小学数学:四则混合运算知识总结
小学四年级数学四则混合运算知识点详解

四年级数学四则混合运算知识点详解四则运算详解知识点一:四则运算的概念和运算顺序1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,既有乘、除法又有加、减法的,要先算乘除法,再算加减法。
4、算式有括号,要先算括号里面的,再算括号外面的;大、中、小括号的计算顺序为小→中→大。
括号里面的计算顺序遵循以上1、2、3条的计算顺序。
知识点二:0的运算1、0不能做除数;字母表示:无,a÷0是错误的表达2、一个数加上0还得原数;字母表示:a+0 = a3、一个数减去0还得原数;字母表示:a-0 = a4、一个数减去它本身,差是0;字母表示:a-a =05、一个数和0相乘,仍得0;字母表示:a×0 =06、0除以任何非0的数,还得0;字母表示:0÷a =0(a≠0)知识点三:运算定律1、加法交换律:在两个数的加法运算中,交换两个加数的位置,和不变。
字母表示:a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,再加另一个加数;或者先把后两个数相加,再加另一个加数,和不变。
字母表示:(a+b)+c=a+(b+c)3、乘法交换律:两个数相乘的乘法运算中,交换两个乘数的位置,积不变。
字母表示:a×b=b×a4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。
字母表示:(a×b)×c=a×(b×c)5、乘法分配律:两个数相加(或相减)再乘另一个数,等于把这个数分别同两个加数(减数)相乘,再把两个积相加(相减),得数不变。
字母表示:①(a+b)×c=a×c+b×c;a×c+b×c=(a+b)×c;②a×(b—c)=a×b—a×c;a×b—a×c=a×(b—c)6、连减定律:①一个数连续减两个数, 等于这个数减后两个数的和,得数不变;字母表示:a—b—c=a—(b+c);a—(b+c)=a—b—c;②在三个数的加减法运算中,交换后两个数的位置,得数不变。
2024年小学四年级数学四则混合运算知识总结

2024年小学四年级数学四则混合运算知识总结在2024年的小学四年级数学课程中,四则混合运算是一个非常重要的内容。
通过四则混合运算的学习,学生将进一步巩固和扩展他们在前几年所学习的基础数学知识。
下面我将对小学四年级数学四则混合运算知识进行总结,以帮助学生们更好地掌握这一知识点。
一、加法和减法的混合运算1. 同样优先级的运算:按照从左到右的顺序进行运算。
例如:3 + 4 - 2 = 7 - 2 = 5。
2. 不同优先级的运算:先进行括号内的运算,然后再进行加法或减法运算。
例如:(3 + 4) - 2 = 7 - 2 = 5。
二、乘法和除法的混合运算1. 同样优先级的运算:按照从左到右的顺序进行运算。
例如:4 × 3 ÷ 2 = 12 ÷ 2 = 6。
2. 不同优先级的运算:先进行括号内的运算,然后再进行乘法或除法运算。
例如:(4 × 3) ÷ 2 = 12 ÷ 2 = 6。
三、混合运算的综合应用在进行混合运算时,首先要明确运算的顺序和优先级。
通常按照括号、指数、乘除法、加减法的顺序进行运算。
1. 括号内的运算:首先计算括号内的运算,然后再进行其他运算。
例如:5 × (2 + 3) = 5 × 5 = 25。
2. 指数运算:指数运算是对一个数字进行乘方运算。
例如:2³表示2的3次方,即2 × 2 × 2 = 8。
3. 乘除法运算:按照从左到右的顺序进行乘除法运算。
例如:6 ÷ 3 × 2 = 2 × 2 = 4。
4. 加减法运算:按照从左到右的顺序进行加减法运算。
例如:9 - 3 + 5 = 6 + 5 = 11。
5. 综合运算:将以上的运算法则结合起来,按照正确的顺序进行运算。
例如:2² + (3 × 4 - 5) ÷ 2 = 4 + (12 - 5) ÷ 2 = 4 +7 ÷ 2 = 4 + 3.5 = 7.5。
小学二年级数学“混合运算法则”归纳总结

小学二年级数学“混合运算法则”归纳总结
四则运算是小学数学学习的基础。
四则指的是加法、减法、乘法、除法这四种计算法则。
而四种混合运算指的就是由两个或两个以上的运算符号及括号,把多个数合并成一个数的运算。
(1)算式里只有加减法,则依次计算;只有乘除法,也依次计算。
(2)算式里既有加减法又有乘法,先算乘法,后算加减法。
(3)算式里既有加减法又有除法,先算除法,后算加减法。
(4)每一步不参加计算的部分,要位置、符号不变地抄下来,保证等号前后应该相等。
(5)小括号在混合运算中的作用是改变运算顺序。
带小括号的混合运算的运算顺序:先算小括号里面的,后算小括号外面的。
手指长按图片,识别二维码,即可添加好友
添加微信好友免费领取二年级语文下册学习资料
点击“阅读原文”二年级教材电子书手机在线观看。
小学1-6年级数学四则混合运算知识点汇总

小学数学:四则混合运算知识点总结知识点一:四则运算的概念和运算顺序1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,既有乘、除法又有加、减法的,要先算乘除法,再算加减法。
4、算式有括号,要先算括号里面的,再算括号外面的;大、中、小括号的计算顺序为小→中→大。
括号里面的计算顺序遵循以上1、2、3条的计算顺序。
知识点二:0的运算1、0不能做除数;字母表示:无,a÷0是错误的表达2、一个数加上0还得原数;字母表示:a+0 = a3、一个数减去0还得原数;字母表示:a-0 = a4、一个数减去它本身,差是0;字母表示:a-a =05、一个数和0相乘,仍得0;字母表示:a×0 =06、0除以任何非0的数,还得0;字母表示:0÷a =0(a≠0)知识点三:运算定律1、加法交换律:在两个数的加法运算中,交换两个加数的位置,和不变。
字母表示:a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,再加另一个加数;或者先把后两个数相加,再加另一个加数,和不变。
字母表示:(a+b)+c=a+(b+c)3、乘法交换律:两个数相乘的乘法运算中,交换两个乘数的位置,积不变。
字母表示:a×b=b×a4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。
字母表示:(a×b)×c=a×(b×c)5、乘法分配律:两个数相加(或相减)再乘另一个数,等于把这个数分别同两个加数(减数)相乘,再把两个积相加(相减),得数不变。
字母表示:①(a+b)×c=a×c+b×c;a×c+b×c=(a+b)×c;②a×(b—c)=a×b—a×c;a×b—a×c=a×(b—c)6、连减定律:①一个数连续减两个数, 等于这个数减后两个数的和,得数不变;字母表示:a—b—c=a—(b+c);a—(b+c)=a—b—c;②在三个数的加减法运算中,交换后两个数的位置,得数不变。
小学四年级数学四则混合运算知识总结

小学四年级数学四则混合运算知识总结小学四年级数学主要包括数的认识与计算、数的比较与排序、数的整理与展开、数的应用等内容。
在这些内容中,四则混合运算是一个非常重要的知识点,包括加法、减法、乘法和除法。
下面是小学四年级数学四则混合运算的知识总结,希望对你有帮助。
一、加法1. 加法的定义加法是计算两个或多个数的总和的运算。
例如:1 + 2 = 3,表示将1和2相加得到3。
2. 加法的性质(1)交换律:a + b = b + a(2)结合律:(a + b) + c = a + (b + c)(3)零元素:a + 0 = a(4)加法逆元素:a + (-a) = 03. 加法的应用加法可以用于计算两个或多个数的总和,以及解决一些问题,如:小明拥有10个苹果,小红给他2个,那么他一共有多少个苹果?二、减法1. 减法的定义减法是计算一个数减去另一个数的差的运算。
例如:3 - 1 = 2,表示将3减去1得到2。
2. 减法的性质(1)减法不存在交换律:a - b ≠ b - a(2)减法不存在结合律:(a - b) - c ≠ a - (b - c)(3)减数减去被减数等于差:a - b = c,则 c + b = a3. 减法的应用减法可以用于计算一个数减去另一个数的差,以及解决一些问题,如:小红现在有8本书,她卖掉了3本,还剩下多少本?三、乘法1. 乘法的定义乘法是计算两个数的积的运算。
例如:2 × 3 = 6,表示将2和3相乘得到6。
2. 乘法的性质(1)交换律:a × b = b × a(2)结合律:(a × b) × c = a × (b × c)(3)乘法的分配律:a × (b + c) = a × b + a × c3. 乘法的应用乘法可以用于计算两个数的积,以及解决一些问题,如:小明有3个篮球,每个篮球的价格是5元,他一共要花多少钱买篮球?四、除法1. 除法的定义除法是将一个数分成若干等分的运算。
五年级 四则混合运算

五年级四则混合运算
在小学五年级数学中,四则混合运算指的是在一个算式中同时包含加法、减法、乘法和除法(可能还包括括号)的运算。
解决这类问题时通常遵循以下运算顺序原则(也称为“先乘除后加减”规则和“有括号先算括号内”的原则):
1.括号优先:如果有括号,先计算括号内的部分。
2.乘除优先:在没有括号的情况下,从左到右依次计算所有乘法和除法,无论它们在加法和减法之前还是之后。
3.加减优先:接着,在完成所有的乘法和除法之后,从左到右计算所有的加法和减法。
例如,面对这样一个算式:
5+3x2-4/2
按照上述步骤计算:
-先做除法:4/2=2
-然后做乘法:3x2=6
-最后按顺序做加法和减法:5+6-2
最终计算结果即可得到答案。
四年级四则混合运算知识总结

知识点一:四则运算的概念和运算顺序1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,既有乘、除法又有加、减法的,要先算乘除法,再算加减法。
4、算式有括号,要先算括号里面的,再算括号外面的;大、中、小括号的计算顺序为小→中→大。
括号里面的计算顺序遵循以上1、2、3条的计算顺序。
知识点二:0的运算1、0不能做除数;字母表示:无,a÷0是错误的表达2、一个数加上0还得原数;字母表示:a+0 = a3、一个数减去0还得原数;字母表示:a-0 = a4、一个数减去它本身,差是0;字母表示:a-a =05、一个数和0相乘,仍得0;字母表示:a×0 =06、0除以任何非0的数,还得0;字母表示:0÷a =0(a≠0)知识点三:运算定律1、加法交换律:在两个数的加法运算中,交换两个加数的位置,和不变。
字母表示:a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,再加另一个加数;或者先把后两个数相加,再加另一个加数,和不变。
字母表示:(a+b)+c=a+(b+c)3、乘法交换律:两个数相乘的乘法运算中,交换两个乘数的位置,积不变。
字母表示:a×b=b×a4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。
字母表示:(a×b)×c=a×(b×c)5、乘法分配律:两个数相加(或相减)再乘另一个数,等于把这个数分别同两个加数(减数)相乘,再把两个积相加(相减),得数不变。
字母表示:①(a+b)×c=a×c+b×c;a×c+b×c=(a+b)×c;②a×(b—c)=a×b—a×c;a×b—a×c=a×(b—c)6、连减定律:①一个数连续减两个数, 等于这个数减后两个数的和,得数不变;字母表示:a—b—c=a—(b+c);a—(b+c)=a—b—c;②在三个数的加减法运算中,交换后两个数的位置,得数不变。
小学数学四则混合运算总结

知识点一:四则运算的概念和运算顺序1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,既有乘、除法又有加、减法的,要先算乘除法,再算加减法。
4、算式有括号,要先算括号里面的,再算括号外面的;大、中、小括号的计算顺序为小→中→大。
括号里面的计算顺序遵循以上1、2、3条的计算顺序。
知识点二:0的运算1、0不能做除数;字母表示:无,a÷0是错误的表达2、一个数加上0还得原数;字母表示:a+0 = a3、一个数减去0还得原数;字母表示:a-0 = a4、一个数减去它本身,差是0;字母表示:a-a =05、一个数和0相乘,仍得0;字母表示:a×0 =06、0除以任何非0的数,还得0;字母表示:0÷a =0(a≠0)知识点三:运算定律1、加法交换律:在两个数的加法运算中,交换两个加数的位置,和不变。
字母表示:a+b=b+a2、加法结合律:三个数相加,先把前两个数相加,再加另一个加数;或者先把后两个数相加,再加另一个加数,和不变。
字母表示:(a+b)+c=a+(b+c)3、乘法交换律:两个数相乘的乘法运算中,交换两个乘数的位置,积不变。
字母表示:a×b=b×a4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。
字母表示:(a×b)×c=a×(b×c)5、乘法分配律:两个数相加(或相减)再乘另一个数,等于把这个数分别同两个加数(减数)相乘,再把两个积相加(相减),得数不变。
字母表示:①(a+b)×c=a×c+b×c;a×c+b×c=(a+b)×c;②a×(b—c)=a×b—a×c;a×b—a×c=a×(b—c)6、连减定律:①一个数连续减两个数, 等于这个数减后两个数的和,得数不变;字母表示:a—b—c=a—(b+c);a—(b+c)=a—b—c;②在三个数的加减法运算中,交换后两个数的位置,得数不变。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
小学数学:四则混合运算知识总结
知识点一:四则运算的概念和运算顺序
1、加法、减法、乘法和除法统称四则运算。
2、在没有括号的算式里,如果只有加、减法或者只有乘、除法,都要从左往右按顺序计算。
3、在没有括号的算式里,既有乘、除法又有加、减法的,要先算乘除法,再算加减法。
4、算式有括号,要先算括号里面的,再算括号外面的;大、中、小括号的计算顺序为小→中→大。
括号里面的计算顺序遵循以上1、2、3条的计算顺序。
知识点二:0的运算
1、0不能做除数;字母表示:无,a÷0是错误的表达
2、一个数加上0还得原数;字母表示:a+0 = a
3、一个数减去0还得原数;字母表示:a-0 = a
4、一个数减去它本身,差是0;字母表示:a-a =0
5、一个数和0相乘,仍得0;字母表示:a×0 =0
6、0除以任何非0的数,还得0;字母表示:0÷a =0(a≠0)
知识点三:运算定律
1、加法交换律:在两个数的加法运算中,交换两个加数的位置,和不变。
字母表示:a+b=b+a
2、加法结合律:三个数相加,先把前两个数相加,再加另一个加数;或者先把后两个数相加,再加另一个加数,和不变。
字母表示:
(a+b)+c=a+(b+c)
3、乘法交换律:两个数相乘的乘法运算中,交换两个乘数的位置,积不变。
字母表示:a×b=b×a
4、乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,积不变。
字母表示:
(a×b)×c=a×(b×c)
5、乘法分配律:两个数相加(或相减)再乘另一个数,等于把这个数分别同两个加数(减数)相乘,再把两个积相加(相减),得数不变。
字母表示:
①(a+b)×c=a×c+b×c;a×c+b×c=(a+b)×c;
②a×(b—c)=a×b—a×c;a×b—a×c=a×(b—c)
6、连减定律:
①一个数持续减两个数,等于这个数减后两个数的和,得数不变;字母表示:
a—b—c=a—(b+c);a—(b+c)=a—b—c;
②在三个数的加减法运算中,交换后两个数的位置,得数不变。
字母表示:
a—b—c=a—c—b;a—b+c=a+c—b
7、连除定律:
①一个数持续除以两个数,等于这个数除以后两个数的积,得数不变。
字母表示:a÷b÷c=a÷(b×c);a÷(b×c)=a÷b÷c;
②在三个数的乘除法运算中,交换后两个数的位置,得数不变。
字母表示:
a÷b÷c=a÷c÷b;a÷b×c=a×c÷b
知识点四:简易计算例题
一、多见乘法计算:
1、整数:25×4=100 125×8=1000
2、小数:0.25×4=1 0.125×8=1
二、加法交换律简算例题:
50+98+50
=50+50+98
=100+98
=198
三、加法结合律简算例题:
488+40+60
=488+(40+60)
=488+100
=588
四、乘法交换律简算例题:
0.25×56×4
=0.25×4×56
=1×56
=56
五、乘法结合律简算例题:
99×0.125×8
=99×(0.125×8)
=99
六、含有加法交换律与结合律的简算例题:65+28.6+35+71.4
=(65+35)+(28.6+71.4)
=100+100
=200
七、含有乘法交换律与结合律的简算例题:25×0.125×4×8
=(25×4)×(0.125×8)
=100×1
=100
八、乘法分配律简算例题:
1、分解式
25×(40+4)
=25×40+25×4
=1000+100
=1100
2、合并式
135×12.3—135×2.3
=135×(12.3—2.3)
=1350
3、分外例题1 99×25.6+25.6
=99×25.6+25.6×1 =25.6×(99+1)
=25.6×100
=2560
4、分外例题2 45×102
=45×(100+2)
=45×100+45×2 =4500+90
=4590
5、分外例题3 99×26
=(100—1)×26
=100×26—1×26 =2600—26
=2574
6、分外例题4
5.3×8+35.3×6—4×35.3
=35.3×(8+6—4)
=35.3×10
=353
九、连减简易运算例子:①528—6.5—3.5
=528—(6.5+3.5)
=528—10
=518
②528—89—128
=528—128—89
=400—89
=311
③52.8—(40+12.8)
=52.8—12.8—150
=40—40
=0
十、连除简易运算例子:3200÷25÷4
=3200÷(25×4)
=3200÷100
=32
十一、其它简易运算例子:①256—58+44
=256+44—58
=300—58
=242
②250÷8×4
=250×4÷8
=1000÷8
=125。