小学奥数 四年级奥数 二进制
【小学四年级奥数讲义】 二进制

【小学四年级奥数讲义】二进制
一、专题简析:
二进制就是只用0和1两数字,在计数与计算时必须“满二进一”,即每两个相同的单位组成一个和它相邻的最高的单位。
二进制的最大特点是:每个数的各个数位上只有0或只有1两种状态。
二进制与十进制之间可以互相转化。
1、将一个二进制数写成十进制数的步骤是:(1)将二进制数的各数位上数字改写成相
应的十进制数;(2)将各数位上对应的十进制数求和,所得结果就是相应的十进制数。
将十进制数改写成二进制数的过程,正好相反。
2、十进制数改写成二进制数的常用方法是:除以二倒取余数。
3、二进制数的计算法则:
(1)加法法则:0+0=0 0+1=1 1+0=1 1+1=10
(2)乘法法则:0×0=0 0×1=0 1×0=0 1×1=1
二、精讲精练:
例1:把二进制数110
(2)
改写成十进制数。
分析与解答:十进制有两个特点:(1)它有十个不同的数字符号;(2)满十进1。
二进制有两个特点:(1)它的数值部分,只需用两个数码0和1来表示;(2)它是“满二进一”。
把二进制数110
(2)
改写成十进制数,只要把它写成2的幂之和的形式,然后按通常的方法进行计算即可。
110
(2)
=1×22+1×21+0×20
=1×4+1×2+0×1
=4+2+0
=6
练习一:
把下列二进制数分别改写成十进制数。
(1)100
(2)(2)1001
(2)
(3)1110
(2)
1。
【精品奥数】四年级上册数学思维训练讲义-第十九讲 二进制 人教版(含答案)

第十九讲 二进制第一部分:趣味数学华莱士·帕斯卡,法国著名的数学家、物理学家、哲学家和散文家,他在19岁的时候引用算盘的原理,发明了第一部机械式计算器,在他的计算器中有一些互相联锁的齿轮,一个转过十位的齿轮会使另一个齿轮转过一位,人们可以像拨电话号码盘那样,把数字拨进去,计算结果就会出现在另一个窗口中,但是只能做加减计算。
第二部分:奥数小练二进制就是只用0和1两数字,在计数与计算时必须“满二进一”,即每两个相同的单位组成一个和它相邻的最高的单位。
二进制的最大特点是:每个数的各个数位上只有0或只有1两种状态。
二进制与十进制之间可以互相转化。
1.将一个二进制数写成十进制数的步骤是:(1)将二进制数的各数位上数字改写成相应的十进制数;(2)将各数位上对应的十进制数求和,所得结果就是相应的十进制数。
将十进制数改写成二进制数的过程,正好相反。
2.十进制数改写成二进制数的常用方法是:除以二倒取余数。
3.二进制数的计算法则:(1)加法法则:0+0=0 0+1=1 1+0=1 1+1=10(2)乘法法则:0×0=0 0×1=0 1×0=0 1×1=1 【例题1】把二进制数110(2)改写成十进制数。
【思路导航】十进制有两个特点:(1)它有十个不同的数字符号;(2)满十进1。
二进制有两个特点:(1)它的数值部分,只需用两个数码0和1来表示;(2)它是“满二进一”。
把二进制数110(2)改写成十进制数,只要把它写成2的幂之和的形式,然后按通常的方法第一个发明计算器的人——帕斯卡进行计算即可。
110(2)=1×22+1×21+0×20=1×4+1×2+0×1=4+2+0=6练习1:把下列二进制数分别改写成十进制数。
1.100(2) 2.1001(2)3.1110(2)【例题2】把十进制数38改写成二进制数。
【思路导航】把十进制数改写成二进制数,可以根据二进制数“满二进一”的原则,用2连续去除这个十进制数,直到商为零为止,把每次所得的余数按相反的顺序写出来,就是所化成的二进制数,这种方法叫做“除以二倒取余数”。
精品四年级奥数b第三章 十进制与二进制

计算:100110(2)×101(2)= 10111110(2)
解:
1 0 0 1 1 0 (2)
×
1 0 1 (2)
1 0 0 1 1 0 (2)
1 0 0 1 1 0 (2)
1 0 1 1 1 1 1 0 (2)
1 0 1 1 1 1 1 1 0 (2)
(4b) 第三章 十制进数与二制进数(二)
(4b) 第三章 十制进数与二制进数(二)
【阅读欣赏 】
宋代大诗人苏东坡年轻是与几个学友进京考试。他们 到达试院时为时已晚。考官说:“我出一联,你们若对得 上,我就让你们进考场。”考官的上联是:一叶孤舟,坐了 二三个学子,启用四桨五帆,经过六滩七湾,历尽八颠九簸, 可叹十分来迟。苏东坡对出的下联是:十年寒窗,进了九 八家书院,抛却七情六欲,苦读五经四书,考了三番两次,今 日一定要中。考官与苏东坡都将一至十这十个数字嵌入 对联中,将读书人的艰辛与刻苦情况描写得淋漓尽致。
这个小青年做:1+1=? 1+1+1=? 1+1+ 1+1=?
小青年解答如下:1+1=2 1+1+1=3
1+1+1+1=10
小聪明立即算出了小青年的十进制真实年龄,你能算吗?
分析:根据1+1+1+1=10,可知,“长寿”村的人们使用 的是四进制,可采用“4乘法”将101化成十进制数。
解: 101(4)=1×42+1 =17(10)
【方法点拨 】
二进制是以2为基数来计算的,只用0和1两个 数码,满二进一。它只有两条计算法则:
(1)加法法则:0+0=0,0+1=1,1+0=1,1+1=10 (2)乘法法则:0×0=0,0×1=0,1×0=0,1×1=1
《小学奥数二进制》课件

对小学奥数中二进制应用的总结
回顾二进制的基本概念和运算规则 总结二进制在数学中的应用实例 探讨二进制与其他数学知识的联系与区别 展望二进制在数学教育中的未来发展
对未来小学奥数中二进制应用的展望
二进制在计算机科学中的 重要性
二进制在数学和逻辑中的 广泛应用
二进制在人工智能和机器 学习中的应用前景
二进制在物联网和大数据 时代的应用潜力
小学奥数中的二进制经典例题 解析
简单的二进制数问题解析
二进制数的定义与表示方法
简单的二进制数乘法与除法
添加标题
添加标题
简单的二进制数加法与减法
添加标题
添加标题
经典例题解析:如何解决简单的二 进制数问题
复杂的二进制数问题解析
复杂二进制数的表示方法
复杂二进制数的运算规则
经典例题的解析过程
解题思路与技巧总结
添加标题
减法运算:0-0=0,0-1=1(借 位),1-0=1,1-1=0
添加标题添加标题来自除法运算:除数和被除数都为0时结 果为0;除数为0时无意义;被除数 为0且除数为1时结果为0;其他情 况下结果为被除数。
小学奥数中的二进制应用
小学奥数中的二进制数问题
二进制数的定义与表示 二进制数的运算规则 二进制数在数学中的应用 二进制数与其他数制的关系
二进制数的表示方法
二进制数的基数为2 二进制数只有0和1两个数字 二进制数的运算规则是逢二进一 二进制数的表示形式有二进制数、十进制数、十六进制数等
二进制数的运算规则
加法运算:0+0=0,0+1=1, 1+0=1,1+1=0(进位)
乘法运算:0*0=0,0*1=0, 1*0=0,1*1=1
《小学奥数二进制》课件

在算法设计中,二进制数的特性常常被用来优化算法效率和降低计算复 杂度。
03
数学逻辑
在数理逻辑中,二进制数常常被用来表示逻辑值和进行逻辑运算。
在日常生活中的应用
开/关状态
在日常生活中,许多设备或系 统的状态可以用二进制数来表 示,如开关的状态(开/关)、 音量调节(高/低)等。
加密通信
在通信中,二进制数可以用来 表示加密信息,因为二进制数 的简单运算规则和易于处理的 特性使得加密和解密过程变得 相对简单。
例如,在解决一些关于二进制数的组合问题时,我们可以通 过归纳法总结出不同组合方式的规律,从而快速得出答案。
演绎法
演绎法是一种从一般到特殊的推理方 法,在解决奥数二进制问题时,演绎 法可以帮助我们从已知的一般规律推 导出特殊情况下的结论。
例如,在解决一些关于二进制数的逻 辑推理问题时,我们可以通过演绎法 推导出符合逻辑的结论,从而快速得 出答案。
05
奥数二进制问题实例解析
实例一:二进制数的规律问题
总结词
通过观察二进制数的变化规律,找出数 列中隐藏的数学关系。
VS
详细描述
这类问题通常会给出一些二进制数列,如 1010, 1101, 1110等,要求找出数列中数 字变化的规律,并预测下一个数字。解决 这类问题需要细心观察数列中数字的变化 ,找出隐藏的数学关系。
总结词
将二进制数的知识应用于实际问题中,解决 实际问题。
详细描述
这类问题通常会以实际生活场景为背景,如 “一个密码锁的密码由三个二进制数字组成 ,请问有多少种可能的组合方式?”解决这 类问题需要将二进制数的知识应用于实际问 题中,通过数学运算和逻辑推理,找出符合
实际情况的答案。
小学奥数模块教程进位制初步(四年级提尖春季)

进位制初步本讲知识1、各种特殊进制的认识2、不同进制间数的互化3、特殊进制的运算前铺知识1、整除特征初步2、整除特征进阶课前加油站1、1234=1个 +2个 +3个 +4个2、7个1+8个10+6个100+4个10000=3、23= 个16+ 个8+ 个4+ 个2+ 个1我们常用的进制为十进制,特点是“逢十进一”。
在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。
比如二进制,八进制,十六进制等。
二进制:在计算机中,所采用的计数法是二进制,即“逢二进一”。
因此,二进制中只用两个数字0和1。
二进制的计数单位分别是1、21、22、23、……,二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110)2=1×25+0×24+0×23+1×22+1×21+0×20。
进制间的转换:如右图所示。
1、 很久很久以前,人类没有数字这个概念,但是到了打猎的时候需要计算得到了多少猎物,于是他们只能掰手指头,数到10后就没有办法继续,所以就在墙上做了一个记号“”,代表1个,这就是十进制的来历。
既然十个手指等于一个,那么也可以用一个表示十个,以此类推。
(1) 一个等于多少个?一个等于多少个?(2) 以现在的角度来看,相当于数中的 位,相当于数中的 位,相当于数中的十进制 二进制十六进制八进制 模块1进制的认识和互化位。
(3)“”写成阿拉伯数字是多少?2、从语言习惯就可以看出,有的地方以前是用的是二十进制,比如德国。
德国人说“96”都是“四个20加一个16”,如果德国人的祖先也是用这种计数方法,那么:(1)德国的一个等于多少个?一个等于多少个?(2)以现在的角度来看,相当于二十进制中的“”位,相当于二十进制数中的“”,相当于二十进制中的“”位。
(3)写成二十进制的数是多少?(4)上题的数在十进制中代表多少个?【演练】如果人类的祖先每只手有七个手指头,计数方式同前面两题,那么(1)一个等于多少个?(2)写成十进制的数是多少?(3)按照书写习惯,一个数中最多有多少个,多少个,多少个?(4)十进制的100只在这里应该表示成什么?【演练】你来到一个陌生的星球,这个星球的人还处在用符号计数的阶段,这个星球的一只猎物用来表示,、代表的意义不变。
现四年级:10..二进制计数法

四年级奥数第10讲二进制计数法常用的计数法为十进制计数法,用0~9这十个整数表示一切整数。
十进制的法则:满十进一;退一当十。
除了十进制计数法外还有:二进制、十二进制、六十进制等计数法。
在电子计算机时代,计算机都采用二进制计数法。
二进制计数法只需要用0和1这两个数字就能表示所有的数。
它的计数法则:满二进一,退一当二。
1.把90改写成二进制数(观察法和二除取余法)2.把2017年改写成用二进制计数法表示练习:把101改写成二进制的计数法3.把下面二进制数化为十进制数(1) 11011(2)(2)101100101(2)练习:把下面二进制数化为十进制数(1)10001(2) (2)101110010(2)4.计算(1)11011010(2)+1011011(2)(2)1101101(2)—-1010110(2)(3)1000000(2)-10011(2)-101101(2)练习:1001110(2)-110110(2)5.计算(1)1110110(2)×10111(2)(2)110110(2)÷110(2)(3)101101(2)÷111(2)回家作业:(要求每道题按解答题的格式解答) P80:一、1~4 二、1~4 三、1.2. 讲解数的整除的特征数的整除的特征:(1)能被2整除的数的特征:如果一个整数的个位数字是0、2、4、6、8,那么这个整数就一定能被2整除。
(2)能被5整除的数的特征:如果一个整数的个位数字是0或5,那么这个整数就一定能被5整除。
(3)能被3(或9)整除的数的特征:如果一个整数的各位数字之和能被3(或9)整除,那么这个整数就一定能被3(或9)整除。
(4)能被4(或25)整除的数的特征:如果一个整数的末尾两位数能被4(或25)整除,那么这个整数就一定能被4(或25)整除。
(5)能被8(或125)整除的数的特征:如果一个整数的末三位数能被8(或125)整除,那么这个整数就一定能被8(或125)整除。
四年级奥数.数论.进位制(ABC级).学生版

一、数的进制1.十进制:我们常用的进制为十进制,特点是“逢十进一”。
在实际生活中,除了十进制计数法外,还有其他的大于1的自然数进位制。
比如二进制,八进制,十六进制等。
2.二进制:在计算机中,所采用的计数法是二进制,即“逢二进一”。
因此,二进制中只用两个数字0和1。
二进制的计数单位分别是1、21、22、23、……,二进制数也可以写做展开式的形式,例如100110在二进制中表示为:(100110)2=1×25+0×24+0×23+1×22+1×21+0×20。
二进制的运算法则:“满二进一”、“借一当二”,乘法口诀是:零零得零,一零得零,零一得零,一一得一。
注意:对于任意自然数n ,我们有n 0=1。
3.k 进制:一般地,对于k 进位制,每个数是由0,1,2,,1k -()共k 个数码组成,且“逢k 进一”.1k k >()进位制计数单位是0k ,1k ,2k ,.如二进位制的计数单位是02,12,22,,八进位制的计数单位是08,18,28,. 4.k 进位制数可以写成不同计数单位的数之和的形式1110110n n n n k n n a a a a a k a ka k a ---=⨯+⨯++⨯+()十进制表示形式:1010101010n n n n N a a a --=+++;二进制表示形式:1010222n n n n N a a a --=+++;为了区别各进位制中的数,在给出数的右下方写上k ,表示是k 进位制的数 如:8352(),21010(),123145(),分别表示八进位制,二进位制,十二进位制中的数. 5.k 进制的四则混合运算和十进制一样先乘除,后加减;同级运算,先左后右;有括号时先计算括号内的。
二、进制间的转换:一般地,十进制整数化为k 进制数的方法是:除以k 取余数,一直除到被除数小于k 为止,余数由下到上按从左到右顺序排列即为k 进制数.反过来,k 进制数化为十进制数的一般方法是:首先将k 进制数按k 的次幂形式展开,然后按十进制数相加即可得结果. 如右图所示:知识框架进位制【例 1】把9865转化成二进制、五进制、八进制,看看谁是最细心的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第36讲二进制
一、专题简析:
二进制就是只用0和1两数字,在计数与计算时必须“满二进一”,即每两个相同的单位组成一个和它相邻的最高的单位。
二进制的最大特点是:每个数的各个数位上只有0或只有1两种状态。
二进制与十进制之间可以互相转化。
1、将一个二进制数写成十进制数的步骤是:(1)将二进制数的各数位上数字改写成相
应的十进制数;(2)将各数位上对应的十进制数求和,所得结果就是相应的十进制数。
将十进制数改写成二进制数的过程,正好相反。
2、十进制数改写成二进制数的常用方法是:除以二倒取余数。
3、二进制数的计算法则:
(1)加法法则:0+0=0 0+1=1 1+0=1 1+1=10
(2)乘法法则:0×0=0 0×1=0 1×0=0 1×1=1
二、精讲精练:
例1:把二进制数110
(2)
改写成十进制数。
分析与解答:十进制有两个特点:(1)它有十个不同的数字符号;(2)满十进1。
二进制有两个特点:(1)它的数值部分,只需用两个数码0和1来表示;(2)它是“满二进一”。
把二进制数110
(2)
改写成十进制数,只要把它写成2的幂之和的形式,然后按通常的方法进行计算即可。
110
(2)
=1×22+1×21+0×20
=1×4+1×2+0×1
=4+2+0
=6
练习一:
把下列二进制数分别改写成十进制数。
(1)100
(2)(2)1001
(2)
(3)1110
(2)
例2:把十进制数38改写成二进制数。
分析与解答:把十进制数改写成二进制数,可以根据二进制数“满二进一”的原则,用2连续去除这个十进制数,直到商为零为止,把每次所得的余数按相反的顺序写出来,就是所化成的二进制数,这种方法叫做“除以二倒取余数”。
2 38 0
2 19 (1)
2 9 (1)
2 4 0
2 2 0
1 (1)
即:38
(10)=100110
(2)
练习二
把下列十进制数分别改写成二进制数。
(1)12
(10)(2)15
(10)
(3)78
(10)
例3:计算1011
(2)+11
(2)
分析与解答:任何进位制数的运算,都可以根据十进制数的运算法则来进行,做一位数
的运算需要有加法表(即加法口诀)。
二进制的加法口诀只有一句:1
(2)+1
(2)
=10
(2)
1011
(2)+11
(2)
=1110
(2)
1011
(2)
+ 11
(2)
1110
(2)
你能用十进制计算来检验上面的计算吗?
1、计算101
(2)+10
(2)
2、计算1110
(2)+11
(2)
3、计算11010
(2)-1111
(2)
例4:计算1101
(2)×11
(2)
分析与解答:二进制的乘法口诀只有一句:1
(2)×1
(2)
=1
(2
1101
(2)
× 11
(2)
1101
(2)
1101
(2)
100111
(2)
你能用十进制计算来检验上面的计算吗?
1、计算110
(2)×10
(2)
2、计算1011
(2)×11
(2)
3、计算101
(2)×110
(2)
例5:计算1111
(2)÷101
(2)
分析与解答:二进制数的除法运算与十进制的除法运算一样,是乘法的逆运算。
11
(2)
101
(2) 1111
(2)
101 101 101 0
1、计算11100
(2)÷100
(2)
2、计算10010
(2)÷11
(2)
3、计算10000111
(2)÷11
(2)。