求数列通项公式的十种方法(例题+详解)

合集下载

数列求通项的七种方法及例题

数列求通项的七种方法及例题

数列求通项的七种方法及例题数列求通项的7种方法及例题:1. 已知首项和公比法:设数列{an}中,a1为首项,q为公比,则an = a1 × q^(n-1)。

例如:已知数列{an}中,a1=2,q=3,求a5。

答案:a5=2×3^4=2×81=1622. 已知前n项和法:设数列{an}中,Sn为前n项和,则an = S0 + S1 + S2 +···+ Sn-1 - (S1 + S2 +···+ Sn-1) = S0。

例如:已知数列{an}中,S2=6,S4=20,求a3。

答案:a3 = S2 - (S2 - S1) = 6 - (6 - 2) = 83. 等差数列的通项公式:设数列{an}为等差数列,d为公差,则an = a1 + (n-1)d。

例如:已知数列{an}为等差数列,a1=2,d=4,求a5。

答案:a5 = 2 + (5-1)4 = 184. 等比数列的通项公式:设数列{an}为等比数列,q为公比,则an = a1 ×q^(n-1)。

例如:已知数列{an}为等比数列,a1=2,q=3,求a5。

答案:a5=2×3^4=2×81=1625. 三项和平均数法:设数列{an}中,Sn = a1 + a2 + a3 +···+ an,则an = Sn/n。

例如:已知数列{an}中,S4=20,求a3。

答案:a3 = S4/4 = 20/4 = 56. 泰勒公式法:对于一般的数列,可以使用泰勒公式进行求通项。

例如:已知数列{an}中,a1=2,且当n→∞ 时,an → 0,求a4。

答案:使用泰勒公式,a4 = a1 + (n-1)(a2 - a1)/1! + (n-1)(n-2)(a3 -2a2 + a1)/2! + (n-1)(n-2)(n-3)(a4 - 3a3 + 3a2 - a1)/3! = 2 + 3(2 - 2)/1! + 3(3 - 2)(3 - 4)/2! + 3(3 - 2)(3 - 4)(3 - 5)/3! = 2 + 3(0)/1! + 3(1)(-1)/2! + 3(1)(-1)(-2)/3! = 2 - 3/2 - 3/4 + 3/6 = 2 - 1/87. 斐波那契数列法:斐波那契数列是一种特殊的数列,它的通项公式可以写作 an = an-1 + an-2。

求数列通项公式的十种方法

求数列通项公式的十种方法

求数列通项公式的十种方法求解数列的通项公式是高中数学中的一个重要问题,通常需要运用数学分析方法、递推关系、差分方法等多种技巧。

下面将列举十种常见的方法来求解数列的通项公式。

方法一:等差数列的通项公式对于等差数列 an = a1 + (n - 1) * d,其中 a1 为首项,n 为项数,d 为公差。

通项公式可以直接通过公式计算得出。

方法二:等差数列的求和公式对于等差数列 S = (n / 2) * (a1 + an),其中 S 为前 n 项和,a1 为首项,an 为末项,n 为项数。

可以通过求和公式推导出等差数列的通项公式。

方法三:等比数列的通项公式对于等比数列 an = a1 * r^(n - 1),其中 a1 为首项,r 为公比,n 为项数。

通项公式可以直接通过公式计算得出。

方法四:等比数列的求和公式对于等比数列S=(a1*(r^n-1))/(r-1),其中a1为首项,r为公比,n为项数。

可以通过求和公式推导出等比数列的通项公式。

方法五:递推关系法对于一些递推关系的数列,可以通过寻找规律,构建递推关系来求解数列的通项公式。

例如斐波那契数列就可以通过递推关系f(n)=f(n-1)+f(n-2),其中f(1)=1,f(2)=1,来求解通项公式。

方法六:二项式展开法对于一些满足二项式展开的数列,可以通过展开得到二项式系数,然后通过系数的通项公式来求解数列的通项公式。

例如二项式数列(x+1)^n的展开系数就是通过n阶二项展开推导出来的。

方法七:差分法通过对数列进行差分操作,找到规律来求解数列的通项公式。

例如,如果差分的结果是一个等差数列,那么原数列就是一个二次或高次多项式。

方法八:线性递推法对于一些线性递推关系的数列,可以通过构建矩阵形式或特征方程的方法来求解数列的通项公式。

例如,对于一阶线性递推数列a(n)=p*a(n-1)+q,可以通过特征方程x-p*x-q=0来求解通项公式。

方法九:插值法通过给定数列中的若干项,利用 Lagrange 插值公式来推导数列的通项公式。

求数列通项公式的十种方法

求数列通项公式的十种方法

时间:二O二一年七月二十九日1. 观察法(求出 a1、a2、a3,然后找规律)之蔡 仲巾千创作时间:二 O 二一年七月二十九日即归纳推理,就是观察数列特征,找出各项共同的构陈规律,然后利用数学归纳法加以证明即可.,,若 ,求及数列 的通项公式.解:由题意可知:,,.因此猜想.下面用数学归纳法证明上式.(1)当 n=1 时,结论显然成立.(2)假设当 n=k 时结论成立,即.(3)则即当 n=k+1 时结论也成立. 由(1)、(2)可知,对一切正整数.(最后一句总结很重要), ,都有2.界说法(已知数列为等差或者等比)直接利用等差数列或等比数列的界说求通项的方法叫界说法,这种方法适应于已知数列类型的题目.满足,,求 的通项公式.时间:二O二一年七月二十九日时间:二O二一年七月二十九日解:设等差数列 的公差为 .因为,所以 .又因为,所以,故 .所以.3.公式法若已知数列的前 n 项和 与 的关系,求数列的通项 可用公式 (Ⅰ)求数列解:(Ⅰ)由的前 项和为 ,已知 的通项公式.可得:那时 ,,那时 ,而,所以4.累加法 当递推公式为. 满足 ,且 为 解:由题意得: 5.累乘法时,通常解法是把原递推公式转化为 ( ),则数列{ }的前 10 项和时间:二O二一年七月二十九日时间:二O二一年七月二十九日当递推公式为时,通常解法是把原递推公式转化为,利用累乘法(逐商相乘法)求解.满足 解:由条件知 在上式中分别令 即,求的通项公式., ,得 个等式累乘之,,即又6.构造法(拼凑法)-共 5 种题型,第 2、3 种方法不用掌握1、当递推公式为(其中 均为常数,且)时,通常解法是把原递推公式转化为,其中,再利用换元法转化为等比数列求解.例题:已知数列 满足,求 的通项公式.解:由得又所以是首项为 ,公比为 的等比数列所以因此数列 的通项公式为.时间:二O二一年七月二十九日时间:二O二一年七月二十九日2、当递推公式为 解法是把原递推公式转化为时,通常 ,其中 的值由方程给出.(了解即可,不用掌握)例题:在数列 中, =2, =,求数列 的通项 .解:由得又所以数列是首项为 ,公比为 的等比数列所以,即.3、当递推公式为(其中 均为常数,且 )时,通常解法是把原递推公式转化为.① 若 , 则,此时数列 是以 为首项,以 为公差的等差数列,则,即.② 若,则可化为形式求解.(了解即可,不用掌握)例题:已知数列{ }中, =1, =,求数列的通项公式.解:由得所以数列是首项为 = , 的等比数列所以=,即=时间:二O二一年七月二十九日时间:二O二一年七月二十九日4、当递推公式为( 为常数,且)时,通常两边同时取倒数,把原递推公式转化为.①若 ,则是以 为首项,以 为公差的等差数列,则,即.② 若 , 则 可 转 化 为(其中)形式求解.例 10.已知数列{ }满足 ,且数列{ }的通项公式. 解:原式可变形为两边同除以得(),求…… ⑴构造新数列,使其成为公比 的等比数列即整理得满足⑴式使∴∴数列是首项为,q= 的等比数列∴ 5、当递推公式为 归)时,将原递推公式∴.( 均为常数)(又称二阶递 转化为 - =时间:二O二一年七月二十九日时间:二O二一年七月二十九日( - ).其中 、 由解出,由此可获得数列{ - }是等比数列. 例题:设数列 的前 项和为 , .已知 , , ,且那时 , 证明:因为 所以 即 因为 所以.证明:为等比数列;因为所以数列是以比数列.时间:二 O 二一年七月二十九日为首项,以 为公比的等时间:二O二一年七月二十九日。

(重要)高中数学数列十种求通项和七种求和方法,练习及问题详解

(重要)高中数学数列十种求通项和七种求和方法,练习及问题详解

高中数列知识点总结1. 等差数列的定义与性质定义:1n n a a d +-=〔d 为常数〕,()11n a a n d =+- 等差中项:x A y ,,成等差数列2A x y ⇔=+ 前n 项和:()()11122n n a a n n n S nad +-==+性质:〔1〕假如m n p q +=+,如此m n p q a a a a +=+;〔2〕{}n a 为等差数列2n S an bn ⇔=+〔a b ,为常数,是关于n 的常数项为0的二次函数〕2. 等比数列的定义与性质定义:1n na q a +=〔q 为常数,0q ≠〕,11n n a a q -=.等比中项:x G y 、、成等比数列2G xy ⇒=,或G =前n 项和:()11(1)1(1)1n n na q S a q q q=⎧⎪=-⎨≠⎪-⎩〔要注意公比q 〕性质:{}n a 是等比数列〔1〕假如m n p q +=+,如此mn p q a a a a =·· 3.求数列通项公式的常用方法一、公式法例1 数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式.解:1232n n n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,如此113222n n n n a a ++-=,故数列{}2nna 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222n n a n =-.二、累加法 )(1n f a a n n =--例2 数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式.解:由121n n a a n +=++得121n n a a n +-=+如此所以数列{}n a 的通项公式为2n a n =.例3数列{}n a 满足1132313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式.解:13231n n n a a +=+⨯+两边除以13n +,得111213333n n n n n a a +++=++, 如此111213333n n n n n a a +++-=+三、累乘法)(1n f a a n n=- 例4 数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式.解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,如此12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯所以数列{}n a 的通项公式为(1)12325!.n n n n a n --=⨯⨯⨯例5 〔2004年全国I 第15题,原题是填空题〕数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求{}n a 的通项公式. 解:因为123123(1)(2)n n a a a a n a n -=++++-≥①所以1123123(1)n n n a a a a n a na +-=++++-+②用②式-①式得1.n n n a a na +-=如此1(1)(2)n n a n a n +=+≥故11(2)n na n n a +=+≥ 四、待定系数法〔重点〕例6 数列{}n a 满足112356nn n a a a +=+⨯=,,求数列{}n a 的通项公式.解:设1152(5)n n n n a x a x +++⨯=+⨯④将1235n n n a a +=+⨯代入④式,得12355225n n nn n a x a x ++⨯+⨯=+⨯,等式两边消去2n a ,得135525n n n x x +⋅+⋅=⋅,两边除以5n ,得352,1,x x x +==-则代入④式得1152(5)n n n n a a ++-=-例7 数列{}n a 满足1135241nn n a a a +=+⨯+=,,求数列{}n a 的通项公式.解:设1123(2)n n n n a x y a x y +++⨯+=+⨯+⑥将13524nn n a a +=+⨯+代入⑥式,得整理得(52)24323n nx y x y +⨯++=⨯+.令52343x x y y +=⎧⎨+=⎩,如此52x y =⎧⎨=⎩,代入⑥式得115223(522)n nn n a a +++⨯+=+⨯+⑦例8 数列{}n a 满足21123451n n a a n n a +=+++=,,求数列{}n a 的通项公式.解:设221(1)(1)2()n n a x n y n z a xn yn z ++++++=+++⑧将212345n n a a n n +=+++代入⑧式,得2222345(1)(1)2()n n a n n x n y n z a xn yn z ++++++++=+++,如此等式两边消去2n a ,得22(3)(24)(5)222x n x y n x y z xn yn z ++++++++=++,解方程组3224252x x x y y x y z z+=⎧⎪++=⎨⎪+++=⎩,如此31018x y z =⎧⎪=⎨⎪=⎩,代入⑧式,得2213(1)10(1)182(31018)n n a n n a n n ++++++=+++⑨五、对数变换法例9 数列{}n a 满足5123n n n a a +=⨯⨯,17a =,求数列{}n a 的通项公式.解:因为511237n n n a a a +=⨯⨯=,,所以100n n a a +>>,.在5123n n n a a +=⨯⨯式两边取常用对数得1lg 5lg lg3lg 2n n a a n +=++⑩设1lg (1)5(lg )n n a x n y a xn y ++++=++错误! 六、迭代法例10 数列{}n a 满足3(1)2115nn n n a a a ++==,,求数列{}n a 的通项公式.解:因为3(1)21n n n n a a ++=,所以121323(1)23212[]n n n n n n n n n a a a ---⋅-⋅⋅--== 七、数学归纳法 例11 11228(1)8(21)(23)9n n n a a a n n ++=+=++,,求数列{}n a 的通项公式.〔其他方法呢?〕 解:由1228(1)(21)(23)n n n a a n n ++=+++与189a =,得 由此可猜想22(21)1(21)n n a n +-=+,往下用数学归纳法证明这个结论. 〔1〕当1n =时,212(211)18(211)9a ⨯+-==⨯+,所以等式成立. 〔2〕假设当n k =时等式成立,即22(21)1(21)k k a k +-=+,如此当1n k =+时, 由此可知,当1n k =+时等式也成立.根据〔1〕,〔2〕可知,等式对任何*n N ∈都成立. 八、换元法例12 数列{}n a满足111(14116n n a a a +=+=,,求数列{}n a 的通项公式.解:令n b =如此21(1)24n n a b =- 故2111(1)24n n a b ++=-,代入11(1416n n a a +=+得 即2214(3)n n b b +=+因为0n b =≥,故10n b +=≥ 如此123n n b b +=+,即11322n n b b +=+,可化为113(3)2n n b b +-=-, 九、不动点法例13 数列{}n a 满足112124441n n n a a a a +-==+,,求数列{}n a 的通项公式.解:令212441x x x -=+,得2420240x x -+=,如此1223x x ==,是函数2124()41x f x x -=+的两个不动点.因为十、倒数法11212nn n a a a a +==+,,求n a 4. 求数列前n 项和的常用方法一、公式法利用如下常用求和公式求和是数列求和的最根本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n[例1]求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. [例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.二、错位相减法〔等差乘等比〕[例3]求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………②〔设制错位〕 ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS 〔错位相减〕∴1224-+-=n n n S三、倒序相加法这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列〔反序〕,再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:nn n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=-〔反序〕又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..……..②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=-〔反序相加〕 ∴nn n S 2)1(⋅+=[例6] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S ………….①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..②〔反序〕又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 〔反序相加〕)89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5 四、分组法求和有一类数列,既不是等差数列,也不是等比数列,假如将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,… [例8] 求数列{n<n+1><2n+1>}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132〔分组〕五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项〔通项〕分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解〔裂项〕如:〔1〕)()1(n f n f a n -+= 〔2〕n n n n tan )1tan()1cos(cos 1sin -+=+ 〔3〕111)1(1+-=+=n n n n a n 〔4〕)121121(211)12)(12()2(2+--+=+-=n n n n n a n 〔5〕])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n<6> nn n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 [例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. [例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+〔裂项〕 ∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S 〔裂项求和〕 =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立 六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179° ∵)180cos(cosn n --= 〔找特殊性质项〕∴S n = 〔cos1°+ cos179°〕+〔 cos2°+ cos178°〕+〔cos3°+ cos177°〕+···+〔cos89°+ cos91°〕+ cos90° 〔合并求和〕= 0[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得 ……∵0665646362616=+++++++++++k k k k k k a a a a a a 〔找特殊性质项〕 ∴ S 2002=2002321a a a a +⋅⋅⋅+++〔合并求和〕=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a=2002200120001999a a a a +++ =46362616+++++++k k k k a a a a =5[例14] 在各项均为正数的等比数列中,假如103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质 q p n m a a a a q p n m =⇒+=+〔找特殊性质项〕 和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++=〔合并求和〕=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅ =9log 9log 9log 333+⋅⋅⋅++ =10七、利用数列的通项求和先根据数列的结构与特征进展分析,找出数列的通项与其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法. [例15] 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅k k k个个〔找通项与特征〕 ∴ 11111111111个n ⋅⋅⋅+⋅⋅⋅+++ =)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n 〔分组求和〕 =)1111(91)10101010(911321 个n n +⋅⋅⋅+++-+⋅⋅⋅+++ =9110)110(1091nn ---⋅=)91010(8111n n --+ [例16] 数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值.数列练习一、选择题}{n a 的公比为正数,且3a ·9a =225a ,2a =1,如此1a =A.21B. 22C.2 D.22.为等差数列,,如此等于{}n a 的前n 项和为n S .假如4a 是37a a 与的等比中项, 832S =,如此10S 等于A. 18B. 24C. 60D. 90 . 4设n S 是等差数列{}n a 的前n 项和,23a =,611a =,如此7S 等于A .13B .35C .49D . 63 5.{}n a 为等差数列,且7a -24a =-1,3a =0,如此公差d = 〔A 〕-2 〔B 〕-12 〔C 〕12〔D 〕2 {n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,如此数列的前10项之和 A. 90 B. 100 C. 145 D. 1907.等差数列{}n a 的前n 项和为n S ,2110m m ma a a -++-=,2138m S -=,如此m = 〔A 〕38 〔B 〕20 〔C 〕10 〔D 〕9 .{}n a 是公差不为0的等差数列,12a =且136,,a a a 成等比数列,如此{}n a 的前n 项和n S =A .2744n n +B .2533n n +C .2324n n+D .2n n +{n a }的公差不为零,首项1a =1,2a 是1a 和5a 的等比中项,如此数列的前10项之和是 A. 90 B. 100 C. 145 D. 190 . 二、填空题1设等比数列{}n a 的公比12q =,前n 项和为n S ,如此44S a =.2.设等差数列{}n a 的前n 项和为n S ,如此4S ,84S S -,128S S -,1612S S -成等差数列.类比以上结论有:设等比数列{}n b 的前n 项积为n T ,如此4T , , ,1612T T 成等比数列.}{n a 中,6,7253+==a a a ,如此____________6=a .4.等比数列{n a }的公比0q >, 2a =1,216n n n a a a +++=,如此{n a }的前4项和4S = .数列练习参考答案一、选择题1.[答案]B[解析]设公比为q ,由得()22841112a q a q a q ⋅=,即22q =,又因为等比数列}{n a 的公比为正数,所以2q =故2122a a q ===,选B 2.[解析]∵135105a a a ++=即33105a =∴335a =同理可得433a =∴公差432d a a =-=-∴204(204)1a a d =+-⨯=.选B.[答案]B3.答案:C[解析]由2437a a a =得2111(3)(2)(6)a d a d a d +=++得1230a d +=,再由81568322S a d =+=得 1278a d +=如此12,3d a ==-,所以1019010602S a d =+=,.应当选C 4.解:172677()7()7(311)49.222a a a a S +++====应当选C. 或由21161315112a a d a a a d d =+==⎧⎧⇒⎨⎨=+==⎩⎩, 716213.a =+⨯=所以1777()7(113)49.22a a S ++===应当选C. 5.[解析]a 7-2a 4=a 3+4d -2<a 3+d>=2d =-1 ⇒ d =-12[答案]B 6.[答案]B[解析]设公差为d ,如此)41(1)1(2d d +⋅=+.∵d ≠0,解得d =2,∴10S =1007.[答案]C[解析]因为{}n a 是等差数列,所以,112m m m a a a -++=,由2110m m m a a a -++-=,得:2m a -2m a =0,所以,m a =2,又2138m S -=,即2))(12(121-+-m a a m =38,即〔2m -1〕×2=38,解得m =10,应当选.C.8.[答案]A 解析设数列{}n a 的公差为d ,如此根据题意得(22)22(25)d d +=⋅+,解得12d =或0d =〔舍去〕,所以数列{}n a 的前n 项和2(1)1722244n n n n nS n -=+⨯=+ 9.[答案]B[解析]设公差为d ,如此)41(1)1(2d d +⋅=+.∵d ≠0,解得d =2,∴10S =100二、填空题1.[命题意图]此题主要考查了数列中的等比数列的通项和求和公式,通过对数列知识点的考查充分表现了通项公式和前n 项和的知识联系.[解析]对于4431444134(1)1,,151(1)a q s q s a a q q a q q --==∴==--2.答案:81248,T T T T [命题意图]此题是一个数列与类比推理结合的问题,既考查了数列中等差数列和等比数列的知识,也考查了通过条件进展类比推理的方法和能力3.[解析]:设等差数列}{n a 的公差为d ,如此由得⎩⎨⎧++=+=+6472111d a d a d a 解得132a d =⎧⎨=⎩,所以61513a a d =+=.答案:13.[命题立意]:此题考查等差数列的通项公式以与根本计算.4.[答案]152[解析]由216n n n a a a +++=得:116-+=+n n n q q q ,即062=-+q q ,0q >,解得:q =2,又2a =1,所以,112a =,21)21(2144--=S =152三、大题{}n a 的各项均为正数,且212326231,9.a a a a a +==1〕.求数列{}n a 的通项公式.2〕.设31323log log ......log ,n n b a a a =+++求数列1n b ⎧⎫⎨⎬⎩⎭的前项和.{an}满足a2=0,a6+a8=-10〔I 〕求数列{an}的通项公式;〔II 〕求数列⎭⎬⎫⎩⎨⎧-12n n a 的前n 项和.2*.正项等差数列{}n a 的前n 项和为n S ,假如312S =,且1232,,1a a a +成等比数列. 〔Ⅰ〕求{}n a 的通项公式;〔Ⅱ〕记3nn n a b =的前n 项和为n T ,求n T . 3. 数列{a n }满足a 1=1,a 2=3,a n+2=3a n+1-2a n 〔n ∈N +〕〔1〕证明:数列{a n+1-a n }是等比数列;〔2〕求数列{a n }的通项公式{}n a 的各项满足:k a 311-=)(R k ∈,1143n n n a a --=-.<1> 判断数列}74{nn a -是否成等比数列;〔2〕求数列{}n a 的通项公式{}n a 和正项等比数列{}n b ,111==b a ,1073=+a a ,3b =4a〔1〕求数列{}n a 、{}n b 的通项公式〔2〕假如n n n b a c •=,求数列{}n c 的前n 项和n T。

(完整版)求数列通项公式常用的七种方法

(完整版)求数列通项公式常用的七种方法

求数列通项公式常用的七种方法一、公式法:已知或根据题目的条件能够推出数列{}n a 为等差或等比数列,根据通项公式()d n a a n 11-+=或11-=n n q a a 进行求解.例1:已知{}n a 是一个等差数列,且5,152-==a a ,求{}n a 的通项公式.分析:设数列{}n a 的公差为d ,则⎩⎨⎧-=+=+54111d a d a 解得⎩⎨⎧-==231d a∴ ()5211+-=-+=n d n a a n二、前n 项和法:已知数列{}n a 的前n 项和n s 的解析式,求n a . 例2:已知数列{}n a 的前n 项和12-=n n s ,求通项n a . 分析:当2≥n 时,1--=n n n s s a =()()32321----n n=12-n而111-==s a 不适合上式,()()⎩⎨⎧≥=-=∴-22111n n a n n三、n s 与n a 的关系式法:已知数列{}n a 的前n 项和n s 与通项n a 的关系式,求n a . 例3:已知数列{}n a 的前n 项和n s 满足n n s a 311=+,其中11=a ,求n a . 分析:Θ 13+=n n a s ① ∴ n n a s 31=- ()2≥n ② ①-② 得 n n n a a a 331-=+ ∴ 134+=n n a a即 341=+n n a a ()2≥n 又1123131a s a ==不适合上式∴ 数列{}n a 从第2项起是以34为公比的等比数列 ∴ 222343134--⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=n n n a a ()2≥n ∴()()⎪⎩⎪⎨⎧≥⎪⎭⎫ ⎝⎛==-23431112n n a n n注:解决这类问题的方法,用具俗话说就是“比着葫芦画瓢”,由n s 与n a 的关系式,类比出1-n a 与1-n s 的关系式,然后两式作差,最后别忘了检验1a 是否适合用上面的方法求出的通项.四、累加法:当数列{}n a 中有()n f a a n n =--1,即第n 项与第1-n 项的差是个有“规律”的数时,就可以用这种方法.例4:()12,011-+==+n a a a n n ,求通项n a分析:Θ 121-=-+n a a n n ∴ 112=-a a 323=-a a 534=-a a┅ 321-=--n a a n n ()2≥n以上各式相加得()()211327531-=-+++++=-n n a a n Λ ()2≥n又01=a ,所以()21-=n a n ()2≥n ,而01=a 也适合上式, ∴ ()21-=n a n ()*∈Nn五、累乘法:它与累加法类似 ,当数列{}n a 中有()1nn a f n a -=,即第n 项与第1-n 项的商是个有“规律”的数时,就可以用这种方法.例5:111,1n n na a a n -==- ()2,n n N *≥∈ 求通项n a分析:Q 11n n n a a n -=- ∴11n n a n a n -=- ()2,n n N *≥∈故3241123123411231n n n a a a a na a n a a a a n -===-gg g g L g g g g L g ()2,n n N *≥∈ 而11a =也适合上式,所以()n a n n N *=∈ 六、构造法:㈠、一次函数法:在数列{}n a 中有1n n a ka b -=+(,k b 均为常数且0k ≠),从表面形式上来看n a 是关于1n a -的“一次函数”的形式,这时用下面的方法:一般化方法:设()1n n a m k a m -+=+ 则()11n n a ka k m -=+- 而1n n a ka b -=+ ∴()1b k m =- 即1b m k =- 故111n n b b a k a k k -⎛⎫+=+ ⎪--⎝⎭∴数列11n b a k -⎧⎫+⎨⎬-⎩⎭是以k 为公比的等比数列,借助它去求n a例6:已知111,21n n a a a -==+ ()2,n n N *≥∈ 求通项n a分析:Q 121n n a a -=+ ∴()1112221n n n a a a --+=+=+ ∴数列{}1n a +是以2为首项,2为公比的等比数列 ∴()111122n n n a a -+=+⋅= 故21n n a =- ㈡、取倒数法:这种方法适用于11n n n ka a ma p--=+()2,n n N *≥∈(,,k m p 均为常数0m ≠), 两边取倒数后得到一个新的特殊(等差或等比)数列或类似于1n n a ka b -=+的式子. 例7:已知11122,2n n n a a a a --==+ ()2,n n N *≥∈ 求通项n aQ 1122n n n a a a --=+ ∴111211122n n n n a a a a ---+==+ 即11112n n a a --= ()2,n n N *≥∈ ∴ 数列1n a ⎧⎫⎨⎬⎩⎭是以12为首项,以12为公差的等差数列∴()1111222n n n a =+-⋅= ∴2n a n= ㈢、取对数法:一般情况下适用于1k l n n a a -=(,k l 为非零常数) 例8:已知()2113,2n n a a a n -==≥ 求通项n a分析:由()2113,2n n a a a n -==≥知0n a >∴在21n n a a -=的两边同取常用对数得 211lg lg 2lg n n n a aa --==即1lg 2lg nn a a -= ∴数列{}lg n a 是以lg 3为首项,以2为公比的等比数列故112lg 2lg3lg3n n n a --== ∴123n n a -=七、“m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项n a .例9:设数列{}n a 的前n 项和为n s ,已知*11,3,N n s a a a n n n ∈+==+,求通项n a . 解:n n n s a 31+=+Θ 113--+=∴n n n s a ()2≥n两式相减得 1132-+⋅+=-n n n n a a a 即 11322-+⋅+=n n n a a上式两边同除以13+n 得92332311+⋅=++n n n n a a (这一步是关键) 令nnn a c 3=得 92321+=+n n c c ⎪⎭⎫⎝⎛-=-∴+3232321n n c c ()2≥n (想想这步是怎么得来的) ∴数列⎭⎬⎫⎩⎨⎧-32n c 从第2项起,是以93322-=-a c 为首项,以32为公比的等比数列故 ()n n n n n a a c c 32332933232322222----=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-=-()323232+-=∴-n n n a c 又n n n a c 3=,所以()123223--⋅+⋅-=n n n a a a a =1Θ不适合上式 ()()()⎩⎨⎧≥⋅+⋅-==∴--23223112n a n a a n n n 注:求m n n c ba a +=+1(c b ,为常数且不为0,*,N n m ∈)”型的数列求通项公式的方法是等式的两边同除以1+n c ,得到一个“1n n a ka b -=+”型的数列,再用上面第六种方法里面的“一次函数法”便可求出n n ca 的通式,从而求出n a .另外本题还可以由n n n s a 31+=+得到nn n n s s s 31+=-+即 n n n s s 321+=+,按照上面求n a 的方法同理可求出n s ,再求n a .您不不妨试一试.除了以上七种方法外,还有嵌套法(迭代法)、归纳猜想法等,但这七种方法是经常用的,将其总结到一块,以便于学生记忆和掌握.。

1求数列通项公式的十种方法

1求数列通项公式的十种方法

求数列通项公式方法大全 一、累加法适用于: ----------这是广义的等差数列 累加法是最基本的二个方法之一。

,例1 已知数列满足,求数列的通项公式。

解:由得则所以。

,例 2 已知数列满足,求数列的通项公式。

解法一:由得则所以3解法二:两边除以,得, 则,故- 1 -1n.因此,则练习1.已知数列的首项为写出数列的通项公式. 1,且2答案:nn练习2.已知数列满足,,求此数列的通项公式nn 答案:裂项求和,其中f(n)可以是关于n的一次函数、二次函数、指数函评注:已知数、分式函数,求通项. n①若f(n)是关于n的一次函数,累加后可转化为等差数列求和; ②若f(n)是关于n的二次函数,累加后可分组求和; ③若f(n)是关于n的指数函数,累加后可转化为等比数列求和; ④若f(n)是关于n 的分式函数,累加后可裂项求和。

1例3.已知数列中, 且,求数列的通项公式解:由已知得化简有,由类型(1)有又得,所以,又,, n111则此题也可以用数学归纳法来求解二、累乘法a f(n)a.适用于: ----------这是广义的等比数列累乘法是最基本的二个方法之二。

- 2 -n{a}{a}2(1)5,3例4 已知数列满足,求数列的通项公式。

1n102(1)52(1)5,3解:因为,所以,则,故1n1132n112212112[2(21)5][2(11)5]3[2(11)5][2(21)5]211(1)(2)2[n(1)32]53 n(1)132!52n(1)1{a}325!.2所以数列的通项公式为2210a n(=1,2,3,…)例5.设是首项为1的正项数列,且,11nna则它的通项公式是=________. ()(1)0解:已知等式可化为:111 001*, 即()(n+1)111211121n112=. 时,=1211aa评注:本题是关于和的二次齐次式,可以通过因式分解(一般情况时用求根公式)得到1aaa与的更为明显的关系式,从而求出. 11,1练习.已知,求数列{an}的通项公式. 1n1(1)!(1)答案:-1. n11,转化为评注:本题解题的关键是把原来的递推关系式11(1),1若令,则问题进一步转化为形式,进而应用累乘法求11n 出数列的通项公式. - 3 -三、待定系数法适用于基本思路是转化为等差数列或等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数。

高中数学必须掌握的十种数列通项公式的解题方法和典型例题

高中数学必须掌握的十种数列通项公式的解题方法和典型例题

高中数学必须掌握的十种数列通项公式的解题方法和典型例题
在高考中数列部分的考查既是重点又是难点,不论是选择题或填空题中对基础知识的考查,还是压轴题中与其他章节知识的综合,抓住数列的通项公式通常是解题的关键和解决数列难题的瓶颈。

求通项公式也是学习数列时的一个难点。

由于求通项公式时渗透多种数学思想方法,因此求解过程中往往显得方法多、灵活度大、技巧性强。

通项公式普通的求法:
(1)构造等比数列:凡是出现关于后项和前项的一次递推式都可以构造等比数列求通项公式;
(2)构造等差数列:递推式不能构造等比数列时,构造等差数列;
(3)递推:即按照后项和前项的对应规律,再往前项推写对应式。

已知递推公式求通项常见方法:
①已知a1=a,a n+1=qa n+b,求a n时,利用待定系数法求解,其关键是确定待定系数λ,使a n+1+λ=q(a n+λ)进而得到λ。

②已知a1=a,a n=a n-1+f(n)(n≥2),求a n时,利用累加法求解,即
a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)的方法。

③已知a1=a,a n=f(n)a n-1(n≥2),求a n时,利用累乘法求解。

非常实用的十大解题方法及典型例题
方法一数学归纳法
方法二 Sn 法
方法三累加法
方法四累乘法
方法五构造法一
方法六构造法二
方法七构造法三
方法八构造法四
方法九构造五
方法十构造六。

数列通项公式的十种求法

数列通项公式的十种求法

数列通项公式的九种求法一、公式法例1 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。

二、累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+ ,即得数列{}n a 的通项公式。

例3 已知数列{}n a 满足112313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。

例4 已知数列{}n a 满足1132313nn n a a a +=+⨯+=,,求数列{}n a 的通项公式。

三、累乘法例5 已知数列{}n a 满足112(1)53n n n a n a a +=+⨯=,,求数列{}n a 的通项公式。

解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故1321122112211(1)(2)21(1)12[2(11)5][2(21)5][2(21)5][2(11)5]32[(1)32]53325!n n n n n n n n n n n n n a a a a a a a a a a n n n n n -------+-+++--=⋅⋅⋅⋅⋅=-+-+⋅⋅+⨯+⨯⨯=-⋅⋅⨯⨯⨯=⨯⨯⨯ 评注:本题解题的关键是把递推关系12(1)5nn n a n a +=+⨯转化为12(1)5n n na n a +=+,进而求出13211221n n n n a a a a a a a a a ---⋅⋅⋅⋅⋅ ,即得数列{}n a 的通项公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

求数列通项公式的十种方法一.公式法 例1已知数列{勺}满足d”|=2勺+3x2", q=2,求数列{勺}的通项公式。

扌,故数列{影}是 以沪知为首项,以扌为公差的等差数列,由等差数列的通项公式,畤“+心)|,3 1 所以数列{©}的通项公式为a n =(-n —)2\2 2评注:本题解题的关键是把递推关系式。

心=2©+3><2”转化为增一牛=3,说明数列 2 2 2 {*}是等差数列,再直接利用等差数列的通项公式求出*=1+5—1)_,进而求出数列 2 2 2{q r }的通项公式。

例2.若S”和7;分别表示数列{©}和0}的前"项和,对任意正整数a n =-2(n + l), T n -3S n =4n.求数列{b K }的通项公式;解:•/ a fj = -2(n + I)/. “] = -4 cl = -2 = 一昇 一 3n.・.坊=3»+4"=-3舁2_5加 2 分 当 ”=1 时,7j 訥=—3—5=—8 当 n>2^\,b f J =T f J —7^2—1 =-6/2—2 ........... . ^=—6/2—2. 4 分I练习:1.已知正项数列{an },其前n 项和Sn 满足10Sn=an 2+5a n +6且a 】,a3,a 】5成等 比数列,求数列{%}的通项%. 解:T 105>訂+5/+6,① ・:108产日「+5/+6,解之得创=2或力产3,又 10$-产②-:+5②T +6(〃$2),②由①—②得 10a = (a^—a…-i 2) +6(a…—a…-x ),即(8”+$Q (%—/一】—5) =0T 色+/_1>0 , 二 a :—乔产5 (77^2) •当 ai =3 时,a.\— 13* ^i5=73. EL \* 越,去不成等比数列Si^3; 当 ai —2 时» 3.\— 12 9 ai5=72,有 &3 二日15 、二2, • • @7二5/7 —3,三、累加法 例3已知数列{©}满足如=©+2几+ 1, q=l,求数列{©}的通项公式。

解:由 a n+i = a n + 2n +1 得 % - a n =2n + l 则解:^,=2^l+3x2H 两边除以2n+,.得勞=令+ £,则"^ 利用色S](心 1) S“一S”]g2)5 =(°” 一«n-i)+(% -。

”_2)+ …+(①一“2)+(①一纠)+ 5=[2(/? — 1) + 1] + [2(〃— 2) + 1] +・・• +(2x2 + 1) +(2x1 +1) + 1 =2[(川一1) + 5-2) + ・・・ + 2 + 1] + (〃一1) + 1=2 塔聖+ (—1) + 1=(77-1)(77+ 1) + 12=ir所以数列{a n}的通项公式为% = n2。

评注:本题解题的关键是把递推关系式a n+l=a…+2n + \转化为a…^-a n=2n + l,进而求出(a n ~ a n-\)+(a n-\ ~"“-2)卜(“3 一“2)+(。

2 一"1)+ "1 * 即得数列(耳,}的通项公式。

例4已知数列{%}满足绻+|=©+2x3" + l, q=3,求数列{qj的通项公式。

解:由a n+[=a… +2x3,r +1 得a n+l-a… = 2x3H +1 则a n = a厂)+(£-1 一d”_2 ) + …+ (°3 一“2 ) + (“2 一 "])+ a\= (2x3n_,+l) + (2x3n_2 + l) + .-- + (2x32 + l) + (2x3I+l) + 3=2(3心+3"一2+... + 32+31)+⑺一1) + 3』(1才)+心)+ 31-3=3" - 3 + “一1 + 3= 3”+n —1所以u n =3" + n — 1.评注:本题解題的关键是把递推关系式a n,x=a n+2x3n +1转化为如一垢=2x301 ,进而求出5 =(S —5-1) + (勺-一q一2)+…+(冬一“2)+(6 一4)+ 4,即得数列{色}的通项公式。

四、累乘法例6已知数列{©}满足如=2(/i + l)5"xa”, ®=3,求数列{©}的通项公式。

解:因为%=2S + l)5“x% q=3,所以①工0,则加= 2(n + l)5J故Cl n—................................. qa n-\ «n-2 «2 4=[2(/?-1 +1)5"" ][ 2(“ 一2 +1)5" J ] •.…[2(2+1)X52][2(1+1)X5']X3=2H_,[«(n-l) • 3x2]x 5,n_1>+<n-2>+-+2+1 x 3n(n-l)= 3x2^ x5— xn!/r(w-l)所以数列{J}的通项公式为© = 3x2,M x5—xnl.评注:本题解题的关键是把递推关系a n^=2(n + \)5n xa n转化为 ^ = 2(n + l)5\进而求出厶•竺L••…乞•乞・仆即得数列{©}的通项公式。

%】%2 «2 5例7 已知数列{"“}满足舛=1, a n =q +2a2+3© +••• + (/?-1)^_,(/? h 2),求{%}的通项公式。

解:因为ci n = q + + 3“3 +••• + (〃一I)"”—(八—2) ①所以S+i = q + 2a2 + +••• + (〃—1)5- + 斤5②用②式一①式得a n+l -a n=na….则a n^\ =(« + l)«n(n>2)所以a” = ...... 乞・d«> =[n(〃_l) ...... 4X3]^7=—a^.(3)5-1 %2 ^2 2由a n = a} + 2a2 + 3$ + ・・・ + (n- 1)。

心(« A 2),取办=2得a? = a} + 2a2,则a2 = a},又知q=l,则a^=\.代入③得a n =l-3-4-5 ............. n = —Q] ■ 2 所以,的通项公式为®£.评注:本题解题的关键是把递推关系式a n+1=(n + lK(/i>2)转化为^ = n + l(n>2),a n进而求出上匚•组••…乞・“2,从而可得当H>2时,冷的表达式,最后再求出数列{©}的5-1 ©_2 a2通项公式。

五.构造等差或等比"”+l = M + g或如=P© + /(")例8 (2006年福建卷)已知数列{©}满足®=l,%=2d”+l(mN・).求数列仗”}的通项公式;解:T 陽+1 = 2% +1(〃e N"),••• °”+]+i=2a+i),.•.{©+1}是以q+l = 2为首项,2为公比的等比数列。

+1 = 2".即a n =22 -l(neN ).例9.已知数列{%}中,5 =1, a”+i +(+)"-',求%。

解:在% =}”+(*严两边乘以汕得:2叫畑=(2"・©) + 1 令—=2" •勺,则仇+|-化=1,解之得:b n =b}+n-l = n-l所以讣俎一口练习. 已知数列{a n}满足心=2a n-I+2n -l(n>2),且g =81。

(1)求如,a2> a3;(2)求数列{aj的通项公式。

(1) aj =5, a2 =13, a3 = 33解:(2) a n =2a n-1 +2n—lna n -1 = 2筑-—l) + 2n=口=鱼斗1+1亠21"+12n 2n_, 2na n =(n + l)2n +1六、待定系数法例10已知数列{%}满足%|=2a”+3x5", ®=6,求数列{色}的通项公式。

解:设"”+1+XX5”T =2(%+xx5") ④)将a n+l=2a” +3x5"代入④式,得2a n +3x5" +xx5n+,=2a n+2xx5n ,等式两边消去2a n ,得3•亍+x-5n+1=2x-5n,两边除以5",得3 + 5x = 2x,贝吐=一1,代入④式得“沖一5灯=2(%—5”)⑤由«,-5,=6-5 = 1^ 0及⑤式得“”一5"工0,则也_二=2,则数列{勺一5”}是以勺-5«!-5'= 1为首项,以2为公比的等比数列,则色-5”=2”“,故a n=2n-l+5n o评注:本题解题的关键是把递推关系式% = 2a n+3x5”转化为% - 5n+, = 2(% - 5"), 从而可知数列{"”-5"}是等比数列,进而求出数列{"“-5”}的通项公式,最后再求出数列{%}的通项公式。

例12已知数列{%}满足^f+1=2^+3/r+4n + 5, q=l,求数列{"”}的通项公式。

解:设"曲 + x(n +1),+ y(n +1) + z = 2(© + xn2 + yn + z) ⑧将a n^} =2a n+3n2 +4/1 + 5 代入⑧式,得2a n +3n 2 +4n + 5 + x(n +1)2 + y(/i +1) + z = 2(a n + xn 2 + yn + z),则 2a n + (3 + x)/r + (2x + y + 4)/? + (x + y + z + 5) = 2a n + 2xn 2 + 2yn + 2z等式两边消去,得(3 + x)n 2 + (2x +y + 4)n + (x+ y + z + 5) = 2xn 2 +2yn + 2z ,% + 3(/? + 1)2+10(/i + 1) + 18 = 2(a n + 3n 2 +1 On + 18) ⑨由 ^+3xl 2+ 10x1 +18 = 1 + 31 = 32^ 0 及⑨式,得冷+3用 + 10料 + 18工0则.也-3("-1广-1()("-1) + 卅=£ ,故数列 s + 3用 +10“ +18}为以a“+3“-+ 10/2 + 18再+3x12 + 10x1 + 18 = 1 + 31=32为首项,以2为公比的等比数列,因此陽+3^2+10/1 + 18 = 32x2"“ ,则 «n =2n+4-3n 2-1071-18 o 评注:本题解题的关键是把递推关系式绻+|=2a”+3川+4〃 + 5转化为% + 3(/i + 1)2 + 10(/2 + 1) + 18 = 2(% +3«2+10/2 + 18),从而可知数列{外+3^+10/1 + 18}是等比数列,进而求出数列{©+3/? + 10"+18}的通项公式,最后再 求出数列{"”}的通项公式。

相关文档
最新文档