初一数学下册三角形的角平分线和中线

合集下载

北师版数学七年级下册《4.1 认识三角形》第3课时 三角形的中线、角平分线课件(新版22页)

北师版数学七年级下册《4.1 认识三角形》第3课时 三角形的中线、角平分线课件(新版22页)

的中线,若△ABD 的周长比△ADC 的周长大 2 cm,
则 AB=__7__cm.
A
提示:将△ABD 与△ADC 的周长
之差转化为边长之差.
B
D
C
例2 如图,AD 是△ABC 的中线,CE 是△ACD 的
中线,S△AEC = 3 cm2,则 S△ABC =___1_2__cm2.
解析:因为 CE 是△ACD 的中线,
D
B
E
C
5. 在△ABC 中,CD 是中线,已知 BC-AC = 5 cm,
△DBC 的周长为 25 cm,求△ADC 的周长.
解:因为 CD 是△ABC 的中线,
A
所以 BD=AD.
D
因为△DBC 的周长为
BC+BD+CD=25 cm,
B
C
所以 BD + CD=25-BC.
所以△ADC 的周长为 AD+CD+AC =BD+CD+AC
北师版数学七下课件
第四章 三角形
4.1 认识三角形
第3课时 三角形的中线、角平分线
导入新课
情境导入 这里有一块三角形的蛋糕,如果兄弟两个想要
平分,该怎么办呢?本节课让我们一起来解决这个 问题吧!
三角形的中线
在三角形中,连接一个顶点
A
与它对边中点的线段,叫做这
个三角形的中线. 如图,若 BE
= EC,则 AE 是 △ABC 的 BC B
A
B
所以∠BAC = 180°-∠B-∠C = 180°-45°-60° = 75°.
所以∠BAE = 37.5°.
因为∠B +∠BAE +∠AEB = 180°, 所以∠AEB = 180°-45°-37.5° = 97.5°.

初中数学《三角形的高、中线和角平分线及三角形的稳定性》知识全解

初中数学《三角形的高、中线和角平分线及三角形的稳定性》知识全解

《三角形的高、中线和角平分线,三角形的稳定性》知识全解 课标要求掌握三角形的高、角平分线、中线的概念,会做三角形的三线,知道三角形的三线的表示方法,理解三角形的稳定性。

知识结构(1)三角形的主要线段的定义:①三角形的角平分线:三角形的一个角的平分线和这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.②三角形的中线:在三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线. ③三角形的高:从三角形一个顶点向它的对边画垂线,顶点和垂足间的线段叫做三角形的高线,简称三角形的高.(2)三角形的主要线段的表示法:三角形的角平分线的表示法:如上图根据具体情况使用以下任意一种方式表示:①AD 是∆ABC 的角平分线;②AD 平分∠BAC ,交BC 于D ;③如果AD 是∆ABC 的角平分线,那么∠BAD =∠DAC =21∠BAC . 三角形的中线表示法:如上图根据具体情况使用以下任意一种方式表示:①AE 是∆ABC 的中线;②AE 是∆ABC 中BC 边上的中线;③如果AE 是∆ABC 的中线,那么BE =EC =21BC . 三角线的高的表示法:如下图,据具体情况,使用以下任意一种方式表示:①AM 是∆ABC 的高;②AM 是∆ABC 中BC 边上的高;③如果AM是∆ABC中BC边上高,那么AM⊥BC,垂足是E;④如果AM是∆ABC中BC边上的高,那么∠AMB=∠AMC=90︒.(3)三角形的稳定性三角形具有稳定性,四边形没有稳定性.内容解析本节课主要有:动手画三角形的高,在了解三角形的高的基础上学习三角形的中线、角平分线,归纳三角形的三条重要线段的概念,掌握其画法.这是以后学习各种特殊三角形的基础,也是研究其他图形的基础知识.从生活中体验三角形的稳定性.重点难点本节课的重点是:三角形的高、中线与角平分线的概念,会用工具准确画出三角形的高、中线与角平分线.难点是钝角三角形的高的画法.教法导引引导学生动手画图,从作图中总结发现概念,从而使学生掌握三角形的高、中线与角平分线的画法.联系生活实际,了解三角形的稳定性在生产、生活中的实际应用.学法建议经过动手画图,积极参与交流,增强学生克服困难和战胜困难的自信心.通过观察和实地操作得到三角形具有稳定性,四边形没有稳定性,联系稳定性与没有稳定性在生产、生活中的广泛应用.。

三角形的角平分线、中线和高课件冀教版七年级数学下册

三角形的角平分线、中线和高课件冀教版七年级数学下册

E
B
D
C
五、当堂检测
3.如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,
∠C=60°,求∠DAE和∠BOA的度数.
Aபைடு நூலகம்
解:∵∠CAB=50°,∠C=60°,
∴∠ABC=180°-50°-60°=70°, 又∵AD是高,∴∠ADC=90°,∠DAC=180°-90°-∠C=30°, F
∵AD是△ABC的中线
∴BD=CD
1
1
又∵S△ABD= 2 BD×AE , S△ACD= 2 CD×AE
∴S△ABD=S△ACD
E
三角形的中线将三角形分成 面积相等的两部分.
四、合作探究
探究二 运用三角形的角平分线和高计算角度
问题提出:如图,在△ABC中,AD是△ABC的高,AE是△ABC的角平
分线,已知∠BAC=82°,∠C=40°,求∠DAE的大小.
∵AE是△ABC的角平分线,且∠BAC=82°, ∴∠CAE= ∠BAC=41°,
∴∠DAE=∠DAC-∠CAE=50°-41°= 9°.
四、合作探究
练一练
3.如图,在△ABC中,∠ABC=62°,BD是角平分线,CE是高,BD与CE交于点O,
求∠BOC的大小. A
解: ∵ CE是△ABC的高,
∴∠BEC=90°, ∵BD是△ABC的角平分线,且∠ABC=62°,
E
O
D
∴∠ABD=∠OBC= ∠ABC=31°,
B
C
∴∠BOC=∠BEC+∠ABD=121°.
五、当堂检测
1.在ΔABC中,CD是中线,已知BC-AC=5cm,ΔDBC的周长为25cm,则ΔADC的

初中数学知识归纳三角形的中线角平分线高线

初中数学知识归纳三角形的中线角平分线高线

初中数学知识归纳三角形的中线角平分线高线初中数学知识归纳:三角形的中线、角平分线、高线三角形是初中数学学习中最基础的几何图形之一,它具有丰富的性质和特点。

本文将归纳总结三角形的中线、角平分线和高线的相关性质,帮助读者更好地理解和掌握这些概念。

一、三角形的中线中线是连接三角形的两个顶点和中点的线段。

三角形的中线有以下特点:1. 任意三角形的三条中线交于一点,这一点称为三角形的重心。

重心所在的位置离三角形的三个顶点距离相等,且重心将中线分成2:1的比例。

2. 三角形的重心到顶点的距离是中线对应中点到顶点距离的2倍,也就是说,如果连接重心和顶点,那么重心到顶点的距离是连接中点和顶点的线段的2倍。

3. 在等边三角形中,三条中线重合,即三条中线交于一点,同时这个点也是三角形的重心。

二、三角形的角平分线角平分线是指从一个角的顶点出发,将该角分成两个相等的角的线段。

三角形的角平分线有以下特点:1. 三角形的三条角平分线交于一点,称为三角形的内心。

内心所在的位置距离三角形的三条边的距离相等,且内心到三边的距离之和等于三角形的周长。

2. 在等腰三角形中,三条角平分线重合,即三条角平分线交于一点,同时这个点也是三角形的内心。

3. 角平分线和对边、邻边有如下关系:角平分线等分对边和邻边上的对应角;对边和邻边上的线段与角平分线比例相等。

三、三角形的高线高线是从一个顶点出发,与对边垂直相交的线段。

三角形的高线有以下特点:1. 任意三角形都有三条高线,它们分别从三个顶点出发,并与对边垂直相交。

2. 等腰三角形的高线同时也是角平分线和中线。

3. 在直角三角形中,高线就是斜边上的中线。

总结:三角形的中线、角平分线和高线都有各自的特点和性质。

通过了解和掌握这些性质,我们可以更好地理解和解决与三角形相关的问题。

在实际应用中,这些概念和性质也有着广泛的应用,例如在建筑、制图、几何证明等方面都可以看到它们的身影。

通过本文的归纳和总结,我们希望读者能够对三角形的中线、角平分线和高线有更全面的了解,并在实际问题中能够运用到这些知识,提高数学解题的能力。

2024北师大版数学七年级下册4.1.3《认识三角形—三角形的中线和角平分线》教案

2024北师大版数学七年级下册4.1.3《认识三角形—三角形的中线和角平分线》教案

2024北师大版数学七年级下册4.1.3《认识三角形—三角形的中线和角平分线》教案一. 教材分析《认识三角形—三角形的中线和角平分线》这一节内容,主要让学生掌握三角形的性质,理解三角形的中线和角平分线的概念,以及它们之间的关系。

为学生后续学习三角形的其他性质和判定定理打下基础。

二. 学情分析学生在六年级时已经学习了图形的性质,对图形的认识有了初步的基础。

但他们对三角形的中线和角平分线的理解可能还停留在直观层面,需要通过实例和几何画图工具,让学生在直观感知的基础上,进一步理解三角形的中线和角平分线的性质。

三. 教学目标1.了解三角形的中线和角平分线的概念。

2.掌握三角形的中线和角平分线的性质。

3.能够运用中线和角平分线解决实际问题。

四. 教学重难点1.重点:三角形的中线和角平分线的概念及性质。

2.难点:三角形的中线和角平分线在实际问题中的应用。

五. 教学方法采用问题驱动法,让学生在解决问题的过程中,掌握三角形的中线和角平分线的性质。

同时,利用几何画图工具,让学生直观地感知中线和角平分线的性质。

六. 教学准备1.教学课件。

2.几何画图工具。

3.练习题。

七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的三角形,引导学生关注三角形的中线和角平分线。

提问:你们知道这些三角形的中线和角平分线吗?它们有什么作用?2.呈现(10分钟)介绍三角形的中线和角平分线的定义。

通过几何画图工具,展示三角形的中线和角平分线,让学生直观地感知它们的性质。

3.操练(10分钟)让学生利用几何画图工具,自己画出一个任意的三角形,并标出其中线和角平分线。

然后,相互交流并解释其中线和角平分线的性质。

4.巩固(10分钟)出示一些有关三角形中线和角平分线的练习题,让学生独立完成。

教师选取部分学生的作业进行点评,纠正学生在解答过程中可能出现的错误。

5.拓展(10分钟)引导学生思考:三角形的中线和角平分线在实际问题中的应用。

出示一些实际问题,让学生运用中线和角平分线进行解答。

4.1认识三角形(3)三角形的中线、角平分线++课件+2023-2024学年北师大版数学七年级下册

4.1认识三角形(3)三角形的中线、角平分线++课件+2023-2024学年北师大版数学七年级下册

巩固提能
1.如图,AD是△ABC的角平分线,则( A )

A.∠1= ∠BAC


B.∠1= ∠ABC

C.∠1=∠BAC
D.∠1=∠ABC
2.如图,AE是△ABC的中线,点D是BE上一点.若BD=5,CD=9,则
CE的长为( C )
A.5
B.6
C.7
D.8
3. 如 图 ,AD 是 △ABC 的 中 线 ,AB=5,AC=3,△ABD 的 周 长 和
B.BD是△ABC的中线
C.AD=DC,BE=EC
D.AD=EC,DC=BE
2.如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分
40°
线,则∠CAD的度数为__________.
3.如图,已知△ABC的周长为21cm,AB=6cm,BC边上中线AD=
7cm
5cm,△ABD的周长为15cm,则AC的长为_________.

所以∠BOC=180°-(∠OBC+∠OCB)=180°-65°=115°.
(2)在其他条件不变的情况下,若∠A=n°,则∠BOC的度数为多少
(用含n的式子表示)?
解:因为∠ABC与∠ACB的平分线相交于点O,

所以∠OBC+∠OCB= (∠ABC+∠ACB).


在 △OBC 中 , ∠ BOC=180°-( ∠ OBC+ ∠ OCB)=180°- (∠

=

×45°=22.5°.

因为DE∥BC,所以∠EDC=∠BCD=22.5°.
因为∠B+∠BDC+∠BCD=180°,
所以∠BDC=180°-70°-22.5°=87.5°.

七年级数学三角形的角平分线和中线

七年级数学三角形的角平分线和中线

D

C
例如:任意画一个三角形△BAC,用刻度 尺画出BC的中点在D,连结AD(如图)
在三角形中,连结一个顶点与它的对边 中点的线段,叫做这个三角形的中线。 例如:D为BC边上的中点,则AD 就是△ABC中BC边上的中线。
A
∵AD就是△ABC中BC边上的中线。
∴BD=CD
B D C
(1)三角形的中线是一条线段; (2)三角形的中线的一端平分这条边。
A
B E F = (1)BE___EC 1 = ―∠BAC (2)∠CAF___ 2 = ∠C+∠FAB (3)∠AFB___ (4)∠AEC___ > ∠B
C
如图,AD是△BAC的角平分线。已知 ∠B=48°,∠C=63°,求下列各角的度数: (1)∠BAD;(2)∠ADB 解:(1)∵AD是△BAC的角平分线
A
画∠BAC的平分线 交对边BC于D
B
D
C
∠BAD 和∠CAD 有什么关系? ∠BAD =∠CAD
在三角形中,一个内角的角平分线与 它的对边相交,这个角的顶点与交点 之间的线段叫做三角形的角平分线。
如图,∠BAC的平分线交BC 于点D,线段AD就是 ΔABC的一条角平分线。 B A
D
C
例如:∠BAC的平分线交BC于点D 线段AD就是△BAC的一条角平分线 A
2cm。你能求出AB的长吗?
A
A
B
D
C
B
D
C
AB > AC
AB < AC
例题: △ABC中,∠ABC=80°∠ACB=40°,BO、 CO平分∠ABC、∠ACB,求∠BOC的度 数.
A O B C
1. 什么是三角形的角平分线?

中线与角平分线的关系

中线与角平分线的关系

中线与角平分线的关系
中线是一边中点和对应顶点的连线。

角平分线是将一角平分并与对边相交的线段。

只有为等腰三角形时或者等边三角形时,两者顶角平分线才与对边中线重合。

三角形中,连接一个顶点和它所对边的中点的线段叫做三角形的中线。

任何三角形都有三条中线,而且这三条中线都在三角形的内部,并交于一点。

由定义可知,三角形的中线是一条线段。

三条中线交于一点。

这点称为三角形的重心。

每条三角形中线分得的两个三角形面积相等。

“中心”与“重心”很容易弄混淆,“中心”只存在于正三角形,也就是等边三角形当中。

在等边三角形中,其内心,外心,重心,垂心都在一个点上,于是称之为中心。

内心:三角形的内心是三角形三条内角平分线的交点。

外心:三角形三条边的中垂线的交点叫作三角形的外心,即外接圆圆心。

重心:三角形三条中线的交点叫作三角形的重心。

垂心:三角形三条垂线的交点叫作三角形的垂心。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:∵ ∠ABC=80° BO平分∠ABC
A O
同理:∴∠OCB=
1 ∴∠OBC= ∠ABC=40° 2 1
2
∠ACB=20°
B
C
∴∠BOC= 180°- ∠OBC - ∠OCB
=180° - 40°-20° =120°
A
B
D
C
任意画一个三角形,用刻度尺 画BC的中点D,连接AD。
三角形的中线的定义:
怎样才能得到一个角的平分线?
角平分线
用量角器或折纸的办法
从一个角的顶点引出的一条射线,把这 个角分成两个相等的角。这条射线叫做这个 角的平分线。 B
如图,记作
∠AOC=∠BOC=
1 2
C
∠AOB.
O
A
你能用同样的方法画出或折出任意一个三 角形的一个内角的平分线吗?
任意剪一张三角形纸片ABC,把内角∠ BAC对折
在三角形中,连接一个顶点与它对边 中点的
线段,叫做这个三角形的中线.
如图,D为BC的中点,线段AD就ΔABC的BC边上的中线。 A
∵AD是△ ABC的 中线
1 ∴BD = CD = BC 2
B
D
C
特点:(1)三角形的中线是一条线段; 一个三角形有几条中线 ?有什么特点?
(2( )三角形的中线的一端平分这条边。 三条)
A
“>”、“<”或“=”号填空: = (1)BE___EC
1 =― (2)∠CAF___ 2 ∠BAC B E F C
= ∠C+∠FAB (3)∠AFB___
(4)∠AEC___ > ∠B
1、如图,在Δ ABC中,∠ACB=90°, CE是Δ ABC的角平分线,已知 ∠CEB=110°,求∠A和∠B的度数。
一次,使AB与AC重合,得到一条折痕AD。把三角形
纸片展开、铺平。AD一定平分∠ BAC吗?
A
B
D
C
用量角器画∠BAC的平
分线交对边BC于D
A
C D ∠BAD 和∠CAD 有什么关系?
B
∠BAD =∠CAD
三角形的角平分线的定义:
在三角形中,一个内角的角平分线与它的对边相交,
这个角的顶点与交点之间的线段叫做三角形的角平分线.
C
A
E
B
2、如图,在△ABC中,BE是边AC上的中线.
已知AB=4cm,AC=3cm, BE=5cm,
求△ABE的周长.
A
E
B C
3、已知△ABC中,AC=5cm。中线AD把△ABC分成
两个小三角形,这两个小三角形的周长的差是
2cm。你能求出AB的长吗?
A
A
B
D
C
B
D
C
AB > AC
AB < AC
(三条)
请画出这个三角形的另外两FAEC
条角平分线,你发现了什么?
B
D
三角形的三条角平分线交于一点.
称之为三角形的内心.
例1、如图,AE是 △ ABC的角平分线.已知
∠B=45 , ∠ C=60 ,求下列角的大小. (1) ∠BAE (2) ∠AEB
解:(1)∵AE是△ABC的角平分线
0 0
∵ ∠BAC+∠B+∠C=1800 (三角形的内角和定理) ∴∠BAC=1800-∠B-∠C=1800-450-600=750 ∴∠AEB=37.50
如图∠BAC的平分线交BC于点D,线段AD就是
△ABC的一条角平分线.
A
1 ∠BAD =∠CAD = 2∠BAC B C D (1)三角形的角平分线是一条线段; 思考: 三角形的角平分线与角的平分线有什么不同?

∵ AD是 △ ABC的 角平分线
(2)三角形的角平分线仍具有角平分线的基本性质。
一个三角形有几条角平分线?
1 ∴∠CAE=∠BAE= ∠BAC 2
C E A B
(2)∵∠AEB=∠CAE+∠C (三角形的一个外角等于和它 不相邻的两个内角的和) ∠CAE=∠BAE ∴∠AEB=37.50+600=97.50
试一试:
△ABC中,∠ABC=80°∠ACB=40°,BO、CO分 别平分∠ABC、∠ACB,求∠BOC的度数.
请画出这个三角形的另外两条中线, 你发现了什么?
F
A
E
B
D
C
三角形的三条中线交于一点. 称之为三角形的重心.
1、AD是Δ ABC的角平分线(如图),
那么∠BAC= BC=
2
∠BAD;
2、AE是Δ ABC的中线(如图),那么
2
BE。
A
A
B
D
C
B
E
C
3、如图,AF是Δ ABC的角平分线,
AE是BC边上的中线,选择
1. 什么是三角形的角平分线?
2. 什么是三角形的中线?
3. 它们都有什么性质?
相关文档
最新文档