热力学第二定律习题详解
热力学第二定律复习题及解答

第三章 热力学第二定律一、思考题1. 自发过程一定是不可逆的,所以不可逆过程一定是自发的。
这说法对吗答: 前半句是对的,后半句却错了。
因为不可逆过程不一定是自发的,如不可逆压缩过程。
2. 空调、冰箱不是可以把热从低温热源吸出、放给高温热源吗,这是否与第二定律矛盾呢答: 不矛盾。
Claususe 说的是“不可能把热从低温物体传到高温物体,而不引起其他变化”。
而冷冻机系列,环境作了电功,却得到了热。
热变为功是个不可逆过程,所以环境发生了变化。
3. 能否说系统达平衡时熵值最大,Gibbs 自由能最小答:不能一概而论,这样说要有前提,即:绝热系统或隔离系统达平衡时,熵值最大。
等温、等压、不作非膨胀功,系统达平衡时,Gibbs 自由能最小。
4. 某系统从始态出发,经一个绝热不可逆过程到达终态。
为了计算熵值,能否设计一个绝热可逆过程来计算答:不可能。
若从同一始态出发,绝热可逆和绝热不可逆两个过程的终态绝不会相同。
反之,若有相同的终态,两个过程绝不会有相同的始态,所以只有设计除绝热以外的其他可逆过程,才能有相同的始、终态。
5. 对处于绝热瓶中的气体进行不可逆压缩,过程的熵变一定大于零,这种说法对吗 答: 说法正确。
根据Claususe 不等式TQS d d ≥,绝热钢瓶发生不可逆压缩过程,则0d >S 。
6. 相变过程的熵变可以用公式H ST∆∆=来计算,这种说法对吗答:说法不正确,只有在等温等压的可逆相变且非体积功等于零的条件,相变过程的熵变可以用公式THS ∆=∆来计算。
7. 是否,m p C 恒大于 ,m V C答:对气体和绝大部分物质是如此。
但有例外,4摄氏度时的水,它的,m p C 等于,m V C 。
8. 将压力为 kPa ,温度为 K 的过冷液体苯,凝固成同温、同压的固体苯。
已知苯的凝固点温度为 K ,如何设计可逆过程答:可以将苯等压可逆变温到苯的凝固点 K :9. 下列过程中,Q ,W ,ΔU ,ΔH ,ΔS ,ΔG 和ΔA 的数值哪些为零哪些的绝对值相等(1)理想气体真空膨胀; (2)实际气体绝热可逆膨胀; (3)水在冰点结成冰; (4)理想气体等温可逆膨胀;(5)H 2(g )和O 2(g )在绝热钢瓶中生成水;(6)等温等压且不做非膨胀功的条件下,下列化学反应达到平衡:H 2(g )+ Cl 2(g )(g )答: (1)0Q WU H ==∆=∆=(2)0, R Q S U W =∆=∆= (3)e 0, , P G H Q A W ∆=∆=∆= (4)e 0, =, U H Q W G A ∆=∆=-∆=∆ (5)e = 0V U Q W ∆==(6)0=W,H U Q ∆=∆=,0=∆=∆G A10. 298 K 时,一个箱子的一边是1 mol N 2 (100 kPa),另一边是2 mol N 2 (200 kPa ),中间用隔板分开。
热力学第二定律复习题及解答

第三章 热力学第二定律一、思考题1. 自发过程一定是不可逆的,所以不可逆过程一定是自发的。
这说法对吗?答: 前半句是对的,后半句却错了。
因为不可逆过程不一定是自发的,如不可逆压缩过程。
2. 空调、冰箱不是可以把热从低温热源吸出、放给高温热源吗,这是否与第二定律矛盾呢?答: 不矛盾。
Claususe 说的是“不可能把热从低温物体传到高温物体,而不引起其他变化”。
而冷冻机系列,环境作了电功,却得到了热。
热变为功是个不可逆过程,所以环境发生了变化。
3. 能否说系统达平衡时熵值最大,Gibbs 自由能最小?答:不能一概而论,这样说要有前提,即:绝热系统或隔离系统达平衡时,熵值最大。
等温、等压、不作非膨胀功,系统达平衡时,Gibbs 自由能最小。
4. 某系统从始态出发,经一个绝热不可逆过程到达终态。
为了计算熵值,能否设计一个绝热可逆过程来计算?答:不可能。
若从同一始态出发,绝热可逆和绝热不可逆两个过程的终态绝不会相同。
反之,若有相同的终态,两个过程绝不会有相同的始态,所以只有设计除绝热以外的其他可逆过程,才能有相同的始、终态。
5. 对处于绝热瓶中的气体进行不可逆压缩,过程的熵变一定大于零,这种说法对吗? 答: 说法正确。
根据Claususe 不等式TQS d d ≥,绝热钢瓶发生不可逆压缩过程,则0d >S 。
6. 相变过程的熵变可以用公式H ST∆∆=来计算,这种说法对吗?答:说法不正确,只有在等温等压的可逆相变且非体积功等于零的条件,相变过程的熵变可以用公式THS ∆=∆来计算。
7. 是否,m p C 恒大于 ,m V C ?答:对气体和绝大部分物质是如此。
但有例外,4摄氏度时的水,它的,m p C 等于,m V C 。
8. 将压力为101.3 kPa ,温度为268.2 K 的过冷液体苯,凝固成同温、同压的固体苯。
已知苯的凝固点温度为278.7 K ,如何设计可逆过程?答:可以将苯等压可逆变温到苯的凝固点278.7 K :9. 下列过程中,Q ,W ,ΔU ,ΔH ,ΔS ,ΔG 和ΔA 的数值哪些为零?哪些的绝对值相等?(1)理想气体真空膨胀; (2)实际气体绝热可逆膨胀; (3)水在冰点结成冰;(4)理想气体等温可逆膨胀;(5)H 2(g )和O 2(g )在绝热钢瓶中生成水;(6)等温等压且不做非膨胀功的条件下,下列化学反应达到平衡:H 2(g )+ Cl 2(g )(g )答: (1)0Q WU H ==∆=∆=(2)0, R Q S U W =∆=∆= (3)e 0, , P G H Q A W ∆=∆=∆= (4)e 0, =, U H Q W G A ∆=∆=-∆=∆ (5)e = 0V U Q W ∆==(6)0=W,H U Q ∆=∆=,0=∆=∆G A10. 298 K 时,一个箱子的一边是1 mol N 2 (100 kPa),另一边是2 mol N 2 (200 kPa ),中间用隔板分开。
热力学第二定律习题解析

第二章热力学第二定律习题一 . 选择题:1. 理想气体绝热向真空膨胀,则 ( )(A) △S = 0,W = 0 (B) △H = 0,△U = 0(C) △G = 0,△H = 0 (D) △U = 0,△G = 02. 熵变△S 是(1) 不可逆过程热温商之和 (2) 可逆过程热温商之和(3) 与过程无关的状态函数 (4) 与过程有关的状态函数以上正确的是()(A) 1,2 (B) 2,3 (C) 2 (D) 43. 对于孤立体系中发生的实际过程,下式中不正确的是:()(A) W = 0 (B) Q = 0 (C) △S > 0 (D) △H = 04. 理想气体经可逆与不可逆两种绝热过程()(A) 可以从同一始态出发达到同一终态(B) 不可以达到同一终态(C) 不能断定 (A)、(B) 中哪一种正确(D) 可以达到同一终态,视绝热膨胀还是绝热压缩而定5. P⊖、273.15K 水凝结为冰,可以判断体系的下列热力学量中何者一定为零?(A) △U (B) △H (C) △S (D) △G6. 在绝热恒容的反应器中,H2和 Cl2化合成 HCl,此过程中下列各状态函数的变化值哪个为零? ( ) (A) △r U m (B) △r H m (C) △r S m (D) △r G m7. 在绝热条件下,用大于气筒内的压力,迅速推动活塞压缩气体,此过程的熵变为: ( ) (A) 大于零 (B) 等于零 (C) 小于零 (D) 不能确定8. H2和 O2在绝热钢瓶中生成水的过程:()(A) △H = 0 (B) △U = 0 (C) △S = 0 (D) △G = 09. 在 270K,101.325kPa 下,1mol过冷水经等温等压过程凝结为同样条件下的冰,则体系及环境的熵变应为: ( )(A) △S体系 < 0 ,△S环境 < 0 (B) △S体系 < 0 ,△S环境> 0(C) △S体系 > 0 ,△S环境 < 0 (D) △S体系 > 0 ,△S环境 > 010. 1mol 的单原子理想气体被装在带有活塞的气缸中,温度是 300K,压力为 1013250Pa。
热力学第二定律习题

(2) 此过程的始、终态与(1)过程相同,所以 ΔUm、ΔHm、ΔFm、ΔGm、ΔSm 皆与(1)相同。 ∆U = 0, ∆H = 0, ∆Gm = 4443J, ∆S m = −14.90J ⋅ K −1 ∆Fm = −4443J, ∆Sm = 0 nRT nRT Q = W = p ⋅ ∆V = p − = −12.40kJ p1 p2 12400 ∆S = ∆S体 + ∆S环 = −14.90 + = 26.68J ⋅ K −1 298.2 7. 在中等的压力下,气体的物态方程可以写作pV(1一βp)=nRT,式中系数β与气体的 本性和温度有关。 今若在273 K 时,将 0.5 mol O2由1013.25 kPa 的压力减到101.325 kPa,试求ΔG。己知氧的β=-9.277×10-9 Pa-1 (原题β=-0.00094,压力单位为atm)。 解: ∆G = ∫ Vdp = ∫
物理化学习题解答
p1 p2
1− r
T = 2 , r = 1.4, 解之T2 = 497.5K T
T2
r
∆U m = ∫ CV ,m dT = CV .m (T2 − T1 ) = 4142J ⋅ mol−1
T1
∆H m = ∫ C p ,m dT = C p, m ∆T = 5799J ⋅ mol−1
−1
代入数据得: 2.
∆S = −86.67J ⋅ K
0.10 kg 283.2 K 的水与 0.20 kg 313.2 K 的水混合,求 ΔS。设水的平均比热为 4.184
kJ ⋅ K-l ⋅ kg-1。 解: 设混合后水的温度为 T,则 C p (T − T1 ) = −C ' p (T − T2 ) 代入数据求得 T=303.2K 水的熵变为: ∆S1 = ∫
热力学第二定律例题

QL=QH −Wnet =140kJ−40kJ=100kJ ,就是说虽
然经过每一循环,冷源T0 吸入热量60kJ,放出 热量100kJ,净传出热量40kJ 给温度为TH的热源, 但是必须注意到高温热源T1放出了100kJ的热量, 所以40kJ 热量自低温传给高温热源(T0→TH) 是花了代价的,这个代价就是100kJ热量自高温
(2)经历一不可逆过程后气体熵变、热源熵变、 总熵变及有效能损失。不可逆过程实际耗 功比可逆过程多耗20%,此时热源温度为 300K。
解(1) 气体定温过程熵变为:
S
m
cp
ln
T2 T1
R
ln
p2 p1
mR
ln
p2 p1
1
287
ln
106 105
660.8J
孤立系统熵增大,所以此循环能实现。
方法三:用卡诺定理判断 假设在T1和T2之间为一卡诺循环,则循环效率为
c 1
实际循环效率为:
T2 T1
1
303 973
0.689
t
W
Q1
Q1 Q2 Q1
1 Q2 Q1
1 800 2000
0.6 c
实际循环效率低于卡诺循环效率,所以循环可行。
可逆热泵P的供暖系数为
' rev
TH TH T0
360 360 290
5.14
则,QH为
QH
W '
rev ne
t
5.14 71 364 .94kJ
(3)上述两种情况QH 均大于Q1,但这并不违反热
11 热力学第二定律习题详解

习题十一一、选择题1.你认为以下哪个循环过程是不可能实现的 [ ](A )由绝热线、等温线、等压线组成的循环; (B )由绝热线、等温线、等容线组成的循环; (C )由等容线、等压线、绝热线组成的循环; (D )由两条绝热线和一条等温线组成的循环。
答案:D解:由热力学第二定律可知,单一热源的热机是不可能实现的,故本题答案为D 。
2.甲说:由热力学第一定律可证明,任何热机的效率不能等于1。
乙说:热力学第二定律可以表述为效率等于100%的热机不可能制成。
丙说:由热力学第一定律可以证明任何可逆热机的效率都等于211T T -。
丁说:由热力学第一定律可以证明理想气体可逆卡诺热机的效率等于211T T -。
对于以上叙述,有以下几种评述,那种评述是对的 [ ] (A )甲、乙、丙、丁全对; (B )甲、乙、丙、丁全错; (C )甲、乙、丁对,丙错; (D )乙、丁对,甲、丙错。
答案:D解:效率等于100%的热机并不违反热力学第一定律,由此可以判断A 、C 选择错误。
乙的说法是对的,这样就否定了B 。
丁的说法也是对的,由效率定义式211Q Q η=-,由于在可逆卡诺循环中有2211Q T Q T =,所以理想气体可逆卡诺热机的效率等于211TT -。
故本题答案为D 。
3.一定量理想气体向真空做绝热自由膨胀,体积由1V 增至2V ,此过程中气体的 [ ](A )内能不变,熵增加; (B )内能不变,熵减少; (C )内能不变,熵不变; (D )内能增加,熵增加。
答案:A解:绝热自由膨胀过程,做功为零,根据热力学第一定律21V V Q U pdV =∆+⎰,系统内能不变;但这是不可逆过程,所以熵增加,答案A 正确。
4.在功与热的转变过程中,下面的那些叙述是正确的?[ ](A )能制成一种循环动作的热机,只从一个热源吸取热量,使之完全变为有用功; (B )其他循环的热机效率不可能达到可逆卡诺机的效率,可逆卡诺机的效率最高; (C )热量不可能从低温物体传到高温物体; (D )绝热过程对外做正功,则系统的内能必减少。
大学物理习题详解 热力学第二定律
©物理系_2012_09《大学物理AII 》作业 No.12 热力学第二定律一、判断题:(用“T ”和“F ”表示)[ T ] 1.任何可逆热机的效率均可表示为:高低T T -=1η 解:P301,根据卡诺热机的效率[ F ] 2.若要提高实际热机的效率, 可采用摩尔热容量较大的气体做为工作物质。
解:P294-295,根据热机效率的定义吸净Q A =η,显然工作物质从高温热源吸收的热量越少,对外作的功越多,其效率越高。
根据热量的定义T C MmQ ∆=,温差一定的时候,摩尔热熔C 与热量成正比。
[ F ] 3.一热力学系统经历的两个绝热过程和一个等温过程,可以构成一个循环过程 解:P308题知循环构成了一个单热源机,这违反了开尔文表述。
[ F ] 4.不可逆过程就是不能沿相反方向进行的过程。
解:P303 [ T ] 5.一定量的理想气体向真空作绝热自由膨胀,体积由1V 增至2V ,在此过程中A =0,Q =0,0=∆T ,0>∆S 。
解:P292,P313二、选择题:1.如果卡诺热机的循环曲线所包围的面积从图中的a b c d a 增大为 a b ′c ′d a ,那么循环a b c d a 与a b ′c ′d a 所作的功和热机效率变化情况是: [ D ] (A) 净功增大,效率提高(B) 净功增大,效率降低(C) 净功和效率都不变 (D) 净功增大,效率不变 解:卡诺循环的效率121T T-=η只与二热源温度有关,曲线所围面积在数值上等于净功,所以净功增大,效率不变。
2.对于循环热机,在下面节约与开拓能源的几个设想中,理论上可行的是: [ B ] (A) 改进技术,使热机的循环效率达100%(B) 利用海面与海面下的海水温差进行热机循环作功 (C) 从一个热源吸热,不断作等温膨胀,对外作功 (D) 从一个热源吸热,不断作绝热膨胀,对外作功解:根据热力学第二定律,(A)是第二类永动机,是不可能制成的;(C)是单热源机;(D)是从热源吸热怎么作绝热膨胀。
08热力学第二定律习题解答
第八章热力学第二定律一选择题1. 下列说法中,哪些是正确的( )(1)可逆过程一定是平衡过程;(2)平衡过程一定是可逆的;(3)不可逆过程一定是非平衡过程;(4)非平衡过程一定是不可逆的。
A. (1)、(4)B. (2)、(3)C.(1)、(3) D. (1)、(2)、(3)、(4)解:答案选A。
2. 关于可逆过程和不可逆过程的判断,正确的是 ( )(1) 可逆热力学过程一定是准静态过程;(2) 准静态过程一定是可逆过程;(3) 不可逆过程就是不能向相反方向进行的过程;(4) 凡是有摩擦的过程一定是不可逆的。
A. (1)、(2) 、(3)B. (1)、(2)、(4) C. (1)、(4) D. (2)、(4)解:答案选C。
3. 根据热力学第二定律,下列哪种说法是正确的( )A.功可以全部转换为热,但热不能全部转换为功;B.热可以从高温物体传到低温物体,但不能从低温物体传到高温物体;C.气体能够自由膨胀,但不能自动收缩;D.有规则运动的能量能够变成无规则运动的能量,但无规则运动的能量不能变成有规则运动的能量。
解:答案选C。
4 一绝热容器被隔板分成两半,一半是真空,另一半是理想气体,若把隔板抽出,气体将进行自由膨胀,达到平衡后:( )A. 温度不变,熵增加;B. 温度升高,熵增加;C. 温度降低,熵增加;D. 温度不变,熵不变。
解:绝热自由膨胀过程气体不做功,也无热量交换,故内能不变,所以温度不变。
因过程是不可逆的,所以熵增加。
故答案选A 。
5. 设有以下一些过程,在这些过程中使系统的熵增加的过程是 ( )(1) 两种不同气体在等温下互相混合;(2) 理想气体在等体下降温;(3) 液体在等温下汽化;(4) 理想气体在等温下压缩;(5) 理想气体绝热自由膨胀。
A. (1)、(2)、(3)B. (2)、(3)、(4) C. (3)、(4)、(5) D. (1)、(3)、(5)解:答案选D。
二填空题1.在一个孤立系统内,一切实际过程都向着的方向进行。
热力学第二定律习题选解
设杆长为L 单位长度的质量为M/L,杆的终温 设杆长为L,单位长度的质量为M/L,杆的终温 M/L, Tf=(T1+T2)/2。 )/2。 在杆上取小段x x+dx(见下图) 在杆上取小段x→x+dx(见下图) ,其温度为Tx, 其温度为T 则它由T 则它由Tx→Tf时的熵增为
dSx = ∫
Tf Tx
W min
Ti = Cp( + T2 − 2Ti ) T2
2
习题2.7 (教材,P.69,1.25题)
均匀杆的温度一端为T 另一端为T 均匀杆的温度一端为T1,另一端为T2。试计 算达到均匀温度( )/2 算达到均匀温度(T1+T2)/2后的均匀杆的 熵增。 熵增。
解:这是一个不可逆的导热过程。同一小段的 这是一个不可逆的导热过程 一个不可逆的导热过程。 温度变化过程虽是不可逆的,但由于杆上各小段的 温度变化过程虽是不可逆的, 初末两态是平衡态(整个杆子并非平衡态) 初末两态是平衡态(整个杆子并非平衡态),所以可 在每小段的初末两态之间设计一个可逆等压导热过 在每小段的初末两态之间设计一个可逆等压导热过 程来计算各小段的熵增,再将各段的熵增相加,便 来计算各小段的熵增,再将各段的熵增相加, 得到整个杆的熵增。 得到整个杆的熵增。
∴ W ≤ Q + T2 ( S 2 − S 1 ) ∴ W max = Q − T 2 ( S 1 − S 2 )
习题2.6 (教材,P.70,1.28题)
有两个相同的物体,热容量为常数, 有两个相同的物体,热容量为常数,初始温度同 今令一致冷机在此两物体间工作, 为Ti。今令一致冷机在此两物体间工作,使其中一个 物体的温度降低到T2为止。假设物体维持在定压下, 物体的温度降低到T 为止。假设物体维持在定压下, 并且不发生相变。试根据熵增加原理证明,此过程所 并且不发生相变。试根据熵增加原理证明, 需的最小功为
第二章-热力学第二定律
第二章-热力学第二定律第二章 热力学第二定律练习参考答案1. 1L 理想气体在3000K 时压力为1519.9 kPa ,经等温膨胀最后体积变到10 dm 3,计算该过程的W max 、ΔH 、ΔU 及ΔS 。
解: 理想气体等温过程。
ΔU =ΔH =0W max =⎰21V V p d V =⎰21V V VnRTd V =nRT ln(V 2/ V 1)=p 1V 1 ln(V 2/ V 1) = 1519.9×103×1×10-3×ln(10×10-3/ 1×10-3)=3499.7 (J ) =3.5 (k J ) 等温时的公式 ΔS =⎰21V V p d V / T =nR ln(V 2/ V 1) =W max /T=3.5×103/ 3000 =1.17 (J •K -1)2. 1mol H 2在27℃从体积为1 dm 3向真空膨胀至体积为10 dm 3,求体系的熵变。
若使该H 2在27℃从1 dm 3经恒温可逆膨胀至10 dm 3,其熵变又是多少?由此得到怎样结论?解: 等温过程。
向真空膨胀:ΔS = ⎰21V V p d V / T =nR ln(V 2/ V 1)(等温) =1×8.314×ln(10/ 1) = 19.14 (J •K -1)可逆膨胀: ΔS =⎰21V V p d V / T =nR ln(V 2/ V 1)=1×8.314×ln(10/ 1) = 19.14 (J •K -1)状态函数变化只与始、终态有关。
3. 0.5 dm 3 70℃水与0.1 dm 3 30℃水混合,求熵变。
解: 定p 、变T 过程。
设终态体系温度为t ℃,体系与环境间没有热传导;并设水的密度(1 g •cm -3)在此温度范围不变。
查附录1可得C p,m (H 2O, l ) = 75.48 J •K -1•mol -1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题十一一、选择题1.你认为以下哪个循环过程是不可能实现的 [ ](A )由绝热线、等温线、等压线组成的循环; (B )由绝热线、等温线、等容线组成的循环; (C )由等容线、等压线、绝热线组成的循环; (D )由两条绝热线和一条等温线组成的循环。
答案:D解:由热力学第二定律可知,单一热源的热机是不可能实现的,故本题答案为D 。
2.甲说:由热力学第一定律可证明,任何热机的效率不能等于1。
乙说:热力学第二定律可以表述为效率等于100%的热机不可能制成。
丙说:由热力学第一定律可以证明任何可逆热机的效率都等于211T T -。
丁说:由热力学第一定律可以证明理想气体可逆卡诺热机的效率等于211T T -。
对于以上叙述,有以下几种评述,那种评述是对的 [ ] (A )甲、乙、丙、丁全对; (B )甲、乙、丙、丁全错; (C )甲、乙、丁对,丙错; (D )乙、丁对,甲、丙错。
答案:D解:效率等于100%的热机并不违反热力学第一定律,由此可以判断A 、C 选择错误。
乙的说法是对的,这样就否定了B 。
丁的说法也是对的,由效率定义式211Q Q η=-,由于在可逆卡诺循环中有2211Q T Q T =,所以理想气体可逆卡诺热机的效率等于211TT -。
故本题答案为D 。
3.一定量理想气体向真空做绝热自由膨胀,体积由1V 增至2V ,此过程中气体的 [ ](A )内能不变,熵增加; (B )内能不变,熵减少; (C )内能不变,熵不变; (D )内能增加,熵增加。
答案:A解:绝热自由膨胀过程,做功为零,根据热力学第一定律21V V Q U pdV =∆+⎰,系统内能不变;但这是不可逆过程,所以熵增加,答案A 正确。
4.在功与热的转变过程中,下面的那些叙述是正确的?[ ](A )能制成一种循环动作的热机,只从一个热源吸取热量,使之完全变为有用功;(B )其他循环的热机效率不可能达到可逆卡诺机的效率,可逆卡诺机的效率最高; (C )热量不可能从低温物体传到高温物体; (D )绝热过程对外做正功,则系统的内能必减少。
答案:D解:(A )违反了开尔文表述;(B )卡诺定理指的是“工作在相同高温热源和相同低温热源之间的一切不可逆热机,其效率都小于可逆卡诺热机的效率”,不是说可逆卡诺热机的效率高于其它一切工作情况下的热机的效率;(C )热量不可能自动地从低温物体传到高温物体,而不是说热量不可能从低温物体传到高温物体;绝热功是以消耗系统的内能为代价的,故答案D 正确。
5.下面的那些叙述是正确的?[ ](A )发生热传导的两个物体温度差值越大,就对传热越有利;(B )任何系统的熵一定增加;(C )有规则运动的能量能够变为无规则运动的能量,但无规则运动的能量不能够变为有规则运动的能量;(D )以上三种说法均不正确。
答案:D解:(A )两物体A 、B 的温度分别为A T 、B T ,且A B T T >,两物体接触后,热量dQ 从A 传向B ,经历这个传热过程的熵变为11()B AdS dQ T T =-,因此两个物体温度差值越大,熵变越大,对传热越不利;(B)孤立系统的熵一定增加,而如果一个系统与外界有物质或者能量的交换,该系统的熵可以减少,比如地球这个系统,由于与太阳等存在能量交换,地球处于相对比较有序的状态,而热寂态则不会出现;(C )热机可以将热能变为机械功,这就是将无规则运动的能量变为有规则运动的能量。
故本题答案为D 。
6. 一摩尔单原子理想气体从初态(1p 、1V 、1T )准静态绝热压缩至体积为2V ,其熵[ ](A )增大; (B )减小; (C )不变; (D )不能确定。
答案:C解:准静态过程是可逆过程,又是绝热过程,0dQS T∆==⎰,C 正确。
二、填空题1. 一热机每秒从高温热源(1600T =K )吸取热量41 3.3410Q =⨯J ,做功后向低温热源(2300T =K )放出热量42 2.0910Q =⨯J ,它的效率是 ,它 可逆机(填“是”或者“不是”),如果尽可能地提高热机的效率,每秒从高温热源吸热43.3410⨯J ,则每秒最多能做功 。
答案:37.4%;不是;41.6710J ⨯。
解:(1)4241 2.09101137.4%3.3410Q Q η⨯=-=-=⨯,213001150%600c T T η=-=-=, c ηη<,根据卡诺定理可知,该热机不是可逆热机。
(2)根据卡诺定理,工作在相同高温热源和相同低温热源之间的一切热机,其最大效率为213001150%600c T T η=-=-=,所以最多能做的功为 441 3.341050% 1.6710J c A Q η==⨯⨯=⨯2.把质量为5kg 、比热容(单位质量物质的热容)为544J/kg 的铁棒加热到300C ︒,然后浸入一大桶27C ︒的水中。
在这冷却过程中铁的熵变为 。
答案:1760J/K -解:设想一可逆冷却过程,则熵变为2121d d 27327ln 5544ln 1760J/K 273300T T T QMc T S Mc TT T +∆====⨯⨯=-+⎰⎰3.在冬日一房子的散热的速率为8210J/h ⨯,设室内温度为20C ︒,室外温度为20C -︒,这一散热过程产生熵的速率为 (J/(K s))⋅。
答案:30J /(s K)⋅。
解:88210210=30J/(s K)2027320273inoutQ Q S T T ⨯⨯∆=+=-+⋅+-+放吸三、计算题1.有可能利用表层海水和深层海水的温差来制成热机。
已知热带水域的表层水温约25C o ,300m 深层水温约5C o 。
(1)在这两个温度之间工作的卡诺热机的效率多大?(2)如果一电站在此最大理论效率下工作时获得的机械效率为1MW ,它将以何种速率排除废热?(3)此电站获得的机械功和排除的废热均来自25C o 的水冷却到5C o所放出的热量,问此电站每小时能取用多少吨25C o的表层水(设海水的比热容为4.2kJ/(kg K)⋅)?答案:(1) 6.7%η=;(2)13.9MW Q =放;(3)26.510t/h M=⨯&。
解:(1)%7.62732527351112=++-=-=T T η(2)AA Q η=+放,1MW A =, 6.7%η=,所以 13.9MW Q =放;(3)AQ cM T η==∆吸,所以 AM c Tη=∆ 将 6.7%η=,1MW A =,(25273)(5273)20K T ∆=+-+=, 4.2kJ/(kg K)c =⋅代入,得21.78kg/s 6.510t/h AM c Tη===⨯∆2.试求:(1)1kg ,0C ︒的水放到100C ︒恒温热库上,最后达到平衡,求这一过程引起的水和恒温热库组成的系统的熵变,是增加还是减少?(2)如果1kg ,0C ︒的水先放到50C ︒恒温热库上使之达到平衡,然后再把它移到100C ︒恒温热库上使之平衡,求这一过程引起的整个系统的熵变,并与(1)比较(水的比热容为 4.2kJ/(kg K)c =⋅)。
答案:(1)1184J/K S ∆=,熵增加;(2)297.6J/K S ∆=,2S S ∆<∆1。
解:(1)1002730273373ln273c M dTS c M T++∆==⎰水水水水水 010*******s sc M T c M S T ∆⨯-∆=-=+水水水水水()1184J/K >0s S S S ∆=∆+∆=水(2)50273100273027350273323373=ln )273323c M dTc M dTS c M TT++++∆=++⎰⎰水水水水水水水(l n1212s c M T c M T S T T ∆∆∆=--水水水水水水1(50273)(0273)50K T ∆=+-+=水,150273323T =+=K 2(100273)(50273)50K T ∆=+-+=水,2100273373T =+=K297.6J/K s S S S ∆=∆+∆=水与(1)相比较,2S S ∆<∆1。
3.1mol 理想气体从初态1p 、1V 绝热自由膨胀到终态2p 、2V ,已知:212V V =,试求:(1)气体对外做功;(2)气体内能增量;(3)气体熵的增量。
答案:(1)0A =;(2)0U ∆=;(3) 5.76S ∆=J/K 。
解:(1)理想气体对外自由膨胀的过程中不对外做功,所以0A =;(2)理想气体对外自由膨胀的过程中不对外做功,整个过程又是绝热过程,根据热力学第一定律21V VQ U pdV =∆+⎰,系统0U ∆=(3)理想气体绝热对外自由膨胀是一个不可逆过程,故不能利用可逆过程的熵增公式d QS T∆=⎰来求。
但熵是个态函数,所以可以找到一个始、末状态一样的可逆过程来计算熵变。
因理想气体绝热对外自由膨胀后内能不变,也即温度不变,所以可设计一个准静态等温过程来算熵增,所以221,m 1112d ln ln 018.31ln 5.76J/K V T V V QS C R T T V V νν∆==+=+⨯⨯=⎰4.有2mol 的理想气体,经过可逆的等压过程,体积从0V 膨胀到03V 。
求这一过程中的熵变。
答案:,m 2ln 3p S C ∆=。
解: 由于熵是态函数,1→3的可逆等压过程的熵变等于1→2等温过程加上2→3绝热过程的总熵变,2→3绝热过程熵不变,则总熵变等于等温过程的熵,即 2222,m 1111d ln ln 02ln 2ln V T V V V QS C R R R T T V V V νν∆==+=+=⎰由等温方程和绝热方程 1122p V p V =,3322p V p V γγ= 由于 10V V =,303V V =, 所以上两式变为1022p V p V =,1022(3)p V p V γγ=由上两式得 2210ln ln V V V V =,20ln ln 3ln 31p C V V R γγ==-,代入上面熵变算式,得 ,m 2,m 12ln2ln 32ln 3p p C V S R R C V R∆===。