一元二次方程与几何综合

合集下载

用一元二次方程解决几何图形问题含答案

用一元二次方程解决几何图形问题含答案

用一元二次方程解决几何图形问题基础题知识点1一般图形的问题1.(衡阳中考)绿苑小区在规划设计时,准备在两幢楼房之间设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,可列方程为(B)A.x(x-10)=900 B.x(x+10)=900C.10(x+10)=900 D.2[x+(x+10)]=900 2.(山西农业大学附中月考)从一块正方形的木板上锯掉2 m宽的长方形木条,剩下的面积是48 m2,则原来这块木板的面积是(B) A.100 m2B.64 m2C.121 m2 D.144 m23.一个直角三角形的两条直角边相差5 cm,面积是7 cm2,则它的两条直角边长分别为2__cm,7__cm.4.(宿迁中考)一块矩形菜地的面积是120 m2,如果它的长减少2 m,那么菜地就变成正方形,则原菜地的长是12m.5.(深圳中考)一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长、宽分别为多少?(2)能围成面积为200平方厘米的矩形吗?请说明理由.解:(1)设矩形的长为x厘米,则宽为(28-x)厘米,依题意,有x(28-x)=180.解得x1=10(舍去),x2=18.则28-x=28-18=10.答:长为18厘米,宽为10厘米.(2)设矩形的长为y厘米,则宽为(28-y)厘米,依题意,有y(28-y)=200.化简,得y2-28y+200=0.∴Δ=282-4×200=784-800=-16<0.∴原方程无实数根.故不能围成一个面积为200平方厘米的矩形.知识点2边框与甬道问题6.(兰州中考)公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1 m,另一边减少了2 m,剩余空地的面积为18 m2,求原正方形空地的边长,设原正方形空地的边长为x m,则可列方程为(C)A.(x+1)(x+2)=18B.x2-3x+16=0C.(x-1)(x-2)=18D.x2+3x+16=07.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7 644平方米,则道路的宽应为多少米?设道路的宽为x米,则可列方程为(C) A.100×80-100x-80x=7 644B.(100-x)(80-x)+x2=7 644C.(100-x)(80-x)=7 644D.100x+80x=3568.如图所示,相框长为10 cm,宽为6 cm,内有宽度相同的边缘木板,里面用来夹相片的面积为32 cm2,则相框的边缘宽为多少厘米?解:设相框的边缘宽为x cm,根据题意,得(10-2x)(6-2x)=32. 整理,得x2-8x+7=0,解得x1=1,x2=7.当x=7时,6-2×7=-8<0,不合题意,舍去.答:相框的边缘宽为1 cm.易错点忽视根的合理性,忘记验根9.(大同一中期末)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?解:设AB=x,则BC=100-4x(BC≤25).根据题意,得x(100-4x)=400,解得x1=5,x2=20.当x=5时,100-4x=80,不满足BC≤25,不合题意,舍去;当x=20时,100-4x=20.所以AB为20米,BC为20米.中档题10.(高平特力期中)如图,某小区计划在一块长为32 m,宽为20 m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570 m2.若设道路的宽为x m,则下面所列方程正确的是(A)A.(32-2x)(20-x)=570B.32x+2×20x=32×20-570C.(32-x)(20-x)=32×20-570D.32x+2×20x-2x2=57011.(襄汾期末)如图,在长为70 m,宽为40 m的长方形花园中,欲修宽度相等的观赏路(阴影部分所示),要使观赏路面积占总面积的18,则路宽x 应满足的方程是(C)A .(40-x)(70-x)=2 450B .(40-x)(70-x)=350C .(40-2x)(70-3x)=2 450D .(40-2x)(70-3x)=35012.在一幅长50 cm ,宽30 cm 的风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示.如果要使整个矩形挂图的面积是1 800 cm 2,设金色纸边的宽为x cm ,那么x 满足的方程为x 2+40x -75=0.13.某村计划建造如图所示的矩形蔬菜温室,要求长与宽的比为2∶1.在温室内,沿前侧内墙保留3 m 宽的空地,其他三侧内墙各保留1 m 宽的通道.当矩形温室的长与宽各为多少时,蔬菜种植区域的面积是288 m 2?解:设矩形温室的宽为x m ,则长为2x m .根据题意,得 (x -2)(2x -4)=288.解得x 1=-10(不合题意,舍去),x 2=14.所以2x=2×14=28.答:当矩形温室的长为28 m,宽为14 m时,蔬菜种植区域的面积是288 m2.综合题14.已知,如图,在△ABC中,∠B=90°,AB=5 cm,BC=7 cm.点P从点A开始沿AB边向点B以1 cm/s的速度移动,点Q从点B 开始沿BC边向点C以2 cm/s的速度移动.(1)如果点P,Q分别从点A,B同时出发,那么几秒后,△PBQ的面积等于4 cm2?(2)如果点P,Q分别从点A,B同时出发,那么几秒后,PQ的长度等于5 cm?(3)在问题(1)中,△PBQ的面积能否等于7 cm2说明理由.解:(1)设x秒后,△PBQ的面积等于4 cm2.根据题意,得x(5-x)=4.解得x1=1,x2=4.∵当x=4时,2x=8>7,不合题意,舍去.∴x=1.答:1 s后,△PBQ的面积等于4 cm2.(2)设y秒后,PQ=5 cm,则(5-y)2+(2y)2=25.解得y1=0(舍去),y2=2.∴y=2.答:2 s后,PQ的长度等于5 cm.(3)设a秒后,△PBQ的面积等于7 cm2.根据题意,得a(5-a)=7.此方程无解.∴△PBQ的面积不能等于7 cm2.。

人教版 九年级数学上册 第21章 一元二次方程相关的应用题和几何题

人教版 九年级数学上册 第21章 一元二次方程相关的应用题和几何题

第21章 一元二次方程相关的应用题和几何题(含答案)1. 一个跳水运动员从10米高台上跳水,他每一时刻所在的高度(单位:米)与所用时间(单位:秒)的关系式是()()125+--=t t h ,则运动员起跳到入水所用的时间是( )A. -5秒B. 1秒 C . -1秒 D. 2秒 【答案】 D2. 某种出租车的收费标准时:起步价7元(即行驶距离不超过3千米都需付7元车费),超过3千米以后,每增加1千米,加收2.4元(不足1千米按1千米计),某人乘这种出租车从甲地到乙地共支付车费19元,设此人从甲地到乙地经过的路程是x 千米,那么x 的最大值是( ) A. 11 B. 8 C . 7 D.5 【答案】 B3. 如图,菱形ABCD 的边长为a ,O 是对角线AC 上的一点,且OA =a ,OB =OC =OD =1,则a =( ) A .215+ B . 215- C . 1 D .2 【答案】 A第3题图4. 某工厂把500万元资金投入新产品生产,第一年获得了一定的利润,在不抽调资金和利润(即将第一年获得的利润也作为生产资金)的前提下,继续生产,第二年的利润率(即所获利润与投入生产资金的比)比第一年的利润率增加了8%.如果第二年的利润为112万元,为求第一年的利润率,可设它为x ,那么所列方程为_______________. 【答案】 500(1+x )(x +8%)=1125. 如图,在长为10cm 、宽为8cm 的矩形的四个角上截去四个全等的小正方形,使得留下阴影部分面积是原矩形面积的80%,则所截去的小正方形的边长是_________. 【答案】 2cmA第5题图6. 有一旅客携带了30千克行李从南京禄口国际机场乘飞机去天津. 按民航规定,旅客最多可免费携带20千克行李,超重部分每千克按飞机票价的1.5%购买行李票,现该旅客买了120元的行李票,则他的飞机票价格应是________. 【答案】 800元7. 乙两地分别在河的上、下游,每天各有一班船准点以匀速从两地对开,通常它们总在11时于途中相遇,一天乙地的船因故晚发了40分钟,结果两船在上午11时15分在途中相遇,已知甲地开出的船在静水中的速度数值为44千米/时,而乙地开出的船在静水中的速度为水流速度ν千米/时数值的平方,则ν的值为___________. 【答案】68. 如图,在平面直角坐标系中,直线1+=x y 与343+-=x y 交于点A ,分别交x 轴于点B 和点C ,点D 是直线AC 上的一个动点. (1) 求点A ,B ,C 的坐标;(2) 当△CBD 为等腰三角形时,求点D 的坐标.【答案】 (1)B (-1,0),C (4,0),,由1,33,4y x y x =+⎧⎪⎨=-+⎪⎩得8,7157x y ⎧=⎪⎪⎨⎪=⎪⎩,∴A (87,157) (2)设点D 的坐标为(x ,y ),BC =5., ①当BD 1=D 1C 时,过点D 1作D 1M 1⊥x 轴于M 1,则BM 1=52,OM 1=32,x =32,∴y =-34×32+3=158,∴D 1(32,158)..②当BC =BD 2时,过点D 2作D 2M 2⊥x 轴于M 2,则222D M +22M B =22D B ,.∵M 2B =-x -1,D 2M 2=-34x +3,D 2B =5. ③当CD 3=BC 或CD 4=BC 时,同理,可得D 3(0,3),D 4(8,-3),故点的坐标为D 1(32,158),D 2(-125,245),D 3(0,3),D 4(8,-3).9. 如图,已知在Rt △ABC 中,∠C =90°,AC =3,BC =4,点E 在直角边AC 上(点E 与A ,C 两点均不重合). (1)若点F 在斜边AB 上,且EF 平分Rt △ABC 的周长,设AE =x ,试用x 的代数式表示S AEF ; (2)若点F 在折线ABC 上移动,试问:是否存在直线EF 将Rt △ABC 的周长和面积同时平分?若存在直线EF ,则求出AE 的长;若不存在直线EF ,请说明理由.【答案】(1)S △AEF =25x (6-x ) (2)假设存在直线E F 将△ABC 的周长和面积同时平分,AE =x .①若点F 在斜边AB 上,则由(1)知25x (6-x )=12×6,解得x 1=3x 2=3AF =6-(33 5.,②若点F 和B 重合,不满足题设要求的直线EF ;③若点F 在BC 上,由AE =x ,得CE =3-x ,CF =3+x ,S △CEF =12(3-x )(3+x )=12×6,解得x 1,x 2,由于3+x 3>4,故不存在直线EF 满足题设要求.10. 某公司投资新建了一商场,共有商铺30间,据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5000元,少租出商铺1间,该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为275万元? 【答案】(1)24间(2)设每间商铺的年租金增加x 万元,则(30+0.5x )×(10+x )-(30-0.5x )×1-0.5x×0.5=275,解得x 1=0.5,x 2=5,故设每间商铺的年租金定为15万元或10.5万元.11. 我市向民族地区的某县赠送一批计算机,首批270台将于近期起运. 经与某物流公司联系,得知用A 型汽车若干辆刚好装完;用B 型汽车不仅可少用1辆,而且有一辆车差30台计算机才装满. (1)已知B 型汽车比A 型汽车每辆车可多装15台,则A ,B 两种型号的汽车各能装计算机多少台? (2)已知A 型汽车的运费是每辆350元,B 型汽车的运费是每辆400元。

二次函数与几何综合压轴题题型归纳

二次函数与几何综合压轴题题型归纳
(1) 求此抛物线的解析式; (2) 若此抛物线的对称轴上的点 P 满足∠APB=∠ACB,求点 P 的坐标; (3) Q 为线段 BD 上一点,点 A 关于∠AQB 的平分线的对称点为 A ,若 QA QB 2 ,求点 Q 的 坐 标和此时△ QAA 的面积。
2、在平面直角坐标系 xOy 中,已知二次函数 y ax2 +2ax c 的图像与 y 轴交于点 C0,3 ,与 x 轴交于 A、B 两点,点 B 的坐标为 3,0 。
11、几何分析法 特别是构造“平行四边形”、“梯形”、“相似三角形”、“直角三角形”、“等腰三角形”等图形时,
利用几何分析法能给解题带来方便。
3
几何要求
几何分析
涉及公式
跟平行有关的 平移
图形
l1 ∥ l2
k1=k2 、 k
y1 x1
y2 x2
跟直角有关的 图形
勾股定理逆定理 利用相似、全等、平 行、对顶角、互余、 互补等
★ 讨论直角三角 连接 AC,在对称轴上找一点 P,使得 ACP 为直角三角形,
求出 P 坐标或者在抛物线上求点 P,使△ACP 是以 AC 为直角边的直角三角形.
4
BO A x C D y
BO A x C D
★ 讨论等腰三角 连接 AC,在对称轴上找一点 P,使得 ACP 为等腰三角形,
求出 P 坐标 y
★ 讨论平行四边形 1、点 E 在抛物线的对称轴上,点 F 在抛物线上,
且以 B,A,F,E 四点为顶点的四边形为平行四边形,求点 F 的坐标
BO A x
C D
二 综合题型
例 1 (中考变式)如图,抛物线 y x 2 bx c 与 x 轴交与 A(1,0),B(-3,0)两点,顶点为 D。

一元二次方程和几何综合

一元二次方程和几何综合

1.在菱形ABCD中,∠B=60°,点E,F分别从B,D同时出发,以同样的速度沿边BC,DC向点C运动,到点C即停止。

给出下列三个结论:①AE=AF ②∠CEF=∠CFE ③当点E,F分别为BC,DC中点时,△AFE为等边三角形。

上述结论中正确的有
2.如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=15cm,BC=21cm,点M从点A开始,沿边AD向点D运动,速度为1cm/s;点N从点C开始,沿边CB向点B运动,速度为2cm/s、点M、N 分别从点A、C出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒.
(1)当t为何值时,四边形MNCD是平行四边形?
(2)当t为何值时,四边形MNCD是等腰梯形?
4. 如图,矩形ABCD中,AB=4cm,AD=3cm,点E从点A出发沿边AB以1cm/s的速度向终点B运动,同时点F从点B出发沿BC-CD以2cm/s的速度向点D运动,当一点停止运动时另一点也停止运动,设运动时间为t秒,连接DE、DF、EF,则在运动过程中,使△DEF成为等腰三角形的t值的个数为
(写出求解过程)。

第1课时 利用一元二次方程解决几何问题

第1课时  利用一元二次方程解决几何问题

2.6 应用一元二次方程第1课时利用一元二次方程解决几何问题基础题知识点利用一元二次方程解决几何问题1.(白银中考)用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程为( )A.x(5+x)=6 B.x(5-x)=6C.x(10-x)=6 D.x(10-2x)=62.(兰州中考)公园里有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了1 m,另一边减少了2 m,剩余空地的面积为18 m2,求原正方形空地的边长.设原正方形空地的边长为x m,则可列方程为( )A.(x+1)(x+2)=1 B.x2-3x+16=0C.(x-1)(x-2)=18 D.x2+3x+16=03.如图,在△ABC中,∠ABC=90°,AB=8 cm,BC=6 cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1 cm/秒,点Q的速度为2 cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15 cm2的是( )A.2秒钟 B.3秒钟C.4秒钟 D.5秒钟4.如图是一无盖长方体铁盒的平面展开图,若铁盒的容积为3 m3,则根据图中的条件,可列出方程:____________.5.如图,某小区内有一块长、宽比为2∶1的矩形空地,计划在该空地上修筑两条宽均为2 m的互相垂直的小路,余下的四块小矩形空地铺成草坪,如果四块草坪的面积之和为312 m2,请求出原来大矩形空地的长和宽.(1)请找出上述问题中的等量关系:____________;(2)若设大矩形空地的宽为x m,可列出的方程为________________________,方程的解为____________________,原来大矩形空地的长和宽分别为____________.6.如图,将一根铁丝分成两段可以分别围成两个正六边形,已知它们的边长比是1∶2,其中小正六边形的边长为(x2-4)cm,大正六边形的边长为(x2+2x)cm(其中x>0).求这根铁丝的总长.7.(包头中考改编)一幅长20 cm ,宽12 cm 的图案,其中有一横两竖的彩条,横、竖彩条的宽度比为3∶2,设竖彩条的宽度为x cm ,图案中三条彩条所占面积是图案面积的25,求横、竖彩条的宽度.中档题8.(杭州期末)如图是一个长为30 m ,宽为20 m 的矩形花园,现要在花园中修建等宽的小道,剩余的地方种植花草,如图所示,要使种植花草的面积为532 m 2,那么小道进出口的宽度应为____________米.9.为了节省材料,某水产养殖户利用水库的岸堤(岸堤足够长)为一边,用总长为80 m 的围网在水库中围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等.设BC 的长度为x m ,矩形区域ABCD 的面积为y m 2. (1)求AE 的长(用x 的代数式表示);(2)当y =108 m 2时,求x 的值.10.如图,在矩形ABCD 中,AB =6 cm ,BC =12 cm ,点P 从点A 出发沿AB 以1 cm/s 的速度向点B 移动;同时,点Q 从点B 出发沿BC 以2 cm/s 的速度向点C 移动,几秒钟后△DPQ 的面积等于28 cm 2?11.如图,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a 米. (1)当通道宽a 为10米时,花圃的面积=____________平方米;(2)通道的面积与花圃的面积之比能否恰好等于3∶5?如果可以,试求出此时通道的宽.综合题12.某小区有一长100 m ,宽80 m 的空地,现将其建成花园广场,设计图案如图,阴影区域为绿化区(四块绿化区。

用一元二次方程解决几何图形问题ppt课件

用一元二次方程解决几何图形问题ppt课件

篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
4.如图,用长为18m的篱笆(虚线部分),两面靠 墙围成矩形的苗圃.要围成苗圃的面积为81m2,设 AB边为Xm可列方程
A
B
C
5.如图,某幼儿园有一道长为16m的墙,计
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
课后小结
(一)、小结:请同学们说一说一元二 次方程与实际问题---面积问题与动点问 题的解题思路及技巧.这里要特别注意:在 列一元二次方程解应用题时,由于所得的 根一般有两个,所以要检验这两个根是否 符合实际问题的要求.
2、某林场计划修一条长750m,横截面为 等腰梯形的渠道,横截面面积为1.6m2, 上口宽比渠深多2m,渠底比渠深多 0.4m.
(1)渠道的上口宽与渠底宽各是多少? (2)如果计划每天挖土48m3,需要多 少天才能把这条渠道挖完?
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统
(2)如果点P,Q分别从点A,B同时出发,那么几 秒后,PQ的长度为5 cm?
(3)在(1)中,△PBQ的面积能否为7 cm2?并说明理 由.
篮球比赛是根据运动队在规定的比赛 时间里 得分多 少来决 定胜负 的,因 此,篮 球比赛 的计时 计分系 统是一 种得分 类型的 系统

专题11 二次函数与图形几何综合(6大考点)(学生版)

专题11 二次函数与图形几何综合(6大考点)(学生版)

第三部分函数专题11二次函数与图形几何综合(6大考点)核心考点核心考点一线段问题核心考点二面积问题核心考点三角度问题核心考点四特殊三角形判定问题核心考点五特殊四边形判定问题核心考点六相似三角形判定问题新题速递核心考点一线段问题(2020·吉林长春·统考中考真题)如图,在平面直角坐标系中,点A的坐标为()0,2,点B的坐标为()4,2.若抛物线23()2y x h k=--+(h、k为常数)与线段AB交于C、D两点,且12CD AB=,则k的值为_________.(2020·山东滨州·中考真题)如图,抛物线的顶点为A(h,-1),与y轴交于点B1(0,)2-,点F(2,1)为其对称轴上的一个定点.(1)求这条抛物线的函数解析式;(2)已知直线l是过点C(0,-3)且垂直于y轴的定直线,若抛物线上的任意一点P(m,n)到直线l的距离为d,求证:PF=d;(3)已知坐标平面内的点D(4,3),请在抛物线上找一点Q,使△DFQ的周长最小,并求此时 DFQ周长的最小值及点Q的坐标.1.确定线段长关系式(根据已知线段关系求点坐标):①先在图中找出对应线段,弄清已知点和未知点;②再联系二次函数和一次函数,设出未知点的坐标,使其只含一个未知数;③继而表示出线段的长度(如果该线段与坐标轴平行的话,则利用横纵坐标相加减确定;如果与坐标轴不平行的话,先转化为有边在与坐标轴平行的三角形中,再利用勾股定理、锐角三角函数或相似确定).2.线段数量关系问题:根据前面所得的线段长的关系式,结合题干列出满足线段数量关系的方程,解方程求解即可(注意排除不符合题意的数值).3.线段最值问题:求两条线段和差、三角形周长、四边形周长等一类最值问题,首先联想到“对称性质”,最常见的有以下模型:(1)定直线与两定点①同侧和最小值问题②同侧差最小值问题③同侧差最大值问题④异侧差最大值问题(2)角与定点①一定点与两条直线上两动点问题②两定点与两条直线上两动点问题【变式1】(2020·贵州遵义·统考二模)如图,二次函数图象经过()20A ,,()00O ,且有最小值1-,若A 点关于y 轴的对称点为B 点,过B 作y 轴平行线交抛物线于点C ,在Rt ABC △的斜边AC 上有一动点D ,过D 作DE BC ⊥于E ,DF AB ⊥于F ,则EF 的最小值为()ABC.D.【变式2】(2021·浙江湖州·模拟预测)如图,已知在平面直角坐标系xOy 中,抛物线C 1:y =a 1x 2(a 1≠0)与抛物线C 2:y =a 2x 2+bx (a 2≠0)的交点P 在第三象限,过点P 作x 轴的平行线,与物线C 1,C 2分别交于点M ,N .若PM PN =2n ,则12a a 的值是()A .2n B .n ﹣1C .n D .11n -【变式3】(2022·山东聊城·统考二模)平面直角坐标系中,将抛物线2y x =-平移得到抛物线C ,如图所示,且抛物线C 经过点()1,0A -和()0,3B ,点P 是抛物线C 上第一象限内一动点,过点P 作x 轴的垂线,垂足为Q ,则OQ PQ +的最大值为______.【变式4】(2021·陕西西安·交大附中分校校考模拟预测)如图,矩形ABCD 中,AB =2,BC =4,AE 为∠BAD 的角平分线,F 为AE 上一动点,M 为DF 的中点,连接BM ,则BM 的最小值是_____.核心考点二面积问题(2021·山东淄博·统考中考真题)已知二次函数2286y x x =-+的图象交x 轴于,A B 两点.若其图象上有且只有123,,P P P 三点满足123ABPABP ABP S S S m === ,则m 的值是()A .1B .32C .2D .4(2021·浙江·统考中考真题)已知抛物线2(0)y ax bx c a =++≠与x 轴的交点为()1,0A 和()3,0B ,点()111,P x y ,()222,P x y 是抛物线上不同于,A B 的两个点,记1P AB △的面积为12,S P AB 的面积为2S .有下列结论:①当122x x >+时,12S S >;②当122x x <-时,12S S <;③当12221x x ->->时,12S S >;④当12221x x ->+>时,12S S <.其中正确结论的个数是()A .1B .2C .3D .4中考数学,最后的三道压轴题,一般都会有一题考察二次函数动点。

9年级上册数学一元二次方程

9年级上册数学一元二次方程

九年级上册数学一元二次方程一、一元二次方程的基本概念一元二次方程是一个只含有一个未知数(通常表示为x),且未知数的最高次数为2的方程。

其标准形式为:ax^2 + bx + c = 0,其中a、b、c是常数,且a≠0。

二、一元二次方程的解法配方法:通过配方将方程转化为(x+b)^2=d的形式,然后直接开平方求解。

公式法:根据一元二次方程的根的判别式Δ=b^2-4ac,当Δ≥0时,方程有2个实根。

根为x=(-b±√Δ)/2a。

因式分解法:将方程左边化为两个因式的乘积,右边化为0,然后分别令每个因式等于0求解。

三、一元二次方程的根的判别式一元二次方程的根的判别式Δ=b^2-4ac。

根据判别式的不同取值,一元二次方程的根的情况分为以下三种:当Δ>0时,方程有两个不相等的实根。

当Δ=0时,方程有两个相等的实根(重根)。

当Δ<0时,方程没有实根(称为虚根),但有共轭复数根。

四、一元二次方程的根与系数的关根的和:x1+x2=-b/a。

根的积:x1*x2=c/a。

根的平方和:x1^2+x2^2=(x1+x2)^2-2x1*x2=(b^2-2ac)/a^2。

的立方:x1^3+x2^3=(x1+x2)(x1^2+x2^2-x1*x2)=-b^3/a^3+c^3/a^3=(c^3-b^3)/a^3。

五、一元二次方程的应用一元二次方程在日常生活和生产实践中有着广泛的应用,如计算几何图形的面积、解决商品利润问题等。

解决这类问题时,需要将实际问题转化为数学模型,即建立一元二次方程,然后求解得到实际问题的答案六、配方法解一元二次方程将一元二次方程化为(x+b)^2=d的形式,然后直接开平方求解。

这种方法适用于所有形式的一元二次方程,但在使用时需要注意运算的准确性。

七、公式法解一元二次方程根据一元二次方程的根的判别式Δ=b^2-4ac,当Δ≥0时,使用公式法可以直接求解出方程的实根。

此方法简洁明了,但需要注意判别式的计算以及实根的存在性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程与几何综合
1.如图,ABC △中,90C ∠=︒,6cm AC =,8cm BC =,点P 从A 沿AC 边向C 点以1cm/s 的速度移动,在C 点停止,点Q 从C 点开始沿CB 边向点B 以2cm/s 的速度移动,在B 点停止.
(1)如果点P ,Q 分别从A 、C 同时出发,经过几秒钟,使28cm QPC S =△?
(2)如果点P 从点A 先出发2s ,点Q 再从点C 出发,再经过几秒钟,24cm QPC S =△?
(3)如果点P 、Q 分别从A 、C 同时出发,经过几秒钟后PQ BQ =?
2.如图,在四边形ABCD 中,AB CD ∥,90A ∠=︒,2CD =,3AB =,7AD =,点P 为线段AD 上一点,CP BP ⊥,求DP 的长.
3.如图,直角梯形AECD 中,AE CD ∥,90E ∠=︒,12AE CE ==,M 为EC 上一点,若45MAD ∠=︒,10DM =,求EM 的长.
4.如图,在ABC △中,90B ∠=︒,5cm AB =,7cm BC =,点P 从点A 开始沿AB 边向点B 以1cm/s 的速度移动,点Q 从点B 开始沿BC 边向点C 以2cm/s 的速度移动.
(1)如果P ,Q 分别从A ,B 同时出发那么几秒后,PQ 的长度等于?
(2)在(1)中,PQB △的面积能否等于27cm ?请说明理由.
5.如图,在矩形ABCD 中,12cm AB =,6cm BC =,点P 从A 点出发沿AB 以2cm/s 的速度向点B 移动,一直到达点B 为止;同时,点Q 从C 点出发沿CD 以1cm/s 的速度向点D 移动,当点P 停止运动时,点Q 也停止运动.
(1)经过多长时间P 、Q 两点之间的距离是6cm ?
(2)经过多长时间P 、Q 两点之间的距离是10cm ?
6.已知正方形ABCD 的边长为10,现改变该正方形的边长,使其变为矩形.若AD 的长增加了x ,AB 的长减少了kx (其中0k >,0)x >.
(1)若2k =,请说明改变后得到的矩形面积是否可为125;
(2)若改变后得到的矩形面积仍为100,求x 与k 的数量关系.。

相关文档
最新文档