制氧-空气分离原理
小型便携式制氧机工作原理

小型便携式制氧机工作原理
小型便携式制氧机工作原理基本上是通过分子筛技术实现的。
下面是其工作原理的详细解释:
1. 空气采集:首先,小型便携式制氧机会采集空气。
它通常包括一个风扇和一根用于进气的管道。
风扇会将室外的空气吸入,并将其送入机器内部。
2. 过滤杂质:空气经过进气管道进入制氧机后,会经过一系列的过滤器,以去除其中的杂质,例如灰尘和微小颗粒。
这可以确保输出的氧气质量高且纯净。
3. 压缩空气:接下来,制氧机会将经过过滤的空气送入一个压缩机。
压缩机会将空气压缩成更高的压力,以便进行后续的处理。
4. 分子筛吸附:压缩空气进入制氧机后,会经过一个装有分子筛的容器。
分子筛是一种特殊的材料,具有选择性地吸附氮气。
当压缩空气通过分子筛时,氮气分子会被吸附住,而氧气分子则被留下。
5. 氧气收集:吸附氮气后,只剩下富含氧气的空气。
制氧机会将这部分氧气分离出来,并进行进一步的处理。
通常会使用一个压力异构装置来调节和稳定输出的氧气压力。
6. 吸附剂再生:分子筛的吸附能力是有限的,当分子筛吸附了足够多的氮气后,需要进行再生以释放吸附的氮气。
这一过程
通常包括两个步骤,即脱附和冲洗。
脱附时,降低分子筛的压力和温度,使其释放吸附的氮气。
冲洗时,通过向分子筛中通入一定量的纯净空气,以清洁分子筛并准备好下一次的吸附过程。
以上是小型便携式制氧机的工作原理。
通过以上步骤,它可以从空气中提取出富含氧气的空气,并将其提供给需要氧气疗法的人们使用。
工业制氧气的原理化学

工业制氧气的原理化学
工业制氧气的原理化学主要涉及两个过程:空气分离和制氧。
1. 空气分离:空气主要由氮气(约78%)、氧气(约21%)、水蒸气和稀有气体组成。
工业生产中,采用常见的空气分离技术是通过冷却压缩空气,然后通过膜技术或吸附剂技术(如分子筛或活性炭)分离氧气和氮气。
2. 制氧:制氧通常使用两种主要的工艺:常压吸附法和膜分离法。
- 常压吸附法:这种方法使用吸附剂,例如分子筛,可以选择性地吸附氮气,而不吸附氧气。
空气首先被压缩,并通过吸附床,其中用于吸附氮气。
氧气则从吸附床中通过洗涤剂冲洗,从而分离出来。
然后,吸附床通过排空或升压进入再生,以将吸附的氮气释放掉。
- 膜分离法:膜分离法使用特殊的膜材料,如聚合物膜或陶瓷膜,可以选择性地通过氧气,而阻止氮气的通过。
将压缩的空气通过膜,氧气可以通过膜的孔洞或固溶体扩散到另一侧,而氮气被阻拦。
通过这种方式,可以有效地分离氧气和氮气。
上述两种工艺可以根据实际需要进行调整和组合,以满足产量和纯度的要求。
制氧机工作原理是什么

制氧机工作原理是什么制氧机工作原理是什么_使用方法制氧机制氧是属于物理制氧,而氧气瓶或者工业使用的氧气一般是化学制氧,化学制氧是通过化学反应来制造氧气,以下是小编整理的制氧机工作原理是什么,希望可以提供给大家进行参考和借鉴。
制氧机工作原理是什么用分子筛物理吸附和解吸技术。
制氧机内装填分子筛,在加压时可将空气中氮气吸附,剩余的未被吸收的氧气被收集起来,经过净化处理后即成为高纯度的氧气。
分子筛在减压时将所吸附的氮气排放回环境空气中,在下一次加压时又可以吸附氮气并制取氧气,整个过程为周期性地动态循环过程,分子筛并不消耗。
市面上有多种家用制氧机,由于制氧的原理不同,各家用制氧机的使用特点也就不同。
家用制氧机制氧原理有:1、分子筛原理;2、高分子富氧膜原理;3、电解水原理;4、化学反应制氧原理。
而分子筛制氧机是唯一成熟的,具有国际标准和国家标准的制氧机。
制氧机吸氧浓度多少合适制氧机吸氧浓度应该控制在93%左右,这种浓度最为合适。
制氧机通过空气中含氧量高的空气分离出来氧气,因此产生的氧气浓度比空气中的氧气浓度要高。
一般情况下,制氧机的吸氧浓度可以调节,但是在医疗用途中,为了避免氧气中的其他成分对身体产生影响,一般选择93%的吸氧浓度。
这样可以使得身体吸收到足够的氧气,达到最佳的治疗效果。
需要注意的是,在使用制氧机吸氧时,要定期检查设备是否正常,同时要避免机器长时间运行,以免对身体产生不必要的影响。
此外,吸氧浓度过高也会对身体造成危害,因此在使用制氧机的时候要进行严格的浓度控制。
家用制氧机的使用方法1、首先将制氧机转移到床边,或者其它有插座的位置,方便插电使用,一般来说现在很多制氧机都带有滚轮,使用和转移都非常方便;2、取出湿化杯和吸氧管进行消毒(初次使用的吸氧管或湿化杯如有异味,可用白醋与温水1:3比例配置的溶液浸泡30分钟,然后清水洗净晾干即可);3、根据湿化杯的水位刻度标记进行加水,加水量不要超过水位刻度标记。
空分制氧工程技术介绍

空分制氧工程技术介绍一、空气分离制氧的主要工艺及其比较氧气在工业生产和日常生活中有广泛的用途,空气中含有21%(体积浓度)的氧气,是最廉价的制氧原料,因此氧气一般都通过空气分离制取。
■空气分离制氧主要工艺1.深冷分离工艺:传统制氧技术、氧气纯度高、产品种类多,适用于大规模制氧。
2.变压吸附工艺(PSA,Pressure swing absorption):新兴技术,投资小、能耗低,适用于氧气纯度不太高、中小规模应用场合。
3.膜分离工艺:尚不成熟,基本未得到工业应用。
■变压吸附制氧技术特点——与深冷制氧技术相比●工艺流程简单,不需要复杂的预处理装置;●产品氧气纯度可达95%,氮气含量小于1%,其余为氩气;●制氧规模10000m3/h以下时,制氧电耗更低、投资更小;●装置运行自动化程度高,开停车方便快捷;●装置运行独立性强,安全性高;●装置操作简单,操作弹性大(部分负荷性优越,负荷转换速度快);●装置运行和维护费用低;●土建工程费用低,占地少。
■深冷空分制氧工艺与变压吸附制氧工艺的比较二、变压吸附空分制氧工艺原理★变压吸附空气分离制氧原理空气中的主要组份是氮和氧,通过选择对氮和氧具有不同吸附选择性的吸附剂,设计适当的工艺过程,使氮和氧分离制得氧气。
氮和氧都具有四极矩,但氮的四极矩(0.31Â)比氧的(0.10Â)大得多,因此氮气在沸石分子筛上的吸附能力比氧气强(氮与分子筛表面离子的作用力强)。
因此,当空气在加压状态下通过装有沸石分子筛吸附剂的吸附床时,氮气被分子筛吸附,氧气因吸附较少,在气相中得到富集并流出吸附床,使氧气和氮气分离获得氧气。
当分子筛吸附氮气至接近饱和后,停止通空气并降低吸附床的压力,分子筛吸附的氮气可以解吸出来,分子筛得到再生并重复利用。
两个以上的吸附床轮流切换工作,便可连续生产出氧气。
氩气和氧气的沸点接近,两者很难分离,一起在气相得到富集。
因此变压吸附制氧装置通常只能获得浓度为90%~95%的氧气(氧的极限浓度为95.6%,其余为氩气),与深冷空分装置的浓度99.5%以上的氧气相比,又称富氧。
制氧 空分

制氧空分
制氧通常指的是工业上通过空气分离(空分)过程来生产氧气的过程。
空气分离是一种物理分离过程,利用空气中各组分的沸点不同的原理来分离氧气、氮气和其他气体。
空分设备的核心是空气分离单元(ASU),其中最常用的技术是液化空气法和分子筛吸附法。
1. 液化空气法:
这种方法首先将空气压缩并冷却至其液化点,通常在-196°C左右。
液态空气在低
温和高压下分离成液氮和液氧。
由于液氮的沸点低于液氧,通过蒸发液态空气,先蒸发的是液氮,留下的是液氧。
这个过程称为蒸馏。
蒸馏后的液氧被收集并蒸发至气态,以供使用。
2. 分子筛吸附法:
这种方法使用一种特殊的分子筛材料,如沸石,来分离氧气和氮气。
分子筛能够选
择性地吸附氮气分子,因为氧气的分子较小,能够通过分子筛的孔隙。
在吸附周期结束后,通过加热分子筛来释放吸附的氮气,然后重新吸附氧气。
制氧过程产生的氧气可以用于多种工业应用,包括钢铁制造、金属加工、玻璃生产、化学品合成、医疗用途以及作为火箭燃料的氧化剂等。
在操作空分设备时,安全是首要考虑的因素,因为氧气是一种高度活泼的气体,能够支持燃烧和加速腐蚀。
因此,空分装置通常需要安装在远离易燃易爆物质的地方,并且需要配备严格的安全措施。
医用制氧机的工作原理及流程

医用制氧机的工作原理及流程1.原理-压力摇摆吸附(PSA)制氧机:PSA制氧机通过氧气和氮气在分子筛上的吸附速度差异实现分离。
它包括两个压力容器,一个用于吸附空气中的氮气,使氧气被浓缩,另一个用于排出氮气。
通过交替改变压力来实现吸附和排出的过程。
-膜分离制氧机:膜分离制氧机通过特殊的膜材料将空气中的氮气和其他杂质分离,从而提高氧气的浓度。
膜过滤原理利用气体在不同速度下通过膜孔的特性,分离出氮气和水分等杂质,使氧气单独通过。
2.流程-过滤:首先,空气会经过一个过滤器,去除其中的粉尘和杂质,确保输出的氧气干净。
-加压:然后,空气会被一个压缩机加压,将其压缩成一定的压力。
压缩机通常采用旋转式或活塞式。
-分离:在压力摇摆吸附制氧机中,压缩的空气会进入一个分子筛装置,其中的氮气被吸附,并被逐渐排出,从而使氧气浓度增加。
在膜分离制氧机中,压缩的空气会通过膜材料,将氮气和其他杂质分离出来,使氧气浓度增加。
-储存:浓缩后的氧气会被储存在一个气体储存罐内,以备给病人使用。
储存罐通常采用高压气瓶或低压气囊等形式。
-输出:经过储存,氧气会通过流量调节器控制输出流量,并通过导管输送到病人面罩或呼吸设备,供其进行呼吸。
-控制:医用制氧机通常配备控制系统,可以设置氧气浓度、流量等参数,并监控设备的工作状态。
总结:医用制氧机通过分子筛或膜技术将空气中的氮气和杂质分离,提高氧气浓度并输出给病人。
工作流程包括过滤、加压、分离、储存、输出和控制等步骤。
制氧机的选择取决于具体的需求和使用环境,而工作原理的不同也导致了制氧机的性能和效率的差异。
医用制氧机是一项重要的医疗设备,广泛应用于医院、家庭护理等场所,为患者提供必需的氧气支持。
分子筛制氧机的原理

分子筛制氧机的原理分子筛制氧机是一种通过物理方法将空气中的氧气与其他气体分离,提取纯净的氧气用于医疗或工业用途的设备。
其原理基于分子筛的选择性吸附作用。
分子筛是一种多孔性材料,由一系列具有规则孔道的晶格结构组成。
这些孔道的大小与不同分子的大小相匹配,因此可以选择吸附特定分子。
分子筛通常由硅铝酸盐等无机物质制成。
分子筛制氧的过程主要包括压缩、过滤、吸附和脱附等几个步骤。
首先,在分子筛制氧机内部,空气通过机器自带的压缩机进行压缩。
通过压缩,空气的体积被减小,同时产生了一定的温度。
然后,压缩后的空气通过过滤器,去除其中的杂质和颗粒物质,确保进入下一步处理的气体纯净。
接下来的步骤是吸附过程。
分子筛中的孔道大小刚好与氮氧等分子的大小相匹配。
在通过孔道时,氮氧分子与分子筛表面相互作用,被选取吸附下来。
而其他较小和较大分子则可以顺利通过孔道,不被分子筛所吸附。
由于氧气分子相对较小,因此在分子筛上稍微汇集了一部分氧气分子。
分子筛通过定时循环的方式进行吸附和脱附。
在吸附一段时间后,分子筛饱和,需要进行脱附操作。
脱附一般采用减压冷却的方法,即减小压力并使分子筛降温,使吸附在分子筛上的氮氧分子重新释放出来。
脱附后的分子筛恢复到初始状态,可以再次进行吸附过程。
最后,脱附后的纯氧气被收集起来,用于需要纯氧气的医疗设备或工业过程中。
分子筛制氧机的主要优势是其高纯度和可连续产氧的能力。
由于分子筛的选择性吸附作用,可以将氧气从空气中完全分离出来,并达到高达90%以上的纯度。
而且,由于分子筛的可循环使用特性,使得分子筛制氧机可以连续工作,不需要频繁更换分子筛。
分子筛制氧机在医疗领域具有广泛应用,用于治疗呼吸系统疾病、缺氧症以及作为手术和急救过程中的氧气供应。
此外,在工业领域,分子筛制氧机也用于煤矿、化工、冶金等行业的氧气供应,以及高温熔炼和金属加工等工艺。
分子筛制氧机的原理主要基于分子筛对不同分子大小的选择吸附作用。
通过多次循环吸附和脱附过程,将空气中的氧气从其他气体中分离出来,得到高纯度的氧气。
空分原理

空分原理绪论一、空气分离的几种方法:先将空气→压缩→膨胀→液化然后在精馏塔内利用氧、氮沸点的不同,用精馏方法分离是两个过程:液化和精馏是深冷和精馏的统一上塔主要是分离,下塔是液化和初步分离特点:产量大,纯度高缺点:能耗大,设备投资大2、吸附法:利用固体吸附剂对气体混合物种某些组分吸附能力的差异进行的。
(1)、变压吸附制氧,用pu-8型分子筛(2)、变压吸附制氮专用分子筛工艺特点:优点:方便,能耗小,投资小,只是再生时才有能量损耗缺点:产量小,纯度不够,易损件多O2目前能做到8000Nm3/h,纯度95%,N299.9%3、薄膜渗透法:利用有机聚合膜的渗透选择性从流体混合物中使特定组分分离的方法。
主要用来制氮。
特点:同变压吸附法基本相同,不同的是基本没有能耗。
二、学习的基本内容1、热力学第一、第二定律、传热机理、流体力学2、获得低温的方法(1)相变制冷、(2)、等熵膨胀(3)、绝热节流3、溶液热力学基础:拉乌尔定理、康诺瓦罗夫定理4、低温工质的一些物性5、液化循环6、气体分离三、空分的应用领域1、钢铁,1t钢50-60Nm3O22、能源,城市煤气化3、化工领域,化肥、电子、玻璃4、造纸,Ca2ClO35、国防工业火箭研究、太空研究6、机械行业焊接、切割Ar:不锈钢、保护气Ke:发光材料、灯泡绝缘玻璃四、发展趋势(1)大型、超大型(2)四大启动:煤化工、煤化工联合循环发电、液化天然气接受站、还原法炼铁(1t铁500-600Nm3O2)煤化工:包括煤代油:甲醇混合燃料85%甲醇、15%汽油煤制油:煤直接制油C+H=CnHm 代表shell炉煤间接制油:水煤气C+H2O=高温高压→CO+H2→德士古炉→甲醇液化天然气接受站主要回收冷量。
(3)、二次采油:产量下降用挤海绵的方法向油井注氮气(4)、托卡马克装置(人造太阳),受控热核聚变空分装置最大的是南非索萨尔的11.388万方/h制氮装置理论上和实际上能做到18万方/h,目前国内最大的是杭氧的6万方/h,在杭州还有一个液空杭州,是独资企业,给加拿大做了一套10万方第一章空分工艺流程的组成分馏塔系统分为:制冷、换热、精馏;预冷系统分为氨水冷和冷气机组仪控和电控系统贯穿整个系统。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Q Q1 Q2 Q3
第一节 净化系统
一、除尘方法: 1、 惯性力除尘:气流进行剧烈的方向改变,借助尘粒本身的惯性作用分离; 2、 过滤除尘:空分中最常用的方法; 3、 离心力除尘:旋转机械上产生离心力; 4、 洗涤除尘: 5、 电除尘: 二、空分设备对除尘的要求 对 0.1 m 以下的粒子不作太多要求,因过滤网眼太小,阻力大; 对 0.1 m 以上的粒子要 100%的除去; 三、过滤除尘的两种过滤方式 1、内部过滤:松散的滤料装在框架上,尘粒在过滤层内部被捕集; 2、表面过滤:用滤布或滤纸等较薄的滤料,将尘粒黏附在表面上的尘粒层作为过滤层, 进行尘粒的捕集; 自洁式过滤器:1 m 以上 99.9%以上; 阻力大于 1.5KPa。就进行自清除; 文丘里管(文式管) :将空气压力能转换为速度能; 滤筒可以工作时更换; 四、除尘装置的性能评价 1、流量(处理能力) :选加工空气量的两倍; 2、压力损失; 3、除尘效率; 4、寿命;
2、冻结法:切换板式:利用氮气蒸发和升华。淘汰的原因:要求污氮的量大,氧氮产 量 1:1.2; 3、吸附法:利用固体吸附剂对气体混合物中多组分吸附能力的差异进行的;氧氮产另 比 1: (2.5~3.5) ; 二、吸附过程的基本原理 当气体与固体吸附剂相接触时,在固体表面或内部将发生容纳气体的现象(被吸附 的物质叫吸附质,起吸附作用的物质叫吸附剂) 。 三、吸附的两种类型 1、 物理吸附:靠分子间作用力(范德华力) ,吸附剂与吸附质的化学性质基本不变; 2、 化学吸附:靠吸附质与吸附剂形成化学键,由于吸附键的结构影响,化学性质变化 的。 吸附是一个传质过程,有两个阶段: A.外扩散:从气体的主体通过吸附剂颗粒周围气膜到颗粒表面; B.从表面进入空穴内部有表面扩散和空扩散。. 四、对吸附剂的几点要求 1、吸附剂必须是多孔性物质: 2、吸附剂必须有特定的选择性; 3、吸附容量要大; 4、能再生且能多次使用; 5、有足够的机械强度不破碎; 6、价格便宜; 五、吸附剂的分类 1、活性炭;
第二节
概念:
空气压缩系统
等温效率:等温效率 T ,为等温功率 N T 与轴功率 N 之比,即: T 控制调节能力:防喘振; 振动: 经济性:好的用汽轮机,蒸汽机,燃汽轮机;
NT N
第三节
一、分类 1、 氮水预冷:适用于大中型空分; 2、 冷水机组:适用于< 4000 的空分; 二、组成 空冷塔,水冷塔,水泵,冷水机组 氮水预冷系统分为两类:
2、硅胶:硅胶的化学式为: SiO2 nH 2 O 。当硅胶吸附水分时,可以达到自身重量的 50%, 相对湿度为 60%时, 吸湿量也可达到 24%, 但是硅胶吸附水分后温升高, 易破碎;可分为粗孔和细孔硅胶; 3、铝胶:即氧化铝的水合物,化学式为 Al 2 O3 nH 2 O ;性质很稳定,无毒,坚实, 浸 入水中不软化、膨胀或崩裂,耐磨抗冲击; 4、分子筛; 制氧机应用的分子筛为沸石分子筛。化学通式如下:
绪
论
一、空气分离的几种方法 1、 低温法(经典,传统的空气分离方法) 压缩 膨胀 液化(深冷) 精馏 低温法的核心 2、 吸附法:利用固体吸附剂(分子筛、活性炭、硅胶、铝胶)对气体混合物中某些特 定的组分吸附能力的差异进行的一种分离方法。 特点:投资省、上马快、生产能力低、纯度低(93%左右) 、切换周期短、对阀的要 求或寿命影响大。 3、 膜分离法:利用有机聚合膜对气体混合物的渗透选择性。
第五节
制冷系统
§5-1 基本概念 一、理想气体 具有两个特性:a.分子间弹性,没有作用力;b 不考虑分子本身所占的体积。 实际气体在 P 不太高,比容较大的情况下,可以当作理想气体处理。 Pv RT . 二、范德瓦尔方程
转效点:当传质区前沿开始达到吸附器出口截面时,即流体出吸附剂层,被吸组分浓 度明显增加的点。如上图的 E 点。 七、吸附能力的衡量 1、静吸附容量:在一定温度和被吸附组分浓度下,每单位质量(体积)吸附剂达到吸 附平衡时的所能吸附的最大量,即吸附剂所能达到的最大吸附量与吸附剂量
的比。 2、动吸附容量:当吸附器后刚出现吸附器时,吸附器内单位质量(体积)吸附剂的平 均吸附量,也就是吸附剂达到转效点的吸附量,通常用转效点来计算,即从 流体开始接触吸附剂到达“转效点”的时间。 一般取动吸附容量为静吸附容量的 40%~50%,计算分子筛用量的一个重要指标。 八、吸附热 吸附热:流体分子被分子筛吸附到吸附剂表面所放出的热量;
分子筛
温度升高:气体冷凝成液体,放热,放热设计计算一般取温差 3℃,实际分子筛使用 中温升一般在 4℃—6℃; 分子筛吸附器,以下两种形式;
单层床
双层床
分子筛 分子筛 活性氧 化铝
同时双层床再升温度相对低些,节能。 九、影响吸附容量的因素 1、吸附过程的温度和被吸附组分的分压力 温度越低,吸附效果越好,8~10℃分子筛吸附效果最好; 分压越高,代表被吸附组分的浓度越高,吸附效果也越好; 2、气体流速:流速越大,吸附效果越差,动吸附容量降低是气体与吸附剂接触时间短。 在中压流程中,气体进吸附器流速为 0.4m/s; 在全低压流程中,气体进吸附器流速为 0.25m/s; 3、 吸附剂再生的完善程度:再生气源温度,进:170℃——190℃; 出:80℃——95℃; 4、 吸附剂层的厚度与水平度:水平度很重要,会影响纯化器的正常有效运行。 十、结构类型 立式:中小型,占地面积小; 卧式:中大型; 现法液空:立式径向流吸附器。
第一章 空分工艺流程的组成
一、工艺流程的组织 我国从 1953 年,在哈氧第一台制氧机,目前出现的全低压制氧机,这期间经历了几代 变革: 第一代:高低压循环,氨预冷,氮气透平膨胀,吸收法除杂质; 第二代:石头蓄冷除杂质,空气透平膨胀低压循环; 第三代:可逆式换热器; 第四代:分子筛纯化; 第五代: ,规整填料,增压透平膨胀机的低压循环; 第六代:内压缩流程,规整填料,全精馏无氢制氩; ○全低压工艺流程:只生产气体产品,基本上不产液体产品; ○内压缩流程:化工类:5~8 MPa :临界状态以上,超临界; 钢铁类:3.0 MPa ,临界状态以下; 二、各部分的功用 净化系统 压缩 冷却 纯化 分馏 (制冷系统,换热系统,精馏系统) 液体:贮存及汽化系统; 气体:压送系统; ○净化系统:除尘过滤,去除灰尘和机械杂质; ○压缩气体:对气体作功,提高能量、具备制冷能力; (热力学第二定律) ○预冷:对气体预冷,降低能耗,提高经济性 有预冷的一次节流循环比无预冷的一次节流循环经济,增加了制冷循环,减轻 了换热器的工作负担,使产品的冷量得到充分的利用; ○纯化:防爆、提纯; 吸附能力及吸附顺序为: H 2 O C 2 H 2 CO2 ; ○精馏:空气分离 换热系统:实现能量传递,提高经济性,低温操作条件; 制冷系统:①维持冷量平衡 ②液化空气 膨胀机 W h 方法 节流阀 h 膨胀机制冷量效率高:膨胀功 W; 冷损:跑冷损失 Q1 复热不足冷损 Q2 生产液体产品带走的冷量 Q3
T
等温线
等温节 流效应
等焓线
S
五、设置氮水预冷系统的优点 1、保证冷量充足(膨胀量可减少) ; 2、减少主换热器的热负荷; 3、减低空气的饱和含水量,减轻纯化系统的工作负荷; 4、温度越低,工况越稳定。 六、结构类型 1、空冷塔:a.空筒式:洗涤空气灰尘、 NH 3 , H 2 S 等; b.大孔径穿流板;阻力较大,10KPa 以上; c.散堆填料:目前使用最多,鲍尔环:表面积大,传质效果好,阻力小; 2、水冷塔;a.喷淋式; b.塔板式; c.散堆填料; 3、冷水机组:逆卡诺循环
十一、再生(饱和后进行再生,恢复吸附能力) 有两种方法: 1、 加温再生:利用吸附剂高温时吸附容量降低的原理把加温气体通入吸附层,使吸附 层温度升高,被吸附组分解吸; 目前使用最广泛。 2、 降压再生(压力交变再生) :再生时,降低吸附器内压力,甚至抽真空,使被吸附 分子的分压力降低,分子浓度降低,则吸附在吸附剂表面的分子数目也相应减小。 这是道尔顿分压定律的理论。 十二、纯化系统的节能措施 降低加热功率,如何才能降低呢?如下: 1、 单层床变双层床; 2、 再生过程中,加热——冷吹分阶段进行; 3、 设置蓄热器; 4、 蒸汽加热器代替电加热器(针对有蒸汽源的用户) ,蒸汽属于无序能,低品位,电 能属于有序能,高品位; 5、 采用 PSA 解吸技术:初投资大,运行成本小; 6、 设置污氮预换热器: (目前开始使用)在空压机末级出口增加污氮换热器,使污氮 达到 40℃—50℃,然后进入加热器再进入纯化器,但空压机排压增加(因为增加换 热器阻力增加)且进口膨胀节以进口为主,成本增加;
空气预冷系统
a.空压机末级冷却器与空冷塔合二为一:氮水预冷系统热负荷大,传热温差大,常用; b.空压机末级冷却器单独设置; 三、工作原理 利用来自冷箱内污氮、氮气含水的不饱和性吸收蒸发潜热使循环水降温;
H 2O
WN N2
热质交换:显热——温差; 潜热——相变; 潜热交换 显热交换; 常温:水——100℃水蒸气 100 千卡以上; 水 100℃——水蒸汽 539 千卡; 冷箱内来的 WN 相对湿度为 20%~30%,非常干燥,相对湿度是相变发生的主要条件。 四、预冷系统的作用 1、实现空气的等温压缩,增大等温效率; 2、降低空气进主换热器的温度; 3、使纯化条件工作在最佳状态。
第等气体组分外,还有水蒸汽、二氧化碳、乙炔及少量 的灰尘等归体杂质。这些杂质随空气进入空压机与空气分离装置中会到来较大危害,固体杂 质会磨损空压机运转部件,堵塞冷却器,降低冷却效果;水蒸气和二氧化碳在空气冷却过程 中会冻结析出,将堵塞设备及气体管道,致使空分装置无法生产;乙炔进入空分装置后会导 致爆炸事故的发生,所以为了保证制氧机的安全运行,清除这些杂质是非常有必要的。 一、 H 2 O, CO2 , C n H m 净除的几种方法 1、吸收法: 2 NaOH CO2 NaCO3 H 2 O 现在已不使用;
分子筛目前主要有 A 型、X 型和 Y 型; 常用的有外型有球状和条状;尺寸为 2 ~ 6 ; 目前空分上使用的分子筛都是 13x 分子筛,13x 分子筛是一种离子形吸附剂,对 极性分子有强的亲和力。13x 分子筛有条形,球形之分;且有各种型号,可以根据所 需效果选择。 分子筛具有的吸附特点: a.选择吸附: b.干燥度高:通常干燥后空气露点可达到负 70 度; c.有共吸附能力:可以同时吸附水、二氧化碳、乙炔等; d.分子筛具有高的稳定性,温度达到 700℃时,仍不熔性; e.有简单的加热可使其再生; 六、吸附过程的进行 吸附平衡:当吸附速度和脱附速度相等时(P,T 一定时) ,吸附与脱附是同时进行的, (只不过是速度不一致,当速度一致时就是平衡状态)如下图: