自蔓延高温合成方法
5 自蔓延高温合成

H (T
i 1
n
ad
) H (T 0)i =∆H
式1
5
第1节 自蔓延高温合成的热力学基础
1.自蔓延高温合成与生成热
如果能够生成一种成分的化合物,上式变为:
Tad
Cp(T )dT =∆H-νL
ν=0 ν=1
式2
T0
式中: Tad<Tm时, Tad>Tm时,
计算绝热温度时,必须知道标准生成热∆H0298,随温度变化的热容 Cp(T)以及溶解热L。 Cp(T)=a+b•10-3T+c•10-5T-2 式3
25
(2)固-气反应
初始料胚的空隙率和气体分压是影响合成的关键 因素。按照反应动力学的观点,随着气体分压的增大, 合成转化率应提高,有时实验结果并非如此。
26
第3节 自蔓延高温合成工艺
常规SHS技术
• SHS制粉
自蔓延合成生产工艺
热爆SHS技术
• SHS烧结块体材料
• SHS致密化技术
27
1. SHS制粉(1)常规SHS技术
20
不管是毛细作用模式还是扩散模式,均与组分的颗粒尺寸 密切相关。 SHS反应中毛细作用占主导地位
rr3 2 r0 D
式中:r0为低熔点组分的颗粒尺寸,rr为难熔组分颗粒尺寸,为液体 的表面张力,为液体粘度,D为反应物在生成层中的扩散系数。
21
扩散占主导地位则要求
r02 ln Tc T0 Tm T0
33
典型的例子是铝热反应,如: 3Cr2O3+6Al+4C=2Cr3C2+3Al2O3,
反应温度(T)可达6500K;
MoO3+2Al+B=MoB+Al2O3+2Fe, 反应温度(T)可达4500K;
自蔓延高温合成技术(燃烧合成)

自蔓延结构的控制方法
控制方法 SHS促进方法 通过化学或物理方式进行 促进方法:通过化学或物理方式进行 促进方法 机械控制手段:主要用来控制合成材料的致密度或孔隙率 机械控制手段 主要用来控制合成材料的致密度或孔隙率 电磁场对SHS材料的结构影响 电磁场对 材料的结构影响 电场可使固熔体均化,供应一部分热能 促进燃烧,增加 供应一部分热能,促进燃烧 电场可使固熔体均化 供应一部分热能 促进燃烧 增加 燃烧波的速度 SrCO3-Fe-Fe2O3-O2体系中 磁场使铁颗粒团聚并排列 体系中,磁场使铁颗粒团聚并排列 成链状,提高导热性 提高导热性,从而提高燃烧速度 成链状 提高导热性 从而提高燃烧速度 SHS抑制方法 通过添加剂稀释进行 抑制方法:通过添加剂稀释进行 抑制方法 稀释剂不参与SHS过程 可以是反应合成的最终产物 也可 过程,可以是反应合成的最终产物 稀释剂不参与 过程 可以是反应合成的最终产物,也可 以是惰性添加相或者过量的反应物,对过程起缓和作用 以是惰性添加相或者过量的反应物 对过程起缓和作用 金属/陶瓷复合材料的自蔓延高温合成中 陶瓷复合材料的自蔓延高温合成中,稀释剂可降 金属 陶瓷复合材料的自蔓延高温合成中 稀释剂可降 低合成过程温度,抵制陶瓷晶坯聚集长大 低合成过程温度 抵制陶瓷晶坯聚集长大 气反应体系中稀释剂可提高转化率,金属 固-气反应体系中稀释剂可提高转化率 金属 氮气体系 气反应体系中稀释剂可提高转化率 金属/氮气体系 中,过量氮气为稀释剂 过量氮气为稀释剂
自蔓延高温合成技术(燃烧合成) 自蔓延高温合成技术(燃烧合成)
自蔓延高温合成技术
自蔓延高温合成技术( 自蔓延高温合成技术(self–propagation high–temperature synthesis,简称 自蔓延高温合成是指利用外部提供必 ,简称SHS ):自蔓延高温合成是指利用外部提供必 自蔓延高温合成是指 要的能量诱发高放热化学反应体系局部发生化学反应(点燃), 要的能量诱发高放热化学反应体系局部发生化学反应(点燃), 形成化学反应燃烧波, 形成化学反应燃烧波,此后化学反应在自身放出热量的支持下继 续进行, 续进行,直至反应结束
自蔓延高温合成法

自蔓延高温合成法概述自蔓延高温合成法(Self-Propagating High-Temperature Synthesis,简称SHS)是一种以高温反应为基础的合成方法,具有快速、低能耗和高效的特点。
它在材料科学和化学领域有着广泛的应用,可以用于合成金属陶瓷材料、复合材料和无机化学品等。
原理SHS基于自蔓延原理,即通过局部点燃反应混合物中的可燃物质,使整个反应物质迅速发生反应并扩散,形成产物。
该反应过程通常在高温下进行,使用以金属和非金属化合物为主的反应物,产物常为金属、陶瓷和复合材料。
反应机制SHS反应通常由两个步骤组成:点燃阶段和自蔓延扩散阶段。
在点燃阶段,反应体系中局部加热可燃物质,使其自发点燃。
燃烧反应产生的高温和自由基会引发整个反应物质的快速反应。
在自蔓延扩散阶段,反应前驱体与产物之间的扩散作用会加速反应的进行,并不断释放出热量,维持反应的高温。
应用领域1. 金属陶瓷材料SHS在金属陶瓷领域有广泛的应用。
例如,利用SHS可以制备高硬度、耐磨损的刀具材料。
通过选择不同的金属和陶瓷反应物,可以调控材料的硬度、导热性和耐腐蚀性。
2. 复合材料SHS还可用于制备复合材料,在提供机械强度的同时具有轻质和高温性能。
通过选择不同的反应物,可以调控材料的化学成分和微结构,使其具有特定的性能和应用领域。
3. 无机化学品SHS在无机化学品合成中也有重要的应用。
例如,在高温下可以通过SHS方法合成多晶硅粉末,用于制备太阳能电池。
此外,SHS还可用于制备氧化物陶瓷材料、金属硬质合金和火焰喷涂材料等。
实验操作SHS方法的实验操作相对简单,但仍需注意安全事项。
以下是一般的实验操作步骤:1.准备反应物:按照所需的配比准备反应物。
2.混合反应物:将反应物充分混合均匀,以确保反应的全面性。
3.预热反应器:将反应器预热至适当的温度,以提供起始点燃的热源。
4.加入混合物:将混合物加入预热的反应器中,快速封闭反应器。
5.点燃反应物:利用点燃源引发混合物中可燃物质的燃烧。
自蔓延高温合成法

自蔓延高温合成法自蔓延高温合成法(Self-Propagating High-Temperature Synthesis,简称SHS)是一种在高温下自发进行的化学合成方法。
SHS技术已被广泛应用于材料科学、能源存储、催化剂制备等领域,其独特的特点使其成为一种高效、环保且经济的合成方法。
SHS技术的原理是在适当的反应条件下,通过引入足够的活化能使化学反应自发发生和持续传播。
这种自蔓延的反应过程是基于氧化还原反应、放热反应和传热传质等多种复杂的物理和化学过程相互耦合而成的。
由于SHS反应在高温下进行,因此可以获得高纯度、致密度高、晶粒细小的产物。
SHS技术的优点主要有以下几个方面:1. 高效性:SHS反应通常在数秒至数分钟内完成,反应速度快,能耗低。
与传统的合成方法相比,SHS技术可以显著缩短合成时间。
2. 环保性:SHS技术不需要使用外部能源,反应过程中产生的高温和自身放热能够驱动反应的进行,使其成为一种绿色合成方法。
此外,由于反应过程中不需要溶剂,减少了有机溶剂的使用和废弃物的产生。
3. 可控性:通过控制反应条件、配比和反应时间等参数,可以实现对产物形态、尺寸和组成的精确控制。
这使得SHS技术在材料制备中具有很大的灵活性。
4. 应用广泛:由于SHS技术能够合成各种复杂的无机、有机和金属材料,因此在材料科学和工程领域有着广泛的应用。
例如,SHS技术可以用于制备金属陶瓷复合材料、纳米材料、催化剂和能源存储材料等。
SHS技术也存在一些挑战和限制。
首先,SHS反应的过程比较复杂,需要对反应机理和热力学行为进行深入研究。
其次,由于反应过程中产生的高温和强热释放,需要对反应系统进行良好的隔热和安全措施。
此外,SHS技术在合成大尺寸和复杂形状的材料时也面临一定的困难。
为了克服这些限制,研究者们正在不断改进和优化SHS技术。
例如,引入外部能量源、微波辐射和压力等调控因素,可以进一步提高反应速率和产物质量。
此外,结合计算模拟和实验研究,可以深入理解SHS反应的机理和动力学行为。
自蔓延高温合成法原理

自蔓延高温合成法原理自蔓延高温合成法,简称SHS法,是一种高效、节能的化学合成方法。
它是一种利用化学反应自身产热,实现化学反应自动延续的新型合成方法。
自蔓延高温合成法的原理是在特定条件下,通过化学反应自身产生的高温和高压来实现物质的合成。
因此,自蔓延高温合成法具有高效、快速、低成本、易于控制等优点。
自蔓延高温合成法的原理是利用化学反应自身产热,实现化学反应自动延续的新型合成方法。
该方法的基本原理是利用反应物本身产生的高温和高压,使反应物中的原子或离子发生电子转移、离子替换、化学键形成等反应,从而实现物质的合成。
具体来说,该方法的原理是通过自动延续反应的方式,将反应物中的原子或离子转化为新的化合物。
在反应过程中,反应物会自动延续反应,生成新的反应产物。
这些反应产物会继续促进反应的进行,从而实现物质的合成。
自蔓延高温合成法的优点是高效、快速、低成本、易于控制。
该方法的高效性体现在反应速度快,反应时间短,合成产物纯度高等方面。
此外,该方法不需要昂贵的设备和大量的能源,可以节约成本。
同时,该方法的反应过程可以通过控制反应条件来实现产品的纯度和性能,因此易于控制。
自蔓延高温合成法主要应用于材料科学、化学、机械工程等领域。
在材料科学领域,该方法可以用于合成金属、陶瓷、复合材料等多种材料。
在化学领域,该方法可以用于化学反应的合成和催化反应的研究。
在机械工程领域,该方法可以用于制备高性能的机械零部件和复杂的机械结构。
自蔓延高温合成法是一种高效、快速、低成本、易于控制的化学合成方法。
该方法的原理是利用化学反应自身产热,实现化学反应自动延续的新型合成方法。
该方法在材料科学、化学、机械工程等领域具有重要应用价值。
自蔓延高温合成技术

自蔓延高温合成(self–propagation high–temperature synthesis,简称SHS),又称为燃烧合成(combustion synthesis)技术,是利用反应物之间高的化学反应热的自加热和自传导作用来合成材料的一种技术,当反应物一旦被引燃,便会自动向尚未反应的区域传播,直至反应完全,是制备无机化合物高温材料的一种新方法。
基本信息•中文名称:自蔓延高温合成•外文名称:self–propagation high–temperature synthesis•特点:反应温度通常都在2100~3500K•简史:黑色炸药是最早应用特点燃烧引发的反应或燃烧波的蔓延相当快,一般为0.1~20.0cm/s,最高可达25.0cm/s,燃烧波的温度或反应温度通常都在2100~3500K以上,最高可达5000K。
SHS以自蔓延方式实现粉末间的反应,与制备材料的传统工艺比较,工序减少,流程缩短,工艺简单,一经引燃启动过程后就不需要对其进一步提供任何能量。
由于燃烧波通过试样时产生的高温,可将易挥发杂质排除,使产品纯度高。
同时燃烧过程中有较大的热梯度和较快的冷凝速度,有可能形成复杂相,易于从一些原料直接转变为另一种产品。
并且可能实现过程的机械化和自动化。
另外还可能用一种较便宜的原料生产另一种高附加值的产品,成本低,经济效益好。
自蔓延高温合成法发展简史早在2000多年前,中国人就发明了黑色炸药(KNO3+S+C),这是自蔓延高温合成(SHS)方法的最早应用,但不是材料制备。
所谓自蔓延高温合成材料制备是指利用原料本身的热能来制备材料。
1900年法国化学家Fonzes–Diacon发现金属与硫、磷等元素之间的自蔓延反应,从而制备了磷化物等各种化合物。
在1908年Goldschmidt首次提出"铝热法"来描述金属氧化物与铝反应生产氧化铝和金属或合金的放热反应。
1953年,一个英国人写了一篇论文《强放热化学反应自蔓延的过程》,首次提出了自蔓延的概念。
自蔓延高温合成

8.1 自蔓延高温合成技术
• 8.1.1 自蔓延高温合成技术发展历史 • 8.1.2 SHS技术的研究方向
8.1.1 自蔓延高温合成技术发展历史
前苏联科学院宏观动力与结构研究所 Merzhanov 、 Borovinskaya 和 Skhiro 等 人 在 上 世 纪70年代开始了过渡金属与硼、碳、氮气反应的 实验,在研究金属钛和硼的混坯块的燃烧时,发 现燃烧反应能以很快的速率传播,后来又发现许 多金属和非金属反应形成难熔化合物时都有强烈 放热现象。
温度分布曲线进一步描述了燃烧过程的反 应特点,如图8.3所示。在初始燃烧区,反 应物结构向产物结构转变尚未完全进行, 结构处于中间状态。在二次化学和结构转 变区内,最终实现结构的转变。
假定反应物结构在燃烧区完全转变成产物 结构的理想条件下,如果燃烧反应受动力 学控制,则温度、转化率和热释放率转变 如图8.4所示,这表明反应不仅限于燃烧波 的波阵面处,而且当波阵面通过以后仍有 反应进行。
SHS图可以为实际生产工艺的制定提供理论 指导,如生产磨料时,为了获得大尺寸的颗 粒,那么工艺制定就应选择在SHS图中热爆 与稳定SHS交界处稳态 SHS一侧的高温区 域;生产烧结用的粉末时,在保证转化率的 前提下,为了获得尺寸细小的颗粒,宜选择 稳态SHS和非稳态SHS边界的非稳定SHS的 低温区域。
• SHS技术制造非传统性粉末; • SHS技术制造纳米粉末; • SHS技术制造非平衡材料; • 净成形制品工艺; • 产品的规模生产; • 自蔓延机械化学合成法;
(2)微重力作用下SHS结构和性能特征; • SHS的分形技术研究。
8.2 自蔓延合成方法原理
• 8.2.1 自蔓延合成方法的概念 • 8.2.2 自蔓延合成方法的原理
自蔓延高温合成技术

4 燃烧波蔓延 作为一类特殊的化学反应,SHS 反应区前沿,即燃烧波会随着反应的进行 而不断推移。因此需要建立能反映这一特征的动力学参数。燃烧波速率 则是这一动力学参数,它描述了燃烧波前的移动速率。 在一定的假设条件下,如忽视对流、辐射散热等,以及对燃烧波结构作一定 的约束之后,可以求出燃烧波速率的解析式。不同的约束条件会得到略有 差别的解。 稳态燃烧-大多数的SHS 过程,燃烧前沿都存在一个光滑的表面(平面或很 小的曲面) ,这一表面以恒定的速率一层一层传播,称之为稳态燃烧。
13
经过材料科学工作者几十年的努力,自蔓延高温合成 技术已成功应用于难熔化合物的制备,包括粉体的制 备及复合材料的制备等,而采用SHS 法制备的陶瓷内 衬钢管以其良好的耐磨、耐蚀、耐高温性能和优异 的抗机械冲击、抗热冲击性能,产品重量轻、不怕磕 碰、价格低等优点在许多工程中也得到了广泛应用, 使用寿命是现行管材的几倍至几十倍。尽管自蔓延 高温合成技术在材料的改性方面已得到了广泛的应 用,在性能价格比方面有优越性,但是科学工作者不满 于现状仍在继续完善SHS 工艺,比如将SHS 工艺与加 压相结合,可获得更致密与基体结合更牢固的陶瓷涂 层材料,以满足于防腐、耐磨、隔热等不同使用环境 的要求。
6. 1 利用SHS 工艺制备难熔化合物 低成本与高性能是许多先进材料研究与应用领域普遍存在的问题,利用化学反应释放 的高热量低温制备高熔点先进材料的燃烧合成熔化技术可合成许多难熔化合物粉体 或复合材料。难熔化合物指碳化物、氮化物、硅化物和硼化物,既包括金属也包括非 金属的碳、氮、硅、硼化合物。
下表是利用SHS 工艺制备的部分难熔化合物材料。
10
6.2 SHS 制备陶瓷内衬钢管 (1) 基本原理 很多高放热SHS 体系的燃烧温度超过燃烧产物的熔点,燃烧后 的产物是熔体。这种SHS 体系与常规的冶金方法相结合,产生 了SHS 技术,利用SHS 法得到熔体, 用常规冶金法处理熔体。 SHS 冶金包括SHS 铸造和SHS - 离心技术。铝热反应由于其 高放热而被广泛用于SHS冶金。其化学反应式为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SEM micrographs of Bi4Ti3O12 powders: (a) produced by SHS; (b) produced by solid-state reaction.
Company Logo
应用前景
❖SHS直接制备粉体 ❖SHS结合强化密实化技术 ❖SHS冶金和焊接 ❖气相传质SHS涂层
Company Logo
改进方向
缺点:反应机理有待研究
Company Logo
参考文献
❖ Chung et al, Advanced Materials 3 (2002) 129–135 ❖ SHS: Concepts of Current Research and Development,A. G.
Company Logo
Nb5Si3/Nb
C.L.Yeh. Journal of Alloys and Compounds 402 (2005) 118–123
Company Logo
成本低廉、时间短
两种制备方法的价格比在0.2~0.3之间!
自蔓延高温合成 (self propagation hightemperature synthesis,简称SHS),又称为燃 烧合成 (combustion synthesis)技术,是利用 反应物之间高的化学反应热的自加热和自 传导作用来合成材料的一种技术,当反应 物一旦被引燃,便会自动向尚未反应的区 域传播,直至反应完全,能够用来制备无 机化合物高温材料。
合成设备
Company Logo
Байду номын сангаас
SrFe12O19
Maxim. J . Ma t e r. , 1998 , 8 , 573
Company Logo
LaBO3
Maxim. J . Ma t e r . C h e m . , 2 0 0 4,14,1377
SHS参数
Company Logo
SHS合成B4Ti3O12
合成步骤
压实
装入
混粉 反应
点火
Macedo. Journal of the European Ceramic Society 24 (2004) 2567–2574
Company Logo
Merzhanov, ed., Territoriya, Chernogolovka, 2003, p. 368(in Russian). ❖ A. G.Merzhanov and A. S. Rogachev, Russ. J. Phys. Chem., 2000,74(1), S20. ❖ M.Ode, Scripta Materialia 52 (2005) 1057–1062 ❖ Levashov,Advanced Materials 4 (2003) 221–228 ❖ Suzuki A, Wu F, Murakami H, Imai H. Advanced Materials 5 (2004) 555. ❖ W.H.Chen, Journal of Alloys and Compounds 402 (2005) 118– 123
Company Logo
反应原理图
Company Logo
Morzhanov J . Ma t e r . C h e m . , 2 0 0 4 , 1 4 , 1 7 7 9
Company Logo
SHS所需时间为5min+2h 固相反应所需时间为10h!
Company Logo
结果
SEM micrographs of Bi4Ti3O12 powders: (a) produced by SHS; (b) produced
by solid-state reaction.
Company
LOGO
自蔓延高温合成方法 及其应用
报告人:张浩 组 员:袁恺阳
刘磊峰 曾一明
1 2 3
主要内容
SHS介绍 合成实例 应用前景
Company Logo
Company Logo
Company Logo
Company
LOGO
Company Logo
直接合成法
❖Ti+ 2B→ TiB2 ❖Ta + C→ TaC ❖2B+N2 →2BN
Company Logo
Mg热、Al热合成法
3Mg+Cr2O3+B2O3 →2CrB+3MgO+G Al+Fe2O3+B2O3 →FeB+FeAl+Al2O3+G