△ABC 的角平分线,∴DM =DN∵∠EDF +∠EAF =180°,即∠2+∠3+∠4+∠EAF =180°又∵∠1+∠2+∠3+∠EAF =180°∴∠1=∠4在Rt △DEM 与Rt △DFN 中14DM DNEMD FND ∠=∠⎧⎪=⎨⎪∠=∠⎩∴Rt △DEM ≌Rt △DFN (ASA )∴DE =DF1.如图,已知∠AOB =30∘,P 是∠AOB 平分线上一点,CP//OB ,交OA 于点C ,PD ⊥OB ,垂足为点D ,且PC =4,则PD 等于_______.【解答】解:作PE ⊥OA 于E ,∵CP//OB,∴∠OPC=∠POD,∵P是∠AOB平分线上一点,∴∠POA=∠POD=15∘,∴∠ACP=∠OPC+∠POA=30∘,∴PE=1PC=2,2∵P是∠AOB平分线上一点,PD⊥OB,PE⊥OA,∴PD=PE=2,2.如图,AD是ΔABC的角平分线,∠C=90∘,CD=3cm,点P在AB上,连接DP,则DP的最小值为________cm.【解答】解:作DP′⊥AB于P′,∵AD是ΔABC的角平分线,∠C=90∘,DP′⊥AB∴DP′=DC=3cm,则DP的最小值为3cm,3.如图,ΔABC中,∠C=90∘,AD平分∠CAB,交BC于点D,DE⊥AB于点E,若CD=√3,则DE的长为()A. 2B. 3C. √3D. 2√3【解答】解:∵AD平分∠CAB,DE⊥AB,∠C=90∘,∴CD=DE=√3,4.如图,ΔABC,用尺规作图作角平分线CD.(保留作图痕迹,不要求写作法)【解答】解:如图所示:DC即为所求.5.如图,已知DE∥BC,BE是∠ABC的平分线,∠C=70∘,∠ABC=50∘.求∠DEB和∠BEC的度数.【解答】解:∵BE是∠ABC的平分线,∠ABC=50∘,∴∠1=∠2=25°∵DE∥BC,∴∠DEB=∠2=25∘,在△BEC中,∠C=70∘,∴∠BEC=180∘−∠C−∠2=180∘−70∘−25∘=85∘.6.如图,OC 是∠AOB 的角平分线,点P 、F 在OC 上,PD ⊥AO 于点D ,PE ⊥BO 于点E ,连接DF 、EF .求证:DF =EF .【解答】证明:∵OC 是∠AOB 的平分线,PD ⊥OA ,PE ⊥BO ,∴PD =PE ,在Rt△OPD 和Rt△OPE 中,{OP =OP PD =PE ,∴Rt△OPD ≌Rt△OPE (HL ),∴OD =OE ,∵OC 是∠AOB 的平分线,∴∠DOF =∠EOF ,在△ODF 和△OEF 中,{OD =OE∠DOF =∠EOF OF =OF,△ODF ≌△OEF (SAS ),∴DF =EF .课后巩固1.请将本次课错题组卷,进行二次练习,培养错题管理习惯;2.学霸笔记复习,培养复习习惯。

角平分线的性质学案

角平分线的性质学案

8.3 角的平分线的性质(1) 学案
学习目标: 掌握角的平分线的性质
学习重点:角的平分线的性质的证明及运用
学习难点:角的平分线的性质的探究
学习过程:
一.探究1
折一折:将∠AOB 对折,折痕OC 是 ,再折出一个直角三角形(使第一条折痕为斜边),然后展开,观察两次折叠形成的三条折痕,设它们的交点为P,P 到OA 、OB 的距离分别为PD 、PE 。

你能得出什么结论?写出图中相等的线段和相等的角 相等的线段 相等的角
探究反映的规律:(试着写一写)
二.验证猜想:
你能用三角形全等证明这个性质吗?
已知:∠1= ∠2, PD ⊥ OA ,PE ⊥
求证:PD =PE
数学语言表述角的平分线的性质: ∵ 又∵ ,
∴ ( ) 三、应用举例: 如图:在△ABC 中,∠C=90° AD 是∠BAC 的平分线, DE ⊥AB 于E ,F 在AC 上,BD=DF ; 求证:CF=EB 四、达标检测: 1.△ABC 中, ∠C=900,AD 平分∠ CAB,且CD=5,求点D 到AB 的距离是____ 2.如图所示, △ABC 中,AB=AC ,M 为BC 中点,MD ⊥AB 于D , ME ⊥AC 于E 。

求证:(1) ∠ 1= ∠ 2 (2)MD=ME 选做题: 3.在Rt △ABC 中,BD 平分∠ABC ,DE ⊥AB 于E ,则: ⑴图中相等的线段有 ;相等的角有: 。

⑵哪条线段与DE 相等?为什么? ⑶若AB =10,BC =8,AC =6, 求BE ,AE 的长和△AED 的周长。

E。

八上数学三角形的中线与角平分线学案

八上数学三角形的中线与角平分线学案
B D
A
2 1
1 2
C
从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这 个角的角平分线(bisector of angle). 三角形的角平分线的数学语言: 要点诠释: (1)三角形的角平分线是 ; 部; .
(2)一个三角形有三条角平分线,并且都在三角形的 (3) 三角形三条角平分线交于三角形
A D C
2
吗?说出你是怎样做的.
E
8.如图所示,在△ABC 中,D、E 分别是 BC、AD 的中点,S△ABC=4cm ,求 S△ABE.
B
D
A
9.如图,在 ABC 中,点 D、E、F 分别是 BC、AD、CE 的中点,且 S △ ABC 4cm ,则 S △ BEF
2
的值是多少
A
E F B D C
的连线叫三角形的中线.
; 部; 部一点,这一点叫三角形的 的两个三角形. 的中线,AE 是△ A D 的中线。 .
1 EC,则 AD 是△ 2
B
D
E
C 图1

C 图2
B
例 2.在直角三角形 ABC 中,∠ABC=90 ,AC=3cm,BC=4cm,CD 是 AB 边上的中线,则 AC 边 上的高为 cm,△BCD 的面积= cm 。
1 ∠BAC,则 AD 是△ABC 的角平分线 2
(4)三角形的中线.高.角平分线都是线段 A.1 B.2 C.3 D.4 9.下列把四边形的不稳定性合理地应用到生产实际中的例子有( ) (1)活动挂架 (2)放缩尺 (3)屋顶钢架 (4)能够推拢和拉开的铁拉门 (5)自行车的车架 (6)大桥钢架 A.1 B.2 C.3 D.4 10.根据你画图的实践,用序号字母填写下表(有几种可能情况填写几个字母) : A.在三角形的内部 B.在三角形的边上 C.在三角形的外部 锐角三角形 角平分线 中线 高 11.如图,在△ABC 中,AE 是中线,AD 是角平分线,AF 是高,则根据图形填空: ⑴BE= = 直角三角形 钝角三角形

全等三角形的学案11.2和11.3

全等三角形的学案11.2和11.3

11.2三角形全等的条件(1)班级 姓名 学号教学目标1.掌握“边边边”条件的内容2、能初步应用“边边边”条件判定两个三角形全等 教学重点“边边边”的条件。

教学难点探究三角形全等的条件。

. 教学过程一.创设情境,引入新课什么叫全等三角形?△ABC ≌△DEF,说出对应边及对应角全等三角形的性质: 二、实践与探索三组对应角、对应边分别相等的两个三角形全等。

满足这六个条件的一部分两个三角形能否全等呢?1.如果两个三角形有一条边相等,作出的两个三角形一定全等吗?2.如果两个三角形有两条边相等,作出的两个三角形一定全等吗?3.如果两个三角形有三条边相等,那么作出的三角形一定全等吗?全班同学都画一个三边为4cm 、5cm 、2cm 的三角形,这些三角形全等吗?你能得到什么规律? 三、归纳总结全等三角形的条件: 四、【应用新知】例题 如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.求证:△ABD ≌△ACD .【小试牛刀】练习1、如图, C 是BF 的中点,AB = DC ,AC=DF.求证: △ABC ≌ △DCFA BC FE D BC A DFAB CD【变式练习】练习2、已知: 如图,点B 、E 、C 、F 。

在同一直线上 ,AB = DE ,AC = DF , BE = CF .求证:(1)△ABC ≌△DEF(2)【夯实基础 】练习3、已知: 如图,AC=EF,BC=BF ,BA=BE 。

求证:△ABC ≌ △EBF【能力提高】已知: 如图, AB = DE ,AC = DF , 点B 、E 、C 、F 在同一直线上,BE = CF .求证: △ABC ≌△DEF五.课时小结本节课你有什么收获?B CA E F D A C BE F ∠A=∠DB CA EFDO DCBAE DCBA 11.2 全等三角形的判定(2)学习目标1.掌握边角边条件的内容2.能初步应用边角边条件判定两个三角形全等 探究:先任意画出一个ABC ∆,再画出一个///C B A ∆,使AB B A =//,AC C A =//,A A ∠=∠/(即使两边和它们的夹角对应相等)。

角平分线(复习)

角平分线(复习)

EDCBAADBC《与角平分线有关的问题》复习学案 学习目标:1、 掌握角平分线的性质与判定定理2、 知道与角平分线有关问题的常见辅助线的作用 专题训练一:1、 如图:AB=AC ,BD 平分∠ ABC ,CD 平分∠ ACB ,EF ∥ BC 交AB 、AC 于E ,F ,且经过点D ,问:线段EF 与线段BE ,CF 有何数量关系?2、 如图,在△ABC 中,BI 、CI 分别平分∠ABC 、∠ACF ,DE 过点I ,且DE ∥ BC .BD=8cm ,CE=5cm ,求DE 的长。

3、已知:如图,)(AC AB ABC ≠∆中,D 、E 在BC 上,且DE=EC ,过D 作DF ∥AB,交AE 于点F ,DF=AC.求证:AE 平分BAC ∠专题训练二:1、如图所示,AB ∥CD ,∠B=90º,E 是BC 的中点,DE 平分∠ADC ,求证:AE 平分∠DAB 。

2、如图在四边形ABCD 中,BC>BA ,AD=DC ,BD 平分∠ABC .求证:︒=∠+∠180C A .3、已知:如图,在 ABC中,∠A=90°,AB=AC,∠1=∠2,求证:BC=AB+AD.专题训练三:B C1、如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,求△EDF的面积。

2、如图,O是三条角平分线的交点,OD⊥BC于D,OD=3,△ABC的周长为15,求S△ABC 。

专题训练四:1、如图,在△ABC中,BE是∠ABC的角平分线,AD⊥BE,垂足为D,求证:∠2=∠1+∠C.2、已知:如图,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BE ,求证:BD=2CE.。

浙教版八年级上册 第1章 角平分线与中垂线性质定理及应用 辅导学案

浙教版八年级上册 第1章 角平分线与中垂线性质定理及应用 辅导学案

姓名年级:八年级学科:数学第次课课时课题《角平分线与中垂线的性质定理及应用》主要内容1. 理解并掌握角平分线与中垂线的性质定理2. 熟练运用角平分线与中垂线解决相关问题重点难点角平分线与中垂线的综合运用教学过程【知识梳理1:角平分线的性质定理与判定】角平分线:(1)角平分线性质定理:角平分线上的点到这个角两边的距离相等.(2)角平分线的判定:到一个角两边的距离相等的点在这个角的平分线上.【定理的证明】1. 如图:已知,OE为∠AOB的角平分线,E为OE上任意一点,作CE⊥OA与C,DE⊥OB与D. 求证:CE=DE.2. 如图所示,∠B=∠C,点D是BC的中点,DE⊥AB,DF⊥AC,求证:AD平分∠BAC.【例题讲解】【例1】如图,在ABC △中,90C ∠=,AD 平分CAB ∠,8cm 5cm BC BD ==,,那么D 点到直线AB 的距离是 cm .例1图 例2图【例2】如图,在直角三角形ABC 中,∠A=90°,∠ABC 的 平分线BD 交AC 于点D ,AD=3,BC=10,则△BDC 的面积是( )A. 10B. 15C. 20D. 30【例3】如图,OP 平分∠AOB ,PD ⊥OA 于点D ,点Q 是射线OB 上一个动点,若PD=2,则PQ 的最小值为( )A .PQ <2B .PQ=2C .PQ >2D .以上情况都有可能例3图 例4图【例4】如图,△ABC 的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将△ABC 分为三个三角形,则S △ABO :S △BCO :S △CAO 等于( )A .1:1:1B .1:2:3C .2:3:4D .3:4:5【例5】如图所示,在△ABC 中,∠C=90°,AD 是 ∠BAC 的平分线,DE ⊥AB 交AB 于E ,F 在AC 上,BD=DF.证明:(1)CF=EB .(2)AB=AF+2EB .【同步练习】1. 如图,△ABC中,AC=BC,∠C=90°,AD平分∠CAB交BC于D,DE⊥AB于点E,且AC=7cm,则DE+BD等于()A.7cm B.6cm C.5cm D.4cm第1题第2题2. 如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,S△ABC=9,DE=2,AB=5,则AC长是()A.3 B.4 C.5 D.63. 如图,AD平分∠BAC,DE⊥AB于点E,S△ACD=3,DE=2,则AC长是()A.3 B.4 C.5 D.6第3题第4题4. 如图,△ABC中,∠ABC、∠ACB外角的平分线相交于点F,连接AF,则下列结论正确的有()A.AF平分BC B.AF平分∠BAC C.AF⊥BC D.以上结论都正确5. 如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A.线段CD的中点B.OA与O B的中垂线的交点C.OA与CD的中垂线的交点D.CD与∠AOB的平分线的交点第5题第6题6. 如图,已知四边形ABCD中,AD∥BC,AP平分∠DAB,BP平分∠ABC,它们的交点P给在线段CD 上,下面的结论:①AP⊥BP;②点P到直线AD、BC的距离相等;③PD=PC.其中正确的结论有()A.①②③B.①②C.仅①D.仅②7. 如图,直线a、b、c表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有()A.一处B.两处C.三处D.四处第7题第8题8. 如图,△ABC中,∠ACB=90°,D为AB上任一点,过D作AB的垂线,分别交边AC、BC的延长线于EF两点,∠BAC∠BFD的平分线交于点I,AI交DF于点M,FI交AC于点N,连接BI.下列结论:①∠BAC=∠BFD;②∠ENI=∠EMI;③AI⊥FI;④∠ABI=∠FBI;其中正确结论的个数是()A. 1个B. 2个C. 3个D. 4个9. 如图,点D、B分别在∠A的两边上,C是∠A内一点,且AB=AD,BC=DC,CE⊥AD,CF⊥AB,垂足分别为E、F.求证:CE=CF.10. 如图,已知BD为∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD于M,PN⊥CD于N,求证:PM=PN.【知识梳理2:垂直平分线的性质定理与判定】垂直平分线(中垂线)(1)垂直平分线的定义:垂直且平分一条线段的直线叫做垂直平分线.(2)垂直平分线的性质定理:垂直平分线上的点到线段两端的距离相等.(3)垂直平分线的判定:到线段两端距离相等的点在这条线段的垂直平分线上.【定理的证明】如图:已知,EF为线段AB的垂直平分线,C为EF上任意一点,连接AC,BC.求证:AC=BC【例题讲解】【例1】如图,在△ABC中,BC=8cm,AB的垂直平分线交AB于点D,交边AC于点E,△BCE的周长等于18cm,则AC的长等于()A.6cm B.8cm C.10cm D.12cm例1图例2图【例2】如图,在Rt△ABC中,∠C=90°,∠B=15°,DE是AB的中垂线,垂足为D,交BC于E,BE=5,则AE=__________,∠AEC=__________,AC=__________ 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

11.3角的平分线的性质(1)
班级_______姓名 _____小组____ 小组评价_____教师评价
学习目标:1、通过探究理解角平分线的性质并会运用2、掌握尺规作图作角平分线
学习重点:角平分线的性质及尺规作图
【学习过程】
一、预习导学:基本定理的学习:(阅读课文P19-21的内容)
角的平分线性质定理和判定定理:
二、讨论展示:
(1)知识回顾: 如图,已知AB =AD ,BC =DC ,求证:AC 是∠DAB 的平分线
(2)学习新知:
1、 如图,已知∠BAC ,用尺规作图的方法作出∠BAC 的角平分线
AD , 写出作法,并说明这种作法的依据。

2、OC 是∠AOB 的平分线,点P 是射线OC 上的任意一点,
操作测量:取点P 的三个不同的位置,分别过点P 作PD ⊥OA ,PE ⊥OB,点D 、E 为垂足,测量PD 、PE 的长.将三次数据填入下表:观察测量结果,猜想线段PD 与PE 的大小关系,写出结论
3、你能用所学知识证明以上你发现的结论吗?
已知:AD 平分∠BAC ,P 为AD 上的一点,PM ⊥AB ,PN ⊥AC
求证:
证明:
A B D
C A B A B C N M P D
4、反过来,如图,若P为∠BAC内的一点,且点P到边AB、AC的距离相等,即PM=PN,你认为经过点P的
射线AD平分∠BAC吗?为什么?
5、小结:通过以上探索和证明,我们得出了角平分线的性质是:
(1);
(2)。

仔细比较分析,以上两条定理有什么关系:
一般情况下,我们要证明一个几何中的命题时,会按照类似的步骤进行,即:
(1);(2);(3)。

三、新知应用:
(1)如图,已知AD是△ABC的角平分线,且D为BC的中点,DE⊥AB,DF⊥AC,
求证:BE=CF
(2)如图,△ABC的角平分线BM、CN相交于点P。

求证:点P到三边AB、BC、CA的距离相等。

探究:点P在∠A的平分线上吗?为什么?
四.学后小结:
五.课后反馈:
第22页习题11.3 第1题,第23页第4题
C
C A
B
N
M
P
D。

相关文档
最新文档