lu分解法、列主元高斯法、jacobi迭代法、gaussseidel法的原理及matlab程序
高斯消元法与lu分解的关系

高斯消元法与lu分解的关系
高斯消元法与LU分解是线性代数中两个重要的概念,它们在解决线性方程组的问题中起着至关重要的作用。
虽然它们有着不同的计算方式,但是它们之间有着密切的联系。
高斯消元法是一种基本的线性方程组求解方法,它通过对系数矩阵进行初等变换,将其化为上三角矩阵,然后通过回代求解得到方程组的解。
高斯消元法的优点是简单易懂,容易实现,但是它的缺点是当系数矩阵的行列式为0时,无法求解。
LU分解是一种将系数矩阵分解为下三角矩阵L和上三角矩阵U的方法,即A=LU。
通过LU分解,可以将原来的线性方程组转化为两个简单的方程组,从而更容易求解。
LU分解的优点是可以避免高斯消元法中的数值误差,同时可以在多次求解同一系数矩阵的线性方程组时,节省计算时间。
虽然高斯消元法和LU分解有着不同的计算方式,但是它们之间有着密切的联系。
事实上,高斯消元法可以看作是LU分解的一种特殊情况。
当系数矩阵的LU分解存在时,高斯消元法就可以通过对系数矩阵进行初等变换,将其化为上三角矩阵U,然后将U的对角线元素作为L的对角线元素,将L的非对角线元素设置为初等变换的系数,即可得到LU分解。
因此,可以说高斯消元法和LU分解是线性代数中两个密不可分的
概念。
在实际应用中,我们可以根据具体的问题选择使用高斯消元法或LU分解来求解线性方程组,以达到更好的计算效果。
同时,我们也可以通过理解它们之间的联系,更好地掌握线性代数的知识,为以后的学习和应用打下坚实的基础。
常见的线性代数求解方法

常见的线性代数求解方法
1.列主元消去法
列主元消去法是一种经典的求解线性方程组的方法。
它通过将
方程组转化为上三角矩阵的形式来求解。
这个方法的关键在于选取
主元的策略。
一种常见的选取主元的策略是选择当前列中绝对值最
大的元素作为主元,然后进行消去操作,直到将矩阵转化为上三角
矩阵。
2.高斯-约当消去法
高斯-约当消去法是另一种常见的线性方程组求解方法。
它通
过消去矩阵的下三角部分来将线性方程组转化为上三角矩阵的形式。
这个方法也需要选择主元,常见的选择策略是选取当前行中绝对值
最大的元素作为主元,然后进行消去操作。
3.LU分解法
LU分解法是将矩阵分解为一对矩阵的乘积的方法。
这个方法的思想是先将矩阵分解为一个下三角矩阵和一个上三角矩阵,然后通过求解上三角矩阵和下三角矩阵的两个方程组来求解原始的线性方程组。
4.Jacobi迭代法
Jacobi迭代法是一种迭代求解线性方程组的方法。
它通过将原始的线性方程组转化为一个对角矩阵和另一个矩阵的乘积的形式,然后通过迭代求解这个对角矩阵和另一个矩阵的方程组来逼近线性方程组的解。
5.Gauss-Seidel迭代法
Gauss-Seidel迭代法是另一种迭代求解线性方程组的方法。
它与Jacobi迭代法类似,但是在每一次迭代中,它使用前一次迭代得到的部分解来更新当前的解。
这个方法通常比Jacobi迭代法收敛得更快。
以上是一些常见的线性代数求解方法。
每种方法都有其特点和适用范围,我们可以根据具体情况选择合适的方法来求解线性方程组的问题。
分别用 jacobi 迭代法和 gauss-seidel 迭代法,求解方程组

分别用 jacobi 迭代法和 gauss-seidel 迭代法,求解方程组【jacobi 迭代法和 gauss-seidel 迭代法分别应用于方程组的求解】1. 引言在数学领域中,方程组的求解一直是一个重要的课题。
为了解决复杂的线性方程组,人们提出了各种迭代方法,其中 jacobi 迭代法和gauss-seidel 迭代法是两种常见的方法。
本文将探讨这两种迭代方法在求解方程组中的应用。
2. jacobi 迭代法的原理和应用jacobi 迭代法是一种基于逐次逼近的迭代方法。
对于线性方程组AX=B,其中 A 是系数矩阵,X 是未知数向量,B 是已知向量。
我们可以通过以下公式进行逐次逼近:X(k+1) = D^(-1)*(B - (L+U)X(k))其中,D、L、U 分别是 A 的对角线、下三角和上三角矩阵。
jacobi 迭代法的优点在于易于理解和实现,但在收敛速度上较慢,需要进行多次迭代才能得到精确解。
在实际应用中,需要根据实际情况选择合适的迭代次数。
3. gauss-seidel 迭代法的原理和应用与 jacobi 迭代法类似,gauss-seidel 迭代法也是一种基于逐次逼近的迭代方法。
不同之处在于,gauss-seidel 迭代法在计算 X(k+1) 时利用了已经得到的 X(k) 的信息,即:X(k+1)_i = (B_i - Σ(A_ij*X(k+1)_j,j≠i))/A_ii这种方式使得 gauss-seidel 迭代法的收敛速度较快,通常比 jacobi 迭代法更快,尤其是对于对角占优的方程组。
4. 分别用 jacobi 迭代法和 gauss-seidel 迭代法求解方程组为了更具体地说明 jacobi 迭代法和 gauss-seidel 迭代法的应用,我们分别用这两种方法来求解以下方程组:2x1 + x2 = 9x1 + 3x2 = 11我们将该方程组写成矩阵形式 AX=B:|2 1| |x1| |9||1 3| * |x2| = |11|我们根据 jacobi 迭代法和 gauss-seidel 迭代法的原理,依次进行迭代计算,直到满足收敛条件。
线性方程组求解的常用方法与技巧

线性方程组求解的常用方法与技巧线性方程组是数学中常见的问题,它的求解在各个领域都有广泛的应用。
本文将介绍线性方程组求解的常用方法与技巧。
一、高斯消元法高斯消元法是线性方程组求解最常用的方法之一。
它通过化简矩阵,将线性方程组转化为阶梯形式,从而求解未知数的值。
具体步骤如下:1. 将线性方程组表示为增广矩阵形式。
2. 选择一个主元,通常选择第一列的首个非零元素。
3. 通过初等变换,将主元所在列的其他元素消成零。
4. 重复步骤2和3,直到转化为阶梯形式。
5. 回代求解未知数,得出线性方程组的解。
高斯消元法的优点是简单易行,适用于任意规模的线性方程组。
然而,该方法在面对大规模线性方程组时会面临计算复杂度高的问题。
二、雅可比迭代法雅可比迭代法是另一种常用的线性方程组求解方法,它通过迭代逼近的方式求解未知数的值。
具体步骤如下:1. 将线性方程组表示为矩阵形式,即AX=B。
2. 对矩阵A进行分解,将其分解为D、L和U三个矩阵,其中D是A的对角线矩阵,L是A的下三角矩阵,U是A的上三角矩阵。
3. 利用雅可比迭代公式,依次迭代计算未知数的值,直到满足收敛条件。
4. 得到线性方程组的解。
雅可比迭代法的优点是适用于稀疏矩阵,且收敛性较好。
然而,它的迭代次数通常较多,计算效率较低。
三、LU分解法LU分解法是线性方程组求解的一种常见方法,它将矩阵A分解为两个矩阵L和U的乘积。
具体步骤如下:1. 将线性方程组表示为矩阵形式,即AX=B。
2. 对矩阵A进行LU分解,其中L是单位下三角矩阵,U是上三角矩阵。
3. 将方程组AX=B转化为LUx=B,再分别解得Ly=B和Ux=y两个方程组的解。
4. 得到线性方程组的解。
LU分解法的优点是可以重复利用分解后的LU矩阵求解不同的线性方程组,从而提高计算效率。
然而,该方法对于具有大量零元素的矩阵不适用。
四、克拉默法则克拉默法则是一种用于求解n元线性方程组的方法,它通过计算行列式的方式求解未知数的值。
数值分析实验报告

%消元过程
fori=k+1:n
m=A(i,k)/A(k,k);
forj=k+1:n
A(i,j)=A(i,j)-m*A(k,j);
end
b(i)=b(i)-m*b(k);
end
det=det*A(k,k);
end
det=det*A(n,n);
%回代过程
ifabs(A(n,n))<1e-10
flag='failure';return;
*x=(x0,x1….,xn),插值节点
*y=(y0,y1,…,yn);被插函数f(x)在插值节点处的函数值
*t求插值函数Pn(x)在t处的函数值
*返回值 插值函数Pn(x)在t处的函数值
*/
procedureNewton
forj=0to n
d1jyj;
endfor
forj=1to n
fori=j to n
[n,m]=size(A);nb=length(b)
%当方程组行与列的维数不相等时,停止计算,并输出出错信息
ifn~=m
error('The row and columns of matrix A must beepual!');
return;
end
%当方程组与右端项的维数不匹配时,停止计算,并输出错误信息
clear
fprintf('gauss-seidel迭代法')
x1_(1)=0;
x2_(1)=0;
x3_(1)=0;
fori=1:9
x1_(i+1)=7.2+0.1*x2_(i)+0.2*x3_(i);
列主元素Gauss消去法Jacobi迭代法原理及计算方法

一、 列主元素Gauss 消去法、Jacobi 迭代法原理及计算方法1. 列主元素Gauss 消去法:1.1 Gauss 消去法基本原理设有方程组Ax b =,设A 是可逆矩阵。
高斯消去法的基本思想就是将矩阵的初等行变换作用于方程组的增广矩阵[]B A b = ,将其中的A 变换成一个上三角矩阵,然后求解这个三角形方程组。
1.2 列主元Gauss 消去法计算步骤将方程组用增广矩阵[]()(1)ijn n B A b a ⨯+== 表示。
1). 消元过程对1,2,,1k n =-(1) 选主元,找{},1,,k i k k n ∈+ 使得 ,max k i k ik k i na a ≤≤= (2) 如果,0k i k a =,则矩阵A 奇异,程序结束;否则执行(3)。
(3) 如果k i k ≠,则交换第k 行与第k i 行对应元素位置,k kj i j a a ↔,,,1j k n =+ 。
(4) 消元,对,,i k n = ,计算/,ik ik kk l a a =对1,,1j k n =++ ,计算.ij ij ik kj a a l a =-2). 回代过程(1) 若0,nn a =则矩阵奇异,程序结束;否则执行(2)。
(2) ,1/;n n n nn x a a +=对1,,2,1i n =- ,计算,11/n i i n ij j ii j i x a a x a +=+⎛⎫=- ⎪⎝⎭∑2. Jacobi 迭代法2.1 Jacobi 迭代法基本原理Jacobi 迭代法的基本思想是对n 元线性方程组b Ax =,.,n n R b R A ∈∈将其变形为等价方程组f Bx x +=,其中.,,n n n n R x R f R B ∈∈∈⨯B 成为迭代矩阵。
从某一取定的初始向量)0(x 出发,按照一个适当的迭代公式 ,逐次计算出向量f Bx x k k +=+)()1( ( 1,0=k ),使得向量序列}{)(k x 收敛于方程组的精确解.(1)输入1,,,,)0(=k n xb A ε,. (2) )(1,1)0()1(∑≠=-=n j i i j ij i iii x a b a x )1,0(n i = (3)判断 ε≤--≤≤)0()1(10max i i n i x x ,若是,输出1)1(2)1(1,,n x x x ,若否,置1+=k k ,)1()0(i i x x =,)2,1(n i =。
数值分析5LU分解法

数值分析5LU分解法LU分解法是一种常用的数值分析方法,用于解线性方程组。
本文将详细介绍LU分解法的原理、算法步骤、优缺点以及应用领域,以期能够全面地掌握这一方法。
一、LU分解法原理LU分解法是将一个方程组的系数矩阵A分解为两个矩阵L和U的乘积的形式,其中L是下三角矩阵,U是上三角矩阵,通过分解可以简化方程组的求解过程。
LU分解法的基本思想是将原始方程组Ax=b分解为Ly=b和Ux=y两个方程组,其中L和U是通过A分解得到的矩阵。
二、算法步骤1.首先,将系数矩阵A分解为两个矩阵L和U。
L是下三角矩阵,主对角线元素均为1,而U是上三角矩阵。
2.然后,将原始方程组Ax=b转化为Ly=b,求解y的值。
3.最后,将解y代入Ux=y,求解x的值,即可得到方程组的解。
三、算法优缺点1.优点:LU分解法将原始方程组的系数矩阵分解为两个形式简单的矩阵,简化了方程组的求解过程。
对于重复使用系数矩阵A的情况,只需要进行一次LU分解,然后根据新的b值求解新方程组,提高了计算效率。
2.缺点:LU分解法需要进行矩阵分解计算,计算量较大,因此对于规模较大的方程组计算效率较低。
此外,当系数矩阵A存在奇异性或病态时,LU分解法可能会失败。
四、应用领域LU分解法在科学计算领域有着广泛的应用,特别是在求解线性方程组方面。
例如,在工程领域中,常需要通过数值方法求解复杂的结构力学问题,此时可以使用LU分解法求解由有限元方法离散得到的大规模线性方程组。
另外,LU分解法还可以用于解非线性方程组、求逆矩阵、计算矩阵的行列式等。
总结:LU分解法是一种常用的数值分析方法,用于求解线性方程组。
通过将系数矩阵A分解为两个矩阵L和U的乘积形式,可以简化方程组的求解过程。
LU分解法的优点是提高了方程组的求解效率,适用于重复使用系数矩阵A的情况。
然而,LU分解法也存在一定的缺点,如计算量较大、对奇异性和病态问题的处理较为困难。
LU分解法在科学计算领域有着广泛的应用,可以用于求解工程问题中的大规模线性方程组,解非线性方程组,求逆矩阵等。
高斯消元法与LU分解法的比较及应用

高斯消元法与LU分解法的比较及应用在数学领域中,解线性方程组是一个基本问题。
对于大多数初学者来说,最容易理解的方法可能就是高斯消元法。
而在高等数学领域中,还有一种更为高效的方法——LU分解法。
本文将介绍高斯消元法和LU分解法的基本原理及其比较,同时概述它们的应用。
一、高斯消元法高斯消元法是解线性方程组的最基本方法之一,它的基本思路是通过列主元消元的方法,将n个未知数的线性方程组化为上三角矩阵,然后反向代入求解。
具体而言,它通过如下的几个步骤来求解线性方程组:1、将线性方程组的增广矩阵写成方程组形式2、选取主元(即该列中绝对值最大的元素),并通过消元操作将该列其余元素化为03、重复上述操作,直至整个矩阵化为上三角矩阵4、用反向代入法依次求解出各个未知数的值高斯消元法是非常直观和易于理解的方法,在实际应用中得到了广泛的应用。
然而,它还是存在一些问题的。
首先,高斯消元法并不能很好地解决出现多解或无解问题的情况。
其次,在消元的过程中,如果主元为0,则需要进行行交换操作,这样可以影响运算的速度和精度。
此外,如果对于某些系数矩阵较为复杂的线性方程组,高斯消元法往往会受到很大的计算压力,从而导致求解效率低下。
二、LU分解法LU分解法是线性代数领域中一种非常重要的分解方法。
它将原始矩阵分解为一个下三角矩阵和一个上三角矩阵的乘积。
公式如下:A=LU其中,A为原始矩阵,L为下三角矩阵,U为上三角矩阵。
LU分解法的基本思路是,将原始矩阵进行消元操作,得到一个下三角矩阵L和一个上三角矩阵U,使原始矩阵A=LU,然后将Ax=b的线性方程组化为Ly=b和Ux=y两个方程组,以此求解出x。
LU分解法的优点在于:1、通过将矩阵分解成上下三角矩阵,可以避免了高斯消元法的行交换操作,从而更具有稳定性2、统计证明,LU分解法的耗时低于高斯消元法,可以更快地求解出结果3、LU分解法可以非常方便地求解一个系数矩阵不变的多个线性方程组,从而节约了计算时间需要注意的是,LU分解法对于原始矩阵A的限制要比高斯消元法要严格。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、实验目的及题目1.1 实验目的:(1)学会用高斯列主元消去法,LU 分解法,Jacobi 迭代法和Gauss-Seidel 迭代法解线性方程组。
(2)学会用Matlab 编写各种方法求解线性方程组的程序。
1.2 实验题目:1. 用列主元消去法解方程组:1241234123412343421233234x x x x x x x x x x x x x x x ++=⎧⎪+-+=⎪⎨--+=-⎪⎪-++-=⎩2. 用LU 分解法解方程组,Ax b =其中4824012242412120620266216A --⎛⎫ ⎪- ⎪= ⎪ ⎪-⎝⎭,4422b ⎛⎫ ⎪ ⎪= ⎪- ⎪-⎝⎭3. 分别用Jacobi 迭代法和Gauss-Seidel 迭代法求解方程组:1232341231234102118311210631125x x x x x x x x x x x x x -+=-⎧⎪-+=-⎪⎨-+=⎪⎪-+-+=⎩二、实验原理、程序框图、程序代码等2.1实验原理2.1.1高斯列主元消去法的原理Gauss 消去法的基本思想是一次用前面的方程消去后面的未知数,从而将方程组化为等价形式:1111221122222n n n n nn n nb x b x b x g b x b x g b x g +++=⎧⎪++=⎪⎨⎪⎪=⎩这个过程就是消元,然后再回代就好了。
具体过程如下: 对于1,2,,1k n =-,若()0,k kka ≠依次计算()()(1)()()(1)()()/,,1,,k k ik ik kk k k k ij ij ik kjk k k i i ik k m a a a a m a b b m b i j k n++==-=-=+然后将其回代得到:()()()()()1/()/,1,2,,1n n n n nn n k k k k k kj j kk j k x b a x b a x a k n n =+⎧=⎪⎨=-=--⎪⎩∑以上是高斯消去。
但是高斯消去法在消元的过程中有可能会出现()0k kka =的情况,这时消元就无法进行了,即使主元数()0,k kka ≠但是很小时,其做除数,也会导致其他元素数量级的严重增长和舍入误差的扩散。
因此,为了减少误差,每次消元选取系数矩阵的某列中绝对值最大的元素作为主元素。
然后换行使之变到主元位置上,再进行销元计算。
即高斯列主元消去法。
2.1.2直接三角分解法(LU 分解)的原理先将矩阵A 直接分解为A LU =则求解方程组的问题就等价于求解两个三角形方程组。
直接利用矩阵乘法,得到矩阵的三角分解计算公式为:1111111111,1,2,,/,2,,,,,1,,,2,3,()/,1,2,,i i i i k kj kj km mj m k ik ik im mk kkm u a i n l a u i nu a l u j k k n k nl a l u u i k k n k n-=-===⎧⎨==⎩⎧=-=+⎪⎪=⎨⎪=-=++≠⎪⎩∑∑且由上面的式子得到矩阵A 的LU 分解后,求解Ux=y 的计算公式为11111,2,3,/()/,1,2,,1i i i ij j j n n nn n i i ij j ii j i y b y b l y i nx y u x y u x u i n n -==+=⎧⎪⎨=-=⎪⎩=⎧⎪⎨=-=--⎪⎩∑∑以上为LU 分解法。
2.1.3Jacobi 迭代法和Gauss-Seidel 迭代法的原理 (1)Jcaobi 迭代设线性方程组b Ax = (1)的系数矩阵A 可逆且主对角元素nn a ,...,a ,a 2211均不为零,令 ()nn a ,...,a ,a diag D 2211=并将A 分解成()D D A A +-= (2) 从而(1)可写成()b x A D Dx +-= 令11f x B x +=其中b D f ,A D I B 1111--=-=. (3) 以1B 为迭代矩阵的迭代法(公式)()()111f x B x k k +=+ (4)称为雅可比(Jacobi)迭代法,其分量形式为⎩⎨⎧[],...,,k ,n ,...,i x a ba xnij j )k (j j i iii)k (i21021111==∑-=≠=+ (5)其中()()()()()Tn x ,...x ,x x 002010=为初始向量. (2)Gauss-Seidel 迭代由雅可比迭代公式可知,在迭代的每一步计算过程中是用()k x 的全部分量来计算()1+k x的所有分量,显然在计算第i 个分量()1+k i x 时,已经计算出的最新分量()()1111+-+k i k x ,...,x 没有被利用。
把矩阵A 分解成U L D A --= (6)其中()nna ,...,a ,a diag D 2211=,U ,L --分别为A 的主对角元除外的下三角和上三角部分,于是,方程组(1)便可以写成()b Ux x L D +=- 即22f x B x +=其中()()b L D f ,U L D B 1212---=-= (7)以2B 为迭代矩阵构成的迭代法(公式)()()221f x B x k k +=+ (8)称为高斯—塞德尔迭代法,用分量表示的形式为⎩⎨⎧[],...,,k ,n ,,i x a x a b a xi j n i j )k (j ij )k (j ij i ii)k (i21021111111==∑∑--=-=+=++2.2程序代码2.2.1高斯列主元的代码function Gauss(A,b) %A 为系数矩阵,b 为右端项矩阵 [m,n]=size(A); n=length(b); for k=1:n-1[pt,p]=max(abs(A(k:n,k))); %找出列中绝对值最大的数 p=p+k-1; if p>kt=A(k,:);A(k,:)=A(p,:);A(p,:)=t; %交换行使之变到主元位置上 t=b(k);b(k)=b(p);b(p)=t; endm=A(k+1:n,k)/A(k,k); %开始消元 A(k+1:n,k+1:n)=A(k+1:n,k+1:n)-m*A(k,k+1:n); b(k+1:n)=b(k+1:n)-m*b(k); A(k+1:n,k)=zeros(n-k,1); if flag~=0Ab=[A,b];endendx=zeros(n,1); %开始回代x(n)=b(n)/A(n,n);for k=n-1:-1:1x(k)=(b(k)-A(k,k+1:n)*x(k+1:n))/A(k,k);endfor k=1:nfprintf('x[%d]=%f\n',k,x(k));end2.2.2 LU分解法的程序function LU(A,b) %A为系数矩阵,b为右端项矩阵[m,n]=size(A); %初始化矩阵A,b,L和Un=length(b);L=eye(n,n);U=zeros(n,n);U(1,1:n)=A(1,1:n); %开始进行LU分解L(2:n,1)=A(2:n,1)/U(1,1);for k=2:nU(k,k:n)=A(k,k:n)-L(k,1:k-1)*U(1:k-1,k:n);L(k+1:n,k)=(A(k+1:n,k)-L(k+1:n,1:k-1)*U(1:k-1,k))/U(k,k); endL %输出L矩阵U %输出U矩阵y=zeros(n,1); %开始解方程组Ux=yy(1)=b(1);for k=2:ny(k)=b(k)-L(k,1:k-1)*y(1:k-1);endx=zeros(n,1);x(n)=y(n)/U(n,n);for k=n-1:-1:1x(k)=(y(k)-U(k,k+1:n)*x(k+1:n))/U(k,k);endfor k=1:nfprintf('x[%d]=%f\n',k,x(k));end2.2.3 Jacobi迭代法的程序function Jacobi(A,b,eps) %A为系数矩阵,b为后端项矩阵,epe为精度[m,n]=size(A);D=diag(diag(A)); %求矩阵DL=tril(A)-D; %求矩阵LU=triu(A)-D; %求矩阵Utemp=1;x=zeros(m,1);k=0;while abs(max(x)-temp)>epstemp=max(abs(x));k=k+1; %记录循环次数x=-inv(D)*(L+U)*x+inv(D)*b; %雅克比迭代公式endfor k=1:nfprintf('x[%d]=%f\n',k,x(k));end2.2.4Gauss-Seidel迭代程序function Gauss_Seidel(A,b,eps) %A为系数矩阵,b为后端项矩阵,epe为精度[m,n]=size(A);D=diag(diag(A)); %求矩阵DL=D-tril(A); %求矩阵LU=D-triu(A); %求矩阵Utemp=1;x=zeros(m,1);k=0;while abs(max(x)-temp)>epstemp=max(abs(x));k=k+1; %记录循环次数x=inv(D-L)*U*x+inv(D-L)*b; %Gauss_Seidel的迭代公式endfor k=1:nfprintf('x[%d]=%f\n',k,x(k));end三、实验过程中需要记录的实验数据表格3.1第一题(高斯列主元消去)的数据>> A=[1 1 0 3;2 1 -1 1; 3 -1 -1 3;-1 2 3 -1];>> b=[4;1;-3;4];>> Gauss(A,b)x[1]=-1.333333x[2]=2.333333x[3]=-0.333333x[4]=1.0000003.2第二题(LU分解法)数据>> A=[48 -24 0 -12;-24 24 12 12;0 6 20 2;-6 6 2 16];>> b=[4; 4;-2;-2];>> LU(A,b)L =1.0000 0 0 0-0.5000 1.0000 0 00 0.5000 1.0000 0-0.1250 0.2500 -0.0714 1.0000U =48.0000 -24.0000 0 -12.00000 12.0000 12.0000 6.00000 0 14.0000 -1.00000 0 0 12.9286x[1]=0.521179x[2]=1.005525x[3]=-0.375691x[4]=-0.2596693.3第三题Jacobi迭代法的数据>> A=[10 -1 2 0;0 8 -1 3;2 -1 10 0;-1 3 -1 11];b=[-11;-11;6;25];Jacobi(A,b,0.00005)x[1]=-1.467396x[2]=-2.358678x[3]=0.657604x[4]=2.8423973.4第三题用Gauss_Seidel迭代的数据>> A=[10 -1 2 0;0 8 -1 3;2 -1 10 0;-1 3 -1 11];>> b=[-11;-11;6;25];>> Gauss_Seidel(A,b,0.00005)x[1]=-1.467357x[2]=-2.358740x[3]=0.657597x[4]=2.842405四、实验中存在的问题及解决方案4.1存在的问题(1)第一题中在matlab中输入>> Gauss(A,b)(数据省略)得到m =4 n =4 ??? Undefined function or variable "Ab".Error in ==> Gauss at 8[ap,p]=max(abs(Ab(k:n,k)));没有得到想要的结果。