弯曲内力与弯曲应力

合集下载

材料力学第04章(弯曲内力)-06讲解

材料力学第04章(弯曲内力)-06讲解
C
下面几章中,将以对称弯曲为主,讨论梁的应力和变形计算。
§4–2 受弯杆件的简化 梁的支承条件与载荷情况一般都比较复杂,为了便于
分析计算,应进行必要的简化,抽象出计算简图。
1. 构件本身的简化
a
F
A
B
l
a
F
A
B
l
取梁的轴线来代替梁
2. 支座简化 (1)固定铰支座
固定铰
2个约束,1个自由度。
(2)可动铰支座
按照习惯,正值的剪力值绘于x轴上方,正的弯矩值绘于x 轴的下方(即绘于梁弯曲时受拉的一侧)。
(b)
FSx qx 0 x l
M x qx x qx2
22
(c)
0 x l
材料力学Ⅰ电子教案
(a) (b) (c)
第四章 弯曲应力
梁横截面上最大剪力值? 最大弯矩值? 位置?
固定铰
1个约束,2个自由度。
(3)固定端
Fx
固定端
3个约束,0个自由度。
M Fy
可动铰 可动铰
3. 梁的三种基本形式 (1)简支梁 A
F
B
F
F
F
(2)外伸梁
B A
q (3)悬臂梁
4. 载荷的简化
作用于梁上的载荷(包括支座反力)可简化为三种类型:
q
F
M
B A
集中力、集中力偶和分布载荷。
5. 静定梁与超静定梁 静定梁:由静力学方程可求出支反力,如上述三种基本形式
向上的外力产生
正弯矩
9kN
M
9kN
向下的外力产生
负弯矩
左:M=9×2-4×1=14kN.m
右:M=9×4-4×3-10×1=14kN.m

材料力学-弯曲变形

材料力学-弯曲变形

(向下)
qB
qmax
w(l)
Pl 2 2EI
(顺时针)
例题2
图示的等截面简支梁长为l,抗弯刚度为
EI,在右端受有集中力偶M0的作用,求梁任
一截面的转角和挠度。
y
解:
由整体平衡得 FAx=0, FAy= FBy= M0/l 从而,截面的弯矩为
M(x)= xFAy= xM0/l
FAx A x o
FAy
横截面变形:
线位移:长度变化
水平方向—小变形假定,挠曲轴平坦,忽略不计 垂直方向—挠度 w= w(x)
转角:角度变化
横截面相对于原位置转过的夹角,
一般用q (x)表示截面转角,并且以逆时针为正
q'
对于细长梁,略去剪力对变形影响 平截面假设成立: 变形的横截面与挠曲轴垂直
q q tan q dw
(l 2
a2)
y
例题3
P x
A
C
于是,梁的挠曲线方程为 FAx
l
w
w1 w2
(x) (x)
0 xa a xb
FAy
a
b
Pb
6 EIl
Pa
6 EIl
x3 (b2 l2 )x (l x)3 (a2 l2
)(l
x)
0 xa a xl
转角方程为
q w ww12((xx))
0 xa a xb
Pb 2EIl
x2
C1
ቤተ መጻሕፍቲ ባይዱdx
Pb 6EIl
x3
C1x
D1
同理,对CB段
w2
w2dx C2
Pa EIl
(l
x)dx
C2

材料力学弯曲内力

材料力学弯曲内力

材料力学弯曲内力材料力学是研究物质在外力作用下的变形和破坏规律的科学。

而弯曲内力则是材料力学中的一个重要概念,它在工程实践中有着广泛的应用。

弯曲内力是指在梁或梁式结构中由外力引起的内部应力状态,它是由梁的外部受力状态和几何形状决定的。

在工程设计和结构分析中,了解和计算弯曲内力是非常重要的,本文将对材料力学中的弯曲内力进行详细的介绍。

首先,我们来看一下弯曲内力的产生原理。

当梁受到外力作用时,梁内部会产生弯曲变形,这时梁内部就会产生弯曲应力。

弯曲内力包括正应力和剪应力两部分,正应力是沿梁的纵向方向产生的拉压应力,而剪应力则是梁内部产生的剪切应力。

这些内力的大小和分布是由梁的受力情况和截面形状决定的。

其次,我们来讨论一下弯曲内力的计算方法。

在工程实践中,我们通常采用梁的截面性质和外力矩的大小来计算弯曲内力。

对于矩形截面的梁,我们可以通过简单的公式来计算出弯曲内力的大小和分布。

而对于复杂形状的截面,我们则需要借助数值计算或者有限元分析来得到准确的结果。

在实际工程中,我们通常会使用专业的结构分析软件来进行弯曲内力的计算,这样可以大大提高计算的准确性和效率。

接着,我们来谈一下弯曲内力的影响因素。

弯曲内力的大小和分布受到多种因素的影响,包括外力的大小和方向、梁的截面形状和材料性质等。

在设计和分析过程中,我们需要充分考虑这些因素,以确保结构的安全性和稳定性。

此外,梁的支座条件和边界约束也会对弯曲内力产生影响,这些因素需要在计算中进行合理的考虑和处理。

最后,我们来总结一下弯曲内力的重要性。

弯曲内力是梁和梁式结构中非常重要的内部应力状态,它直接影响着结构的安全性和稳定性。

在工程设计和分析中,准确计算和合理分析弯曲内力是非常重要的,它可以帮助工程师们更好地理解和把握结构的受力情况,从而保证结构的安全性和可靠性。

总之,弯曲内力是材料力学中一个重要的概念,它在工程实践中有着广泛的应用。

通过对弯曲内力的了解和计算,我们可以更好地设计和分析工程结构,保证结构的安全性和稳定性。

材料力学弯曲应力_图文

材料力学弯曲应力_图文

§5-3 横力弯曲时的正应力
例题6-1
q=60kN/m
A
1m
FAY
C
l = 3m
FS 90kN
120
1.C 截面上K点正应力 2.C 截面上最大正应力
B
x
180
K
30 3.全梁上最大正应力 z 4.已知E=200GPa,
FBY
C 截面的曲率半径ρ y
解:1. 求支反力
x 90kN M
x
(压应力)
目录
目录
§5-2 纯弯曲时的正应力
正应力分布
z
M
C
zzy
x
dA σ
y
目录
§5-2 纯弯曲时的正应力
常见截面的 IZ 和 WZ
圆截面 空心圆截面
矩形截面 空心矩形截面
目录
§5-3 横力弯曲时的正应力
横力弯曲
6-2
目录
§5-3 横力弯曲时的正应力
横力弯曲正应力公式
弹性力学精确分析表明 ,当跨度 l 与横截面高度 h 之比 l / h > 5 (细长梁)时 ,纯弯曲正应力公式对于横 力弯曲近似成立。 横力弯曲最大正应力
§5-3 横力弯曲时的正应力
q=60kN/m
A
1m
FAY
C
l = 3m
FS 90kN
120
2. C 截面最大正应力
B
x
180
K
30 C 截面弯矩 z
FBY
y
C 截面惯性矩
x 90kN M
x
目录
§5-3 横力弯曲时的正应力
q=60kN/m
A
1m
FAY
C
l = 3m

《材料力学》 第五章 弯曲内力与弯曲应力

《材料力学》 第五章 弯曲内力与弯曲应力

第五章 弯曲内力与应力 §5—1 工程实例、基本概念一、实例工厂厂房的天车大梁,火车的轮轴,楼房的横梁,阳台的挑梁等。

二、弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线。

变形特点——杆轴线由直线变为一条平面的曲线。

三、梁的概念:主要产生弯曲变形的杆。

四、平面弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在梁的纵向对称平面内(通过或平行形心主轴且过弯曲中心)。

变形特点——杆的轴线在梁的纵向对称面内由直线变为一条平面曲线。

五、弯曲的分类:1、按杆的形状分——直杆的弯曲;曲杆的弯曲。

2、按杆的长短分——细长杆的弯曲;短粗杆的弯曲。

3、按杆的横截面有无对称轴分——有对称轴的弯曲;无对称轴的弯曲。

4、按杆的变形分——平面弯曲;斜弯曲;弹性弯曲;塑性弯曲。

5、按杆的横截面上的应力分——纯弯曲;横力弯曲。

六、梁、荷载及支座的简化(一)、简化的原则:便于计算,且符合实际要求。

(二)、梁的简化:以梁的轴线代替梁本身。

(三)、荷载的简化:1、集中力——荷载作用的范围与整个杆的长度相比非常小时。

2、分布力——荷载作用的范围与整个杆的长度相比不很小时。

3、集中力偶(分布力偶)——作用于杆的纵向对称面内的力偶。

(四)、支座的简化:1、固定端——有三个约束反力。

2、固定铰支座——有二个约束反力。

3、可动铰支座——有一个约束反力。

(五)、梁的三种基本形式:1、悬臂梁:2、简支梁:3、外伸梁:(L 称为梁的跨长) (六)、静定梁与超静定梁静定梁:由静力学方程可求出支反力,如上述三种基本形式的静定梁。

超静定梁:由静力学方程不可求出支反力或不能求出全部支反力。

§5—2 弯曲内力与内力图一、内力的确定(截面法):[举例]已知:如图,F ,a ,l 。

求:距A 端x 处截面上内力。

解:①求外力la l F Y l FaF m F X AYBY A AX)(F, 0 , 00 , 0-=∴==∴==∴=∑∑∑ F AX =0 以后可省略不求 ②求内力xF M m l a l F F F Y AY C AY s ⋅=∴=-==∴=∑∑ , 0)( , 0∴ 弯曲构件内力:剪力和弯矩1. 弯矩:M ;构件受弯时,横截面上存在垂直于截面的内力偶矩。

平面弯曲1(内力及内力图)

平面弯曲1(内力及内力图)
1
ΙΙ. ΙΙ. 梁的计算简图
一、载荷和约束力的类 型
1.集中力 2.集中力偶 3.分布力
F
m
q
二、梁的支座类型
1.固定铰支座
2.活动铰支座
3.固定端
三、梁的类型
1.简支梁
2.外伸梁 3.悬臂梁
约束力不超过三个, 以上三种梁统称为 : 静定梁(约束力不超过三个, 可由平衡方程求解。) 可由平衡方程求解。) 2
11
由外力写内力
力引起正剪力; 1.相对于横截面来说,左 段向上、右段向下的外 力引起正剪力; 相对于横截面来说, 段向上、 反之则反。 反之则反。
2.相对于横截面来说,左 、右段向上的外力引起 正弯矩; 相对于横截面来说, 正弯矩; 反之则反。 反之则反。
3.相对于横截面来说,外 力矩或外力偶,左段顺 时针转, 相对于横截面来说, 力矩或外力偶, 时针转, 反之则反。 右段逆时针转引起正弯 矩;反之则反。
3 .根据方程作图
Pa (a<x<l) l Pa (a ≤ x ≤ l ) M = FB ( l − x ) = (l − x ) l
Pa l
x
0
+
M
Pab l
8
例二、 作图示梁的剪力图和弯矩图,并标出控制点的数据。 例二、 作图示梁的剪力图和弯矩图,并标出控制点的数据。 解:
FA = FB = ql 2
18
例. 作图示梁的Fs、M图 作图示梁的F
y
解:
Fa Fa FA = (↓),FB = + F(↑) l l
x1
A
B
x2
C
FxBiblioteka axlAB段
Fa Fs = − l Fa M=− x l

材料力学第五章

材料力学第五章

y
= ∫ y dA
2 A
1 1 π ⋅ d4 π ⋅ d4 I y = Iz = I ρ = ⋅ = z 2 2 32 64
1 π ⋅ (D4 − d 4 ) 对空心圆截面: 对空心圆截面: I = I = I = y z ρ 2 64
第五章 弯曲应力
§5-2 对称弯曲正应力 对称弯曲正应力
M⋅ y 二、弯曲正应力一般公式: 弯曲正应力一般公式: σ= Iz
Ip
弯曲 剪力Q 剪力

第五章 弯曲应力
§5-1 引言 y
梁段
M τ Q
z
σ
横截面上剪应力 横截面上正应力
横截面上内力
Q = ∫τdA
剪应力造成剪力
M = ∫σydA
正应力造成弯矩
剪应力和正应力的分布规律是什么? 剪应力和正应力的分布规律是什么?
超静定问题
第五章 弯曲应力
§5-1 引言
§5-2 对称弯曲正应力 对称弯曲正应力 §5-3 对称弯曲切应力 对称弯曲切应力 弯曲 §5-4 梁的强度条件与合理强度设计 梁的强度条件与合理强度设计 §5-5 双对称截面梁的非对称弯曲 双对称截面梁的非对称弯曲 §5-6 弯拉(压)组合 弯拉( 对称弯曲(平面弯曲): 对称弯曲(平面弯曲): 外力作用在纵向对称面内, 外力作用在纵向对称面内,梁轴线变形 后为一平面曲线,也在此纵向对称面内。 后为一平面曲线,也在此纵向对称面内。
(3)
Mz = ∫ σ ⋅ y ⋅ dA = M (5) A E 2 E 2 E (5) M z = ∫ ρ y dA = ∫ y dA = ρ I z = M
A
ρ
A
1 M = ρ EIz
第五章 弯曲应力

理论力学10弯曲的应力分析和强度计算

理论力学10弯曲的应力分析和强度计算

= q( x)
dx
20
弯曲的应力分析和强度计算
dx
M c = 0 M ( x) + dM ( x) − M ( x) − Q ( x)dx − q ( x)dx = 0

dM ( x) = Q( x)
dx
d 2M ( x)
2
= q( x)
2
2、集中力、dx集中力偶作用处的剪力及弯矩
∑F y =0
ΔQ = P
3 3
b0 h0 bh
3 36
弯曲的应力分析和强度计算
思考:
梁的截面形状如图所示,在xOz平面内作用有正 弯矩,绝对值最大的正应力位置为哪一点?
z a
b
y
c
37
弯曲的应力分析和强度计算
有一直径为d的钢丝,绕在直径为D的圆筒上,钢丝仍
处于弹性阶段。此时钢丝的弯曲最大正应力为多少?为了减 少弯曲应力,应增大还是减小钢丝的直径?
弯矩符号规定:弯矩使微段梁凹向上为正,反之为负。
10
弯曲的应力分析和强度计算
思考:
梁的内力符号是否和坐标系有关? 答:无关。
如图所示连续梁,AB和BC部分的内力情况如何?
A
E
0
0
P
B C FD
α
X C = P cos α
答:轴力不为零,剪力和弯矩为零。
11
例1
如图所示为受集中力及均布载荷作用的外伸梁,试求Ⅰ-Ⅰ, Ⅱ-Ⅱ截面上的剪力和弯矩。
的正应力为零,在中性轴两侧,一侧受拉应力,一侧受
压应力,与中性轴距离相等各点的正应力数值相等。 32
弯曲的应力分析和强度计算
3、静力学条件
∑F x =0
σ dA = FN = 0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
①剪力Fs: 在保留段内任取一点,如果剪力的方向对其点之 矩为顺时针的,则此剪力规定为正值,反之为负值。
Fs(+)
Fs(–)
Fs(+)
Fs(–)
②弯矩M: 使梁微段变成上凹下凸形状的为正弯矩;反之为负值。
M(+)
M(+)
M(–)
M(–)
可编辑版
16
三、注意的问题
1、在截开面上设正的内力方向。 2、在截开前不能将外力平移或简化。
1、固定端——有三个约束反力。 FXA
MA
可编辑版 FAY
9
2、固定铰支座 ——有二个约束反力。
3、可动铰支座 ——有一个约束反力。
可编辑版
FAY FAX
FAY
10
(五)、梁的三种基本形式: 1、悬臂梁:
2、简支梁:
q(x)— 分布力
L M — 集中力偶
3、外伸梁:
L q — 均布力
F — 集中力
L
L
(L称为梁的跨长)
可编辑版
11
(六)、静定梁与超静定梁 静定梁:由静力学方程可求出支 反力。
超静定梁:由静力学方程不 可求出支反力或不能求出全 部支反力。
可编辑版
P P
P
12
§5—2 弯曲内力与内力图
一、内力的确定(截面法):
a
F
[例]已知:如图,F,a,l。
求:距A端x处截面上内力。
A FAX A
RA
M1 Q1
Q1RA0.81.50.80.7(kN)
M 1R A 2 0 .8 0 .5 1 .5 2 0 .8 0 .5
2--2截面右段左侧截面:
2.6(kNm)
q R B Q 21.21.52.91.1(kN)
M2 Q2
M 2 R B 1 .5 1 .2 1 .5 0 .75
Q 1q,L M 1q1 lx
2--2
Y0, q (x 2 a ) q L Q 2 0
mC0, qL 2xM 21 2q(x2a)20
M2
Q 2q(x2aL)
M21 2q(x2a)2qL2 x
可编辑版
18
0.8kN
2 1.2kN/m [例]:梁1-1、2-2截面处的内力。
1
解:(1)确定支座反力
A
四、简易法求内力:
FS Fi(一侧), MMi (一侧)。
左上右下剪力为正,左顺右逆弯矩为正。
可编辑版
17
x1
qL 1
2
1a
2
qL
Q1
qL
M1
q
Q2 x2
q
[例]:求1--1、2--2截面处的内力。
解 1--1
Y 0 , q L Q 1 0 .
b
m C 0 ,q1 L M 1 x 0 .
Fs
F(l a), l
MF(l a) x l
可编辑版
14
1. 弯矩:M 构件受弯时,横截面上
存在垂直于截面的内力偶矩 (弯矩)。
2. 剪力:Fs 构件受弯时,横截面上
存在平行于截面的内力(剪 力)。
FAX A
mF B
FAY
x
m
FBY
A FAY
Fs
C
M
Fs
F
M
C
FBY
可编辑版
15
二、内力的正负规定:
B
Y 0 ,R A R B 0 .8 1 .2 3 0
1.5m 1.5m RA
2m 1
0.8
3m 2 1.5m
RB
M B 0 ,1 . 2 3 1 . 5 0 . 8 4 . 5 R A 6 0
R A 1 .5(k)N ,R B 2 .9(k)N
(2) 1-1截面左段右侧截面:
§5—8 提高弯曲强度的措施 弯曲应力部分小结
作业
可编辑版
2
§5—1 工程实例、基本概念
一、实例 工厂厂房的天车大梁: 火车的轮轴:
F
F
F F
F
F
可编辑版
3
楼房的横梁:
阳台的挑梁:
可编辑版
4
可编辑版
5
二、弯曲的概念: 受力特点——作用于杆件上的外力都垂直于杆的轴线。
变形特点——杆轴线由直线变为一条平面的曲线。 P
2 .9 1 .5 1 .2 1 .5 0 .75
3.0(kNm)
可编辑版
19
[例]:求图所示梁1--1、2--2截面处的内力。
Fa R B 1 R C 2
F 解:(1)
Y 0 , R B R C F 0
a
a
a
M B 0 ,R C a F 2 a F 0 a
上海工程技术大学基础教学学院工程力学部
可编辑版
1
第五章 弯曲内力与应力
§5—1 工程实例、基本概念
§5—2 弯曲内力与内力图
§5—3 剪力、弯矩与分布荷载间的关系及应用
§5—4 按叠加原理作弯矩图
§5—5 平面刚架和曲杆的内力图
弯曲内力部分小结
§5—6 弯曲正应力及强度计算 §5—7 弯曲剪应力及强度计算
F B
Y0, FAYFs 0.
Fs FAYF(lla)
FBY
mC0, MFAY x0.
MFAY xF(lla)x
M ∴ 弯曲构件内力:F s -剪力,M-弯矩。
或,研究对象:m - m 截面的右段:
F
Y0, FsFFBY0.
mC0, F B ( lY x ) F ( a x ) M 0 .
FBY
1.3a 1
2 0.5a
R C 3 F , R B 2 F
三、梁的概念:主要产生弯曲变形的杆。
q
M
四、平面弯曲的概念:
RA
NB
可编辑版
6
F1
q
F2
M
纵向对称面
平面弯曲
受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在 梁的纵向对称平面内(通过或平行形心主轴上且过 弯曲中心)。
变形特点——杆的轴线在梁的纵向对称面内由直线变为一条平 面曲线。
可编辑版
7
五、弯曲的分类: 1、按杆的形状分——直杆的弯曲;曲杆的弯曲。 2、按杆的长短分——细长杆的弯曲;短粗杆的弯曲。 3、按杆的横截面有无对称轴分——
有对称轴的弯曲;无对称轴的弯曲。 4、按杆的变形分——平面弯曲;斜弯曲;弹性弯曲;塑性弯曲。 5、按杆的横截面上的应力分——纯弯曲;横力弯曲。
可编辑版
8
六、梁、荷载及支座的简化
(一)、简化的原则:便于计算,且符合实际要求。 (二)、梁的简化:以梁的轴线代替梁本身。 (三)、荷载的简化: 1、集中力——荷载作用的范围与整个杆的长度相比非常小时。 2、分布力——荷载作用的范围与整个杆的长度相比不很小时。 3、集中力偶(分布力偶)——作用于杆的纵向对称面内的力偶。 (四)、支座的简化:
B 解:①求外力
l
X0, F AX 0
m A 0 , F Bl YF a 0
F B
Y 0 ,F A Y F F B Y 0
FAY
FBY
FAX =0 以后可省略不求
FBYF l ,aFAYF(lla)
可编辑版
13
②求内力
m FAX A
FAY
x
m
A Fs
C
FAY
Fs
M C
研究对象:m - m 截面的左段:
相关文档
最新文档