2020年山东省青岛市李沧区中考数学一模试卷 (含答案解析)
山东省青岛市2019-2020学年中考数学一模试卷含解析

山东省青岛市2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.-2的倒数是( )A .-2B .12-C .12D .22.点M (1,2)关于y 轴对称点的坐标为( )A .(﹣1,2)B .(﹣1,﹣2)C .(1,﹣2)D .(2,﹣1)3.如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…,按照此规律继续下去,则S 9的值为( )A .(12)6B .(12)7C .(22)6D .(22)7 4.下列函数中,y 随着x 的增大而减小的是( )A .y=3xB .y=﹣3xC .3y x =D .3y x=- 5.如图: 在ABC ∆中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若5CM =,则22CE CF +等于( )A .75B .100C .120D .1256.长江经济带覆盖上海、江苏、浙江、安徽、江西、湖北、湖南、重庆、四川、云南、贵州等11省市,面积约2 050 000平方公里,约占全国面积的21% .将2 050 000用科学记数法表示应为( ) A .205万 B .420510⨯ C .62.0510⨯ D .72.0510⨯7.如图,BC 是⊙O 的直径,A 是⊙O 上的一点,∠B =58°,则∠OAC 的度数是( )A .32°B .30°C .38°D .58°8.如图,在△ABC 中,点D 在AB 边上,DE ∥BC ,与边AC 交于点E ,连结BE ,记△ADE ,△BCE的面积分别为S1,S2,()A.若2AD>AB,则3S1>2S2B.若2AD>AB,则3S1<2S2C.若2AD<AB,则3S1>2S2D.若2AD<AB,则3S1<2S2e的直径,且AB⊥CD.入9.有一圆形苗圃如图1所示,中间有两条交叉过道AB,CD,它们为苗圃O口K 位于»AD中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x,与入口K的距离为y,表示y与x的函数关系的图象大致如图2所示,则该园丁行进的路线可能是()A.A→O→D B.C→A→O→ B C.D→O→C D.O→D→B→C10.如图,数轴上的A、B、C、D四点中,与数﹣3表示的点最接近的是( )A.点A B.点B C.点C D.点D11.如图,PA,PB分别与⊙O相切于A,B两点,若∠C=65°,则∠P的度数为()A.65°B.130°C.50°D.100°12.下列四个多项式,能因式分解的是()A.a-1 B.a2+1C.x2-4y D.x2-6x+9二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,AB是⊙O的直径,CD是弦,CD⊥AB于点E,若⊙O的半径是5,CD=8,则AE=______.14.如图,在等腰Rt△ABC中,∠BAC=90°,AB=AC,BC=42,点D是AC边上一动点,连接BD,以AD为直径的圆交BD于点E,则线段CE长度的最小值为___.15.如图△EDB由△ABC绕点B逆时针旋转而来,D点落在AC上,DE交AB于点F,若AB=AC,DB=BF,则AF与BF的比值为_____.16.在不透明的口袋中有若干个完全一样的红色小球,现放入10个仅颜色不同的白色小球,均匀混合后,有放回的随机摸取30次,有10次摸到白色小球,据此估计该口袋中原有红色小球个数为_____.17.如图所示,直线y=x+b交x轴A点,交y轴于B点,交双曲线8(0)y xx=>于P点,连OP,则OP2﹣OA2=__.18.我们知道:四边形具有不稳定性.如图,在平面直角坐标系xOy中,矩形ABCD的边AB在x轴上,(3,0)A-,(4,0)B,边AD长为5. 现固定边AB,“推”矩形使点D落在y轴的正半轴上(落点记为D¢),相应地,点C的对应点C'的坐标为_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某商场将进价40元一个的某种商品按50元一个售出时,每月能卖出500个.商场想了两个方案来增加利润:方案一:提高价格,但这种商品每个售价涨价1元,销售量就减少10个;方案二:售价不变,但发资料做广告.已知当这种商品每月的广告费用为m(千元)时,每月销售量将是原销售量的p倍,且p =.试通过计算,请你判断商场为赚得更大的利润应选择哪种方案?请说明你判断的理由!20.(6分)已知:如图,□ABCD中,BD是对角线,AE⊥BD于E,CF⊥BD于F. 求证:BE=DF.21.(6分)化简,再求值:222x-3231,211121x xxxx x x--÷+=+--++22.(8分)某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)九(1)班的学生人数为,并把条形统计图补充完整;(2)扇形统计图中m=,n=,表示“足球”的扇形的圆心角是度;(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.23.(8分)某超市预测某饮料会畅销、先用1800元购进一批这种饮料,面市后果然供不应求,又用8100元购进这种饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若两次进饮料都按同一价格销售,两批全部售完后,获利不少于2700元,那么销售单价至少为多少元?24.(10分)有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和1.B 布袋中有三个完全相同的小球,分别标有数字﹣1,﹣1和﹣2.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(1)求点Q落在直线y=﹣x﹣1上的概率.25.(10分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.该商家购进的第一批衬衫是多少件?若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?26.(12分)九(1)班同学分成甲、乙两组,开展“四个城市建设”知识竞赛,满分得5分,得分均为整数.小马虎根据竞赛成绩,绘制了如图所示的统计图.经确认,扇形统计图是正确的,条形统计图也只有乙组成绩统计有一处错误.(1)指出条形统计图中存在的错误,并求出正确值;(2)若成绩达到3分及以上为合格,该校九年级有800名学生,请估计成绩未达到合格的有多少名?(3)九(1)班张明、李刚两位成绩优秀的同学被选中参加市里组织的“四个城市建设”知识竞赛.预赛分为A、B、C、D四组进行,选手由抽签确定.张明、李刚两名同学恰好分在同一组的概率是多少?27.(1245﹣|4sin30°5(﹣112)﹣1参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据倒数的定义求解.【详解】-2的倒数是-1 2故选B【点睛】本题难度较低,主要考查学生对倒数相反数等知识点的掌握2.A【解析】【分析】关于y轴对称的点的坐标特征是纵坐标不变,横坐标变为相反数.【详解】点M(1,2)关于y轴对称点的坐标为(-1,2)【点睛】本题考查关于坐标轴对称的点的坐标特征,牢记关于坐标轴对称的点的性质是解题的关键.3.A【解析】试题分析:如图所示.∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴S2+S2=S1.观察发现规律:S1=22=4,S2=12S1=2,S2=12S2=1,S4=12S2=12,…,由此可得S n=(12)n﹣2.当n=9时,S9=(12)9﹣2=(12)6,故选A.考点:勾股定理.4.B【解析】试题分析:A、y=3x,y随着x的增大而增大,故此选项错误;B、y=﹣3x,y随着x的增大而减小,正确;C、3yx=,每个象限内,y随着x的增大而减小,故此选项错误;D、3yx=-,每个象限内,y随着x的增大而增大,故此选项错误;故选B.考点:反比例函数的性质;正比例函数的性质.5.B【解析】【分析】根据角平分线的定义推出△ECF为直角三角形,然后根据勾股定理即可求得CE2+CF2=EF2,进而可求出CE2+CF2的值.【详解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=12∠ACB,∠ACF=12∠ACD,即∠ECF=12(∠ACB+∠ACD)=90°,∴△EFC为直角三角形,又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,∴CM=EM=MF=5,EF=10,由勾股定理可知CE2+CF2=EF2=1.故选:B.【点睛】本题考查角平分线的定义(从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线),直角三角形的判定(有一个角为90°的三角形是直角三角形)以及勾股定理的运用,解题的关键是首先证明出△ECF为直角三角形.6.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】2 050 000将小数点向左移6位得到2.05,所以2 050 000用科学记数法表示为:20.5×106,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.A【解析】【分析】根据∠B=58°得出∠AOC=116°,半径相等,得出OC=OA,进而得出∠OAC=32°,利用直径和圆周角定理解答即可.【详解】解:∵∠B=58°,∴∠AOC=116°,∵OA=OC ,∴∠C=∠OAC=32°,故选:A .【点睛】此题考查了圆周角的性质与等腰三角形的性质.此题比较简单,解题的关键是注意数形结合思想的应用.8.D【解析】【分析】根据题意判定△ADE ∽△ABC ,由相似三角形的面积之比等于相似比的平方解答.【详解】∵如图,在△ABC 中,DE ∥BC ,∴△ADE ∽△ABC , ∴2112BDE S AD S S S AB=++V (), ∴若1AD >AB ,即12AD AB >时,11214BDE S S S S ++V >, 此时3S 1>S 1+S △BDE ,而S 1+S △BDE <1S 1.但是不能确定3S 1与1S 1的大小,故选项A 不符合题意,选项B 不符合题意.若1AD <AB ,即12AD AB <时,11214BDE S S S S ++V <, 此时3S 1<S 1+S △BDE <1S 1,故选项C 不符合题意,选项D 符合题意.故选D .【点睛】考查了相似三角形的判定与性质,三角形相似的判定一直是中考考查的热点之一,在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.9.B【解析】【分析】观察图象可知园丁与入口K的距离先减小,然后再增大,但是没有到过入口的位置,据此逐项进行分析即可得.【详解】A. A→O→D,园丁与入口的距离逐渐增大,逐渐减小,不符合;B. C→A→O→ B,园丁与入口的距离逐渐减小,然后又逐渐增大,符合;C. D→O→C,园丁与入口的距离逐渐增大,不符合;D. O→D→B→C,园丁与入口的距离先逐渐变小,然后再逐渐变大,再逐渐变小,不符合,故选B.【点睛】本题考查了动点问题的函数图象,看懂图形,认真分析是解题的关键.10.B【解析】【分析】≈-,计算-1.732与-3,-2,-1的差的绝对值,确定绝对值最小即可.1.732【详解】≈-,1.732()---≈,1.7323 1.268()---≈,1.73220.268()---≈,1.73210.732因为0.268<0.732<1.268,所以表示的点与点B最接近,故选B.11.C【解析】试题分析:∵PA、PB是⊙O的切线,∴OA⊥AP,OB⊥BP,∴∠OAP=∠OBP=90°,又∵∠AOB=2∠C=130°,则∠P=360°﹣(90°+90°+130°)=50°.故选C.考点:切线的性质.12.D【解析】试题分析:利用平方差公式及完全平方公式的结构特征判断即可.试题解析:x2-6x+9=(x-3)2.故选D.考点:2.因式分解-运用公式法;2.因式分解-提公因式法.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2【解析】【分析】连接OC,由垂径定理知,点E是CD的中点,在直角△OCE中,利用勾股定理即可得到关于半径的方程,求得圆半径即可【详解】设AE为x,连接OC,∵AB是⊙O的直径,弦CD⊥AB于点E,CD=8,∴∠CEO=90°,CE=DE=4,由勾股定理得:OC2=CE2+OE2,52=42+(5-x)2,解得:x=2,则AE是2,故答案为:2【点睛】此题考查垂径定理和勾股定理,,解题的关键是利用勾股定理求关于半径的方程.14.25 2【解析】【分析】连结AE,如图1,先根据等腰直角三角形的性质得到AB=AC=4,再根据圆周角定理,由AD为直径得到∠AED=90°,接着由∠AEB=90°得到点E在以AB为直径的O上,于是当点O、E、C共线时,CE最小,如图2,在Rt△AOC中利用勾股定理计算出5CE的最小值为5 2.【详解】连结AE,如图1,∵∠BAC=90°,AB=AC,BC=42,∴AB=AC=4,∵AD为直径,∴∠AED=90°,∴∠AEB=90°,∴点E在以AB为直径的O上,∵O的半径为2,∴当点O、E. C共线时,CE最小,如图2在Rt△AOC中,∵OA=2,AC=4,∴OC=2225+,AC OA=∴CE=OC−OE=25﹣2,即线段CE长度的最小值为25﹣2.故答案为:25﹣2.【点睛】此题考查等腰直角三角形的性质,圆周角定理,勾股定理,解题关键在于结合实际运用圆的相关性质. 15.【解析】【分析】先利用旋转的性质得到BC=BD,∠C=∠EDB,∠A=∠E,∠CBD=∠ABE,再利用等腰三角形的性质和三角形内角和定理证明∠ABD=∠A,则BD=AD,然后证明△BDC∽△ABC,则利用相似比得到BC:AB=CD:BC,即BF:(AF+BF)=AF:BF,最后利用解方程求出AF与BF的比值.【详解】∵如图△EDB由△ABC绕点B逆时针旋转而来,D点落在AC上,∴BC=BD,∠C=∠EDB,∠A=∠E,∠CBD=∠ABE,∵∠ABE=∠ADF,∴∠CBD=∠ADF,∵DB=BF,∴BF=BD=BC,而∠C=∠EDB,∴∠CBD=∠ABD,∴∠ABC=∠C=2∠ABD,∵∠BDC=∠A+∠ABD,∴∠ABD=∠A,∴BD=AD,∴CD=AF,∵AB=AC,∴∠ABC=∠C=∠BDC,∴△BDC∽△ABC,∴BC:AB=CD:BC,即BF:(AF+BF)=AF:BF,整理得AF2+B F∙AF-BF2=0,∴AF=BF,即AF与BF的比值为.故答案是.【点睛】本题主要考查了旋转的性质、等腰三角形的性质、相似三角形的性质,熟练掌握这些知识点并灵活运用是解题的关键.16.20【解析】【分析】利用频率估计概率,设原来红球个数为x个,根据摸取30次,有10次摸到白色小球结合概率公式可得关于x的方程,解方程即可得.【详解】设原来红球个数为x个,则有1010x+=1030,解得,x=20,经检验x=20是原方程的根.故答案为20.【点睛】本题考查了利用频率估计概率和概率公式的应用,熟练掌握概率的求解方法以及分式方程的求解方法是解题的关键.17.1【解析】解:∵直线y=x+b与双曲线8yx=(x>0)交于点P,设P点的坐标(x,y),∴x﹣y=﹣b,xy=8,而直线y=x+b与x轴交于A点,∴OA=b.又∵OP2=x2+y2,OA2=b2,∴OP2﹣OA2=x2+y2﹣b2=(x﹣y)2+2xy﹣b2=1.故答案为1.18.()7,4 【解析】分析:根据勾股定理,可得OD ' ,根据平行四边形的性质,可得答案. 详解:由勾股定理得:OD '=224D A AO '-= ,即D ¢(0,4). 矩形ABCD 的边AB 在x 轴上,∴四边形ABC D ''是平行四边形,A D ¢=BC ', C 'D ¢=AB=4-(-3)=7, C '与D ¢的纵坐标相等,∴C '(7,4),故答案为(7,4). 点睛:本题考查了多边形,利用平行四边形的性质得出A D ¢=B C ',C 'D ¢=AB=4-(-3)=7是解题的关键. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.方案二能获得更大的利润;理由见解析 【解析】 【分析】方案一:由利润=(实际售价-进价)×销售量,列出函数关系式,再用配方法求最大利润; 方案二:由利润=(售价-进价)×500p-广告费用,列出函数关系式,再用配方法求最大利润. 【详解】解:设涨价x 元,利润为y 元,则方案一:涨价x 元时,该商品每一件利润为:50+x−40,销售量为:500−10x , ∴22(5040)(50010)10400500010(20)9000y x x x x x =+--=-++=--+, ∵当x=20时,y 最大=9000, ∴方案一的最大利润为9000元;方案二:该商品售价利润为=(50−40)×500p ,广告费用为:1000m 元,∴()2250405001000200090002000( 2.25)10125y p m m m m =-⨯-=-+=--+,∴方案二的最大利润为10125元; ∴选择方案二能获得更大的利润. 【点睛】本题考查二次函数的实际应用,根据题意,列出函数关系式,配方求出最大值. 20.(1)证明:∵ABCD 是平行四边形 ∴AB=CD AB ∥CD ∴∠ABE=∠CDF 又∵AE ⊥BD ,CF ⊥BD ∴∠AEB=∠CFD=∴△ABE ≌△CDF∴BE=DF 【解析】 证明:在□ABCD 中 ∵AB ∥CD∴∠ABE=∠CDF…………………………………………………………4分 ∵AE ⊥BD CF ⊥BD∴∠AEB=∠CFD=900……………………………………………………5分∵AB=CD∴△ABE ≌△CDF…………………………………………………………6分 ∴BE=DF 212【解析】试题分析:把分式化简,然后把x 的值代入化简后的式子求值就可以了.试题解析:原式=23(1)1(1)(1)(1)(3)1x x x x x x x -+⨯++-+-- =21x - 当21x =时,原式2211=+-.考点:1.二次根式的化简求值;2.分式的化简求值.22.(1)4,补全统计图见详解.(2)10;20;72.(3)见详解. 【解析】 【分析】(1)根据喜欢篮球的人数与所占的百分比列式计算即可求出学生的总人数,再求出喜欢足球的人数,然后补全统计图即可;(2)分别求出喜欢排球、喜欢足球的百分比即可得到m 、n 的值,用喜欢足球的人数所占的百分比乘以360°即可;(3)画出树状图,然后根据概率公式列式计算即可得解. 【详解】解: (1)九(1)班的学生人数为:12÷30%=40(人), 喜欢足球的人数为:40−4−12−16=40−32=8(人), 补全统计图如图所示;(2)∵440×100%=10%,840×100%=20%,∴m=10,n=20,表示“足球”的扇形的圆心角是20%×360°=72°;故答案为(1)40;(2)10;20;72;(3)根据题意画出树状图如下:一共有12种情况,恰好是1男1女的情况有6种,∴P(恰好是1男1女)=612=12.23.(1)4元/瓶.(2) 销售单价至少为1元/瓶.【解析】【分析】(1)设第一批饮料进货单价为x元/瓶,则第二批饮料进货单价为(x+2)元/瓶,根据数量=总价÷单价结合第二批购进饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)由数量=总价÷单价可得出第一、二批购进饮料的数量,设销售单价为y元/瓶,根据利润=销售单价×销售数量﹣进货总价结合获利不少于2100元,即可得出关于y的一元一次不等式,解之取其最小值即可得出结论.【详解】(1)设第一批饮料进货单价为x元/瓶,则第二批饮料进货单价为(x+2)元/瓶,依题意,得:81002x=3×1800x,解得:x=4,经检验,x=4是原方程的解,且符合题意.答:第一批饮料进货单价是4元/瓶;(2)由(1)可知:第一批购进该种饮料450瓶,第二批购进该种饮料1350瓶.设销售单价为y元/瓶,依题意,得:(450+1350)y﹣1800﹣8100≥2100,解得:y≥1.答:销售单价至少为1元/瓶.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.24.(1)见解析;(1)1 3【解析】试题分析:先用列表法写出点Q的所有可能坐标,再根据概率公式求解即可. (1)由题意得(1)共有6种等可能情况,符合条件的有1种P(点Q在直线y=−x−1上)=1 3 .考点:概率公式点评:解题的关键是熟练掌握概率公式:概率=所求情况数与总情况数的比值.25.(1)120件;(2)150元.【解析】试题分析:(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫可设为2x件,由已知可得,,这种衬衫贵10元,列出方程求解即可.(2)设每件衬衫的标价至少为a元,由(1)可得出第一批和第二批的进价,从而求出利润表达式,然后列不等式解答即可.试题解析:(1)设该商家购进的第一批衬衫是x件,则第二批衬衫是2x件.由题意可得:2880013200102x x-=,解得120x=,经检验120x=是原方程的根.(2)设每件衬衫的标价至少是a元.由(1)得第一批的进价为:132********÷=(元/件),第二批的进价为:120(元) 由题意可得:()120(110)24050(120)50(0.8120)25%42000a a a ⨯-+-⨯-+⨯-≥⨯ 解得:35052500a ≥,所以,150a ≥,即每件衬衫的标价至少是150元. 考点:1、分式方程的应用 2、一元一次不等式的应用. 26.(1)见解析;(2)140人;(1)14. 【解析】 【分析】(1)分别利用条形统计图和扇形统计图得出总人数,进而得出错误的哪组; (2)求出1分以下所占的百分比即可估计成绩未达到合格的有多少名学生;(1)根据题意可以画出相应的树状图,从而可以求得张明、李刚两名同恰好分在同一组的概率. 【详解】(1)由统计图可得: (1分) (2分) (4分) (5分) 甲(人) 0 1 7 6 4 乙(人) 2 2 5 8 4 全体(%)512.5101517.5乙组得分的人数统计有误,理由:由条形统计图和扇形统计图的对应可得, 2÷5%=40,(1+2)÷12.5%=40, (7+5)÷10%=40,(6+8)÷15%=40,(4+4)÷17.5%≠40, 故乙组得5分的人数统计有误, 正确人数应为:40×17.5%﹣4=1. (2)800×(5%+12.5%)=140(人); (1)如图得:∵共有16种等可能的结果,所选两人正好分在一组的有4种情况, ∴所选两人正好分在一组的概率是:41=164. 【点睛】本题考查列表法与树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件.27.﹣1.【解析】【分析】先逐项化简,再合并同类项或同类二次根式即可.【详解】解:原式=﹣2)﹣12=﹣﹣12=﹣1.【点睛】本题考查了实数的混合运算,熟练掌握特殊角的三角函数值,二次根式的性质以及负整数指数幂的意义是解答本题的关键.。
2020年山东省青岛市中考数学模拟试卷(一)(有答案)

2019年山东省青岛市中考数学模拟试卷(一)题号一二三四总分得分一、选择题(本大题共8小题,共24.0分)1.√2的相反数是()A. 1√2B. −√2 C. −1√2D. √22.既是轴对称图形又是中心对称图形的是()A. 等腰梯形B. 菱形C. 平行四边形D. 等边三角形3.2019年1月3日10时26分,“嫦娥四号”探测器飞行约380000千米,实现人类探测器首次在月球背面软着陆.数据380000用科学记数法表示为()A. 38×104B. 3.8×104C. 3.8×105D. 0.38×1064.计算(−4m2)·(3m+2)的结果是()A. −12m3+8m2B. 12m3−8m2C. −12m3−8m2D. 12m3+8m25.如图,在Rt△ABC中,∠A=90°,BC=4,以BC的中点O为圆心分别与AB,AC相切于D、E两点,则DE⏜的长为()A. √2π4B. π2C. √2π2D. √2π6.如图,在平面直角坐标系中,点A,C在x轴上,点C的坐标为(−1,0),AC=2.将Rt△ABC先绕点C顺时针旋转90°,再向右平移3个单位长度,则变换后点A的对应点坐标是()A. (2,2)B. (1,2)C. (−1,2)D. (2,−1)7.如图,△ABC中,AB=AC,AD=DE,∠BAD=18°,∠EDC=12°,则∠DAE的度数是()A. 52°B. 58°C. 60°D. 62°8.已知函数y=−(x−m)(x−n)(其中m<n)的图象如图的所示,则一次函数y=mx+n与反比例函数y=m+nx图象可能是()A. B.C. D.二、填空题(本大题共6小题,共18.0分)9.计算:√32−√8=______.√210.一元二次方程2x2+bx+1=0有两个相等的实数根,则b=______.11.学校进行广播操比赛,如图是20位评委给某班的评分情况统计图,则该班的平均得分是______分.12.如图,正五边形ABCDE为内接于⊙O的,则∠ABD=________.13.如图,将正方形ABCD沿EF折叠,使得AD的中点落在点C处,若正方形边长为2,则折痕EF的长为______.14. 从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积为______. 三、计算题(本大题共1小题,共8.0分) 15. 求不等式组{4(x +1)+3>x①x−42≤x−53②的正整数解.四、解答题(本大题共9小题,共70.0分) 16. 已知,∠α求作:∠AOB =2∠α.(保留作图痕迹,不写作法)17. 甲、乙两个人进行游戏:在一个不透明的口袋中装有4张相同的纸牌,它们分别标有数字1,2,3,4.从中随机摸出一张纸牌然后放回,再随机摸出一张纸牌,若两次摸出的纸牌上数字之和是3的倍数,则甲得1分;否则乙得1分.这是个公平的游戏吗?请说明理由;若不公平,请你修改规则使该游戏对双方公平.18. 青岛市首批一次性投放公共自行车700辆供市民租用出行,由于投入数量不够,导致出现需要租用却未租到车的现象,现随机抽取的某五天在同一时段的调查数据绘成如下表格.请回答下列问题:时间第一天 7:00—8:00 第二天 7:00—8:00 第三天 7:00—8:00 第四天 7:00—8:00 第五天7:00—8:00 需要租用自 行车却未租 到车的人数1500 1200 1300 1300 1200(1)表格中的五个数据(人数)的中位数是多少⊕(2)由随机抽样估计,平均每天在7:00−8:00需要租用公共自行车的人数是多少⊕19.如图,方特欢乐园中有飞越极限、恐龙危机、海螺湾三处游乐设施,分别记为A,B,C.已知AB=1400米,AC=1000米,B点位于A点的南偏西60.7°方向,C点位于A点的南偏东66.1°方向.(1)求△ABC的面积.(2)景区规划在恐龙危机和海螺湾的中点D处修建一个游客休息中心,并修建观景栈道AD,试求A,D间的距离.(结果精确到0.1米)(参考数据:sin53.2°≈0.80,cos53.2°≈0.60,sin60.7°≈0.87,cos60.7°≈0.49,sin66.1°≈0.91,cos66.1°≈0.41,√2≈1.414)20.某地发生了地震,某地需550顶帐蓬解决受灾群众临时住宿问题,现由甲、乙两个工厂来加工生产.已知甲工厂每天的加工生产能力是乙工厂每天加工生产能力的1.5倍,并且加工生产240顶帐蓬甲工厂比乙工厂少用4天.①求甲、乙两个工厂每天分别可加工生产多少顶帐蓬?②若甲工厂每天的加工生产成本为3万元,乙工厂每天的加工生产成本为2.4万元,要使这批救灾帐蓬的加工生产总成本不高于60万元,至少应安排甲工厂加工生产多少天?21.如图,平行四边形ABCD的对角线AC、BD相交于点O,E,F在AC上,且AE=CF,EF=BD.求证:四边形EBFD是矩形.22.某文具店购进一批单价为10元的学生用品,如果以单价12元售出,那么一个月内可售200件,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少10件,当售价提高多少元时,可在一个月内获得最大的利润?最大利润是多少23.如图,一个3×2的矩形(即长为3,宽为2)可以用两种不同方式分割成3或6个边长是正整数的小正方形,即:小正方形的个数最多是6个,最少是3个.(1)一个5×2的矩形用不同的方式分割后,小正方形的个数可以是______个,最少是______个;(2)一个7×2的矩形用不同的方式分割后,小正方形的个数最多是______个,最少是______个;(3)一个(2n+1)×2的矩形用不同的方式分割后,小正方形的个数最多是______个;最少是______个.(n是正整数)24.如图,在△ABC中,∠C=90°,AC=6cm,BC=8cm,D、E、F分别是AC、BC、AB的中点,连接DE.点P从点D出发,沿DE方向匀速运动;同时,点Q从点E 出发,沿EB方向匀速运动,两者速度均为1cm/s;当其中一点停止运动时,另外一点也停止运动.连接PQ、PF,设运动时间为ts(0<t<4).解答下列问题:(1)当t为何值时,△EPQ为等腰三角形?(2)如图①,设四边形PFBQ的面积为ycm2,求y与t之间的函数关系式;(3)当t为何值时,四边形PFBQ的面积与△ABC的面积之比为2:5?(4)如图②,连接FQ,是否存在某一时刻,使得PF与QF互相垂直?若存在,求出此时t的值;若不存,请说明理由.答案和解析1.【答案】B【解析】解:√2的相反数是−√2,故选:B.根据只有符号不同的两个数互为相反数,可得一个数的相反数.本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.【答案】B【解析】解:轴对称图形有:等腰梯形,菱形,等边三角形;中心对称图形有菱形,平行四边形;∴既是轴对称图形又是中心对称图形的式菱形,故选B.根据轴对称图形和中心对称图形的定义判断即可.本题主要考查对中心对称图形和轴对称图形的理解和掌握,能正确判断一个图形是否是中心对称图形和轴对称图形是解此题的关键.3.【答案】C【解析】解:380000=3.8×105故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】【分析】本题主要单项式乘以多项式的法则和单项式乘以单项式的法则.掌握相关法则是解题的关键.【解答】解:(−4m2)·(3m+2)=(−4m2)×3m+(−4m2)×2=−12m3−8m2.故选C.5.【答案】C【解析】解:连接OE、OD,设半径为r,∵⊙O分别与AB,AC相切于D,E两点,∴OE⊥AC,OD⊥AB,∵O是BC的中点,∴OD是中位线,∴OD=AE=1AC,2∴AC=2r,同理可知:AB=2r,∴AB=AC,∴∠B=45°,∵BC=4,∴由勾股定理可知AB=2√2,∴r=√2,∴DE⏜=90π×√2180=√22π,故选:C.连接OE、OD,由切线的性质可知OE⊥AC,OD⊥AB,由于O是BC的中点,从而可知OD是中位线,所以可知∠B=45°,从而可知半径r的值,最后利用弧长公式即可求出答案.本题考查切线的性质,解题的关键是连接OE、OD后利用中位线的性质求出半径r的值,本题属于中等题型.6.【答案】A【解析】解:∵点C的坐标为(−1,0),AC=2,∴点A的坐标为(−3,0),如图所示,将Rt△ABC先绕点C顺时针旋转90°,则点A′的坐标为(−1,2),再向右平移3个单位长度,则变换后点A′的对应点坐标为(2,2),故选:A.根据旋转变换的性质得到旋转变换后点A的对应点坐标,根据平移的性质解答即可.本题考查的是坐标与图形变化旋转和平移,掌握旋转变换、平移变换的性质是解题的关键.7.【答案】C【解析】【分析】本题主要考查等腰三角形的性质,设∠ADE=x°,则∠B+18°=x°+12°,可用x表示出∠B和∠C,进而可表示出∠DAE和∠DEA,在△ADE中利用三角形内角和可求得x.【解答】解:设∠ADE=x°,且∠BAD=18°,∠EDC=12°,∴∠ADB=180°−∠ADC=180°−(x°+12°)=168°−x°∴∠B=180°−(∠ADB+∠BAD)=180°−(168°−x°+18°)=x°−6°,∵AB=AC,∴∠C=∠B=x°−6°,∴∠DEA=180°−∠DEC=180°−(180°−∠C−∠EDC)=180°−(180°−x°+6°−12°)=x°+6°,∵AD=DE,∴∠DEA=∠DAE=x°+6°,在△ADE中,由三角形内角和定理可得x+x+6+x+6=180,解得x=56,即∠ADE=56°,∴∠DAE=56°+6°=62°.故选C.8.【答案】C【解析】【分析】根据二次函数图象判断出m<−1,n=1,然后求出m+n<0,再根据一次函数与反比例函数图象的性质判断即可.本题考查了二次函数图象,一次函数图象,反比例函数图象,观察二次函数图象判断出m、n的取值是解题的关键.【解答】解:由图可知,m<−1,n=1,所以m+n<0,所以,一次函数y=mx+n经过第二四象限,且与y轴相交于点(0,1),反比例函数y=m+nx的图象位于第二四象限,纵观各选项,只有C选项图形符合.故选C.9.【答案】2【解析】【分析】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.首先化简二次根式,进而求出答案.【解答】解:原式=√2−2√2√2=√2√2=2.故答案为2.10.【答案】±2√2【解析】【分析】本题主要考查了一元二次方程的根的判别式,熟练掌握“当△=0时,方程有两个相等的实数根”是解题的关键.根据方程有两个相等的实数根结合根的判别式即可得出关于b的一元二次方程,解之即可得出结论.【解答】解:∵方程2x2+bx+1=0有两个相等的实数根,∴△=b2−2×4×1=b2−8=0,解得:b=±2√2.故答案为:±2√2.11.【答案】9.1【解析】【分析】此题主要考查了加权平均数以及条形统计图,正确掌握加权平均数求法是解题关键.直接利用条形统计图以及结合加权平均数求法得出答案.【解答】解:该班的平均得分是:120×(5×8+8×9+7×10)=9.1(分).故答案为9.1.12.【答案】72°【解析】【分析】本题考查了圆周角定理,正多边形的性质,熟记定理并作辅助线构造出弧AD所对的圆心角是解题的关键.连接AO、DO,根据正五边形的性质求出∠AOD,再根据同弧所对的圆周角等于圆心角的一半列式计算即可得解.【解答】解:如图,连接AO、DO,∵五边形ABCDE是正五边形,∴∠AOD=25×360°=144°,∴∠ABD=12∠AOD=12×144°=72°;故答案为72°.13.【答案】√5【解析】解:连结CE,过E点作EG⊥CD于G,设BE为x,在Rt△CA′E中,CE=√(2−x)2+(2÷2)2,在Rt△CBE中,CE=√x2+22,√(2−x)2+(2÷2)2=√x2+22,解得x=14∴CG=14,在Rt△CD′F中,CF2=FD′2+CD′2,即CF2=(2−CF)2+(2÷2)2,解得CF=54.∴GF=54−14=1,在Rt△EFG中,EF=√22+12=√5.故答案为:√5.连结CE,过E点作EG⊥CD于G,设BE为x,根据勾股定理在Rt△CA′E中先求出CE,进一步在Rt△CBE中求出CE,列出方程求出x,可得CG,根据勾股定理在Rt△CD′F中求出CF,可求GF,再根据勾股定理在Rt△EFG中求出折痕EF的长.本题考查了翻折变换(折叠问题)、正方形的性质、勾股定理,对综合的分析问题、解决问题的能力提出了较高的要求.14.【答案】24【解析】解:挖去一个棱长为1的小正方体,得到的图形与原图形表面积相等,则表面积是2×2×6=24.故答案为:24.根据几何体表面积的计算公式,从正方体毛坯一角挖去一个小正方体得到的零件的表面积等于原正方体表面积,即可得出答案.此题考查了几何体的表面积,本题有多种解法,一种是把每个面的面积计算出来然后相加,这样比较麻烦,另一种算法就是解答中的这种,这种方法的关键是能想象出得到的图形与原图形表面积相等.15.【答案】解:由①得4x+4+3>x解得x>−73,由②得3x−12≤2x−10,解得x≤2,∴不等式组的解集为−73<x≤2.∴正整数解是1,2.【解析】本题主要考查了不等式组的解法,并会根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.先解每一个不等式,求出不等式组的解集,再求出正整数解即可.16.【答案】解:如图,∠AOB为所求.【解析】利用基本作图(作一个角等于已知)先作出∠AOC=∠α,再作∠COB=∠α,则∠AOB=2∠α.本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)3(1,3)(2,3)(3,3)(4,3)4(1,4)(2,4)(3,4)(4,4)所有等可能的情况有16种,其中数字之和为3,6的情况有5种,∴P(和为3的倍数)=516,∴P(和不为3的倍数)=1−516=1116,∵5≠11∴该游戏不公平,故可以这样修改游戏规则:数字之和为奇数甲获胜,之和为偶数乙获胜.【解析】列表得出所有等可能的情况数,找出之和为6的情况数,即可求出所求的概率,找出数字之和为3的倍数的情况数,分别求出两人获胜的概率,比较即可得到游戏公平与否.此题考查了游戏公平性,以及列表法与树状图法,判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.18.【答案】解:(1)表格中5个数据按从小到大的顺序排列为1200,1200,1300,1300,1500,所以中位数是1300.(2)平均每天需要租用自行车却未租到车的人数是(1500+1200+1300+1300+ 1200)÷5=1300,∵YC市首批一次性投放公共自行车700辆供市民租用出行,∴平均每天需要租用公共自行车的人数是1300+700=2000.【解析】本题考查了中位数,平均数以及用样本估计总体.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.平均数=总数÷总个数.(1)表格中5个数据按从小到大的顺序排列后,中位数应是第3个数据;(2)根据平均数等于数据之和除以总个数求出平均每天需要租用自行车却未租到车的人数,再加上700即可.19.【答案】解:(1)作CE⊥BA于E.在Rt△AEC中,∠CAE=180°−60.7°−66.1°=53.2°,∴CE=AC⋅sin53.2°≈1000×0.8=800米.∴S△ABC=12⋅AB⋅CE=12×1400×800=560000平方米.(2)连接AD,作DF⊥AB于F.,则DF//CE.∵BD=CD,DF//CE,∴BF=EF,∴DF=12CE=400米,∵AE=AC⋅cos53.2°≈600米,∴BE=AB+AE=2000米,∴AF=12EB−AE=400米,在Rt△ADF中,AD=√AF2+DF2=400√2≈565.6米,答:A,D间的距离为565.6m.【解析】(1)作CE⊥BA于E.在Rt△ACE中,求出CE即可解决问题;(2)接AD,作DF⊥AB于F.,则DF//CE.首先求出DF、AF,再在Rt△ADF中求出AD 即可.本题考查解直角三角形−方向角问题,勾股定理、三角形的中位线定理等知识,解题的关键是学会添加常用辅助线.构造直角三角形解决问题,属于中考常考题型.20.【答案】解:①设乙工厂每天可加工生产x顶帐篷,则甲工厂每天可加工生产1.5x顶帐篷,根据题意得:240 x −2401.5x=4,解得:x=20,经检验x=20是原方程的解,则甲工厂每天可加工生产1.5×20=30(顶),答:甲、乙两个工厂每天分别可加工生产30顶和20顶帐篷;②设甲工厂加工生产y天,根据题意得3y+2.4×550−30y20≤60解得:y≥10,则至少应安排甲工厂加工生产10天.答:至少应安排甲工厂加工生产10天.【解析】本题考查了分式方程的应用和一元一次不等式的应用有关知识.①先设乙工厂每天可加工生产x顶帐篷,则甲工厂每天可加工生产1.5x顶帐篷,根据加工生产240顶帐篷甲工厂比乙工厂少用4天列出方程,求出x的值,再进行检验即可求出答案;②设甲工厂加工生产y天,根据加工生产总成本不高于60万元,列出不等式,求出不等式的解集即可.21.【答案】证明:∵平行四边形ABCD,∴AB=CD,AB//CD,∴∠BAE=∠DCF,∠ABO=∠CDO,在△ABE与△CDF中{AB=DC∠BAE=∠DCF AE=CF,∴△ABE≌△CDF(SAS),∴BE=DF,∠BAE=∠CDF,∴∠ABO−∠BAE=∠CDO−∠CDF,即∠EBO=∠DFO,∴BE//DF,∴四边形EBDF是平行四边形,∵EF=BD,∴平行四边形EBDF是矩形.【解析】根据矩形的判定和平行四边形的性质证明即可.此题考查矩形的判定,关键是根据全等三角形的判定得出△ABE≌△CDF.22.【答案】解:设销售单价提高x元,销售利润为y元,根据题意可得:y=(x+2)(200−10x)=−10x2+180x+400=−10(x−9)2+1210,∵−10<0,∴x=9时,y有最大值,最大值为1210,答:当售价提高9元时,可在一个月内获得最大的利润,最大利润是1210元.【解析】直接利用总利润=销量×每件利润,进而得出关系式求出答案.此题主要考查了二次函数的应用,正确得出函数关系式是解题关键.23.【答案】(1)10;4;(2)14;5;(3)4n+2;n+2.【解析】解:(1)一个5×2的矩形最少可分成4个正方形,最多可分成10个正方形;(2)一个7×2的矩形最少可分成5个正方形,最多可分成14个正方形;(3)第一个图形:是一个3×2的矩形,最少可分成1+2个正方形,最多可分成1×4+2个正方形;第二个图形:是一个5×2的矩形,最少可分成2+2个正方形,最多可分成2×4+2个正方形;第三个图形:是一个7×2的矩形,最少可分成3+2个正方形,最多可分成3×4+2个正方形;…第n个图形:是一个(2n+1)×2的矩形,最多可分成n×4+2=4n+2个正方形,最少可分成n+2个正方形.故答案为:(1)10;4;(2)14;5;(3)4n+2;n+2.【分析】(1)一个5×2的矩形最少可分成4个正方形,最多可分成10个正方形;(2)一个7×2的矩形最少可分成5个正方形,最多可分成14个正方形;(3)根据上述结果找出其中的规律,然后用含字母n的式子表示这一规律即可.本题主要考查的是探究图形的变化规律,找出图形的变化规律是解题的关键.24.【答案】解:(1)∠C=90°,AC=6cm,BC=8cm,∴AB=10cm,由题意得:DP=EQ=t,∵D为AC的中点,E为BC的中点,∴DE=12AB=5cm,当EP=EQ时,5−t=t,t=52,即当t=52时,△EPQ为等腰三角形;(2)如图②,过P作PH⊥BC于H,连接PE,sin∠PEH=PHPE=DCDE,∴PH5−t =35,∴PH=3(5−t)5,设△DCE中,DE边上的高为h,1 2×3×4=12×5ℎ,ℎ=125,∴y=S△PEF+S△EFB−S△EQP,=12×125PE+12×125FB−12EQ⋅PH,=65(5−t)+65×5−12t ⋅3(5−t)5,=3t 210−2710t +12;(3)∵S 四边形PFBQS △ABC=25,∴5S 四边形PFBQ =2S △ABC , ∴5(3t 210−2710t +12)=2×12×6×8,t 2−9t +8=0, t 1=1,t 2=8(舍);(4)如图③,过P 作PG ⊥AB 于G ,过Q 作QH ⊥AB 于H ,过D 作DM ⊥AB 于M , 由(3)知:PG =DM =125,Rt △ADM 中,∵AD =3, ∴AM =√32−(125)2=95,∴FG =5−95−t =165−t ,Rt △QHB 中,BQ =4−t , sin ∠B =QH4−t =610, ∴QH =3(4−t)5,∴BH =4(4−t)5,∴FH =5−BH =9+4t 5,∵PF ⊥FQ ,易得△PGF∽△FHQ , ∴PG GF=FH QH,∴PG ⋅QH =FH ⋅GF , ∴125⋅3(4−t)5=(165−t)⋅9+4t 5,4t 2−11t =0, t 1=0(舍),t 2=114.∴当t =114时,PF 与QF 互相垂直.【解析】(1)根据EP =EQ 列方程可得t 的值;(2)如图②,作辅助线,构建高线PH ,先根据三角函数或相似表示PH 的长,利用面积法求h 的值,最后利用面积差可得y 与t 的关系式;(3)根据已知得:5S 四边形PFBQ =2S △ABC ,代入列一元二次方程解出可得t 的值,并根据0<t <4这一取值进行取舍;(4)如图③,作辅助线,构建直角三角形,证明△PGF∽△FHQ,列比例式可得t的值.本题是动点型综合题,解题关键是掌握动点运动过程中的图形形状、图形面积的表示方法.所考查的知识点涉及到勾股定理、相似三角形的判定与性质、三角形中位线定理、解方程(包括一元一次方程和一元二次方程)等,有一定的难度.注意题中求时间t的方法:最终都是转化为一元一次方程或一元二次方程求解,属于中考压轴题.。
2020届初三中考数学一诊联考试卷含参考答案 (山东)

2020届**市初三中考一诊联考试卷数学注意事项:1.答卷前,考生务必将自己的姓名、准考证填写在答题卡上。
2.回答客观题时,选出每小题答案后,用2B铅笔把答题卡上对应的答案标号涂黑。
如需改正,必须用橡皮擦擦涂干净,回答非客观题,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,将本试卷和答题卡一并收回。
4.考试时间:120分钟。
一、单选题(共10题,每题3分,共30分,四个选项中只有一项符合题目要求)1.一商店在某一时间以每件120元的价格卖出两件衣服,其中一件盈利20%,另一件亏损20%,在这次买卖中,这家商店()A.不盈不亏 B.盈利20元 C.亏损10元 D.亏损30元2.下列运算正确的是()A.a2•a3=a6B.(a2)3=a6C.a6÷a2=a3D.2﹣3=﹣6⨯的网格中,A,B均为格点,以点A为圆心,以AB的长为半径3.如图,在33∠的值是()作弧,图中的点C是该弧与格线的交点,则sin BACA .12B .23CD 4.2018的倒数是( )A .2018B .12018C .12018-D .﹣20185.下列平面图形,是中心对称但不是轴对称图形的是( )A .B .C .D . 6.下列计算正确的是( )A .B .C .D .7.如图,直线y +1分别交x 轴、y 轴于点A 、C ,点B 是点A 关于y 的对称点,点D 是线段BC 上一点,把△ABD 沿AD 翻折使AB 落在射线AC 上,得△AB 'D ,则△ABC 与△AB 'D 重叠部分的面积为( )A B .12 C .3 D .36-8.3-的倒数是()A.-3 B.3 C.13-D.139.如图,⊙O是正五边形ABCDE的外接圆,则正五边形的中心角∠AOB的度数是()A.72°B.60°C.54°D.36°10.如果解关于x的分式方程233x ax x---=5时出现了增根,那么a的值是()A.﹣6B.﹣3C.6D.3二、填空题(共4题,每题4分,共16分)11.Rt△ABC中,∠C=90°,cos A=35,AC=6cm,那么BC等于_____.12.如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且AD DFAC CG=.若12ADAC=,则AFFG=_____.13.菱形ABCD中,∠B=60°,AB=5,以AC为边长作正方形ACFE,则点D到EF的距离为_____.14.已知圆锥的侧面积是12π,母线长为4,则圆锥的底面圆半径为________.三、解答题(共6题,总分54分)15.如图,在平面直角坐标系xOy中,点A在x轴上,点B在第一象限内,∠OAB=90°,OA=AB,△OAB的面积为2,反比例函数y=kx的图象经过点B.(1)求k的值;(2)已知点P坐标为(a,0),过点P作直线OB的垂线l,点O,A关于直线l的对称点分别为O′,A′,若线段O′A′与反比例函数y=kx的图象有公共点,直接写出a的取值范围.16.已知AM是△ABC的中线,点D在线段AM上[点D不与点A重合),过点D作DF∥AB交AC边于点F,过点C作CE∥AM交DF的延长线于点E,连接AE.(1)如图1,当点D与点M重合时,求证:四边形ABDE是平行四边形;(2)如图2,当点D不与点M重合时,过点M作MG∥DE交EC于点G,连接BD、AG在不添加任何辅助线的情况下,请直接写出图中所有的平行四边形.17.如图,某校数学兴趣小组的小明同学为测量位于玉溪大河畔的云铜矿业大厦AB的高度,小明在他家所在的公寓楼顶C处测得大厦顶部A处的仰角为45°,底部B处的俯角为30°.已知公寓高为40m,请你帮助小明计算公寓楼与矿业大厦间的水平距离BD的长度及矿业大厦AB的高度.(结果保留根号)18.已知,在矩形ABCD中,连接对角线AC,将△ABC绕点B顺时针旋转90°得到△EFG,并将它沿直线AB向左平移,直线EG与BC交于点H,连接AH,CG.(1)如图①,当AB=BC,点F平移到线段BA上时,线段AH,CG有怎样的数量关系和位置关系?直接写出你的猜想;(2)如图②,当AB=BC,点F平移到线段BA的延长线上时,(1)中的结论是否成立,请说明理由;(3)如图③,当AB=nBC(n≠1)时,对矩形ABCD进行如已知同样的变换操作,线段AH,CG有怎样的数量关系和位置关系?直接写出你的猜想.19.如图,PA,PB分别与⊙O相切于点A,B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N.(1)求证:OM = AN;(2)若⊙O的半径R = 3,PA = 9,求OM的长.20.在△ABN中,∠B=90°,点M是AB上的动点(不与A,B两点重合),点C 是BN延长线上的动点(不与点N重合),且AM=BC,CN=BM,连接CM与AN交于点P.(1)在图1中依题意补全图形;(2)小伟通过观察、实验,提出猜想:在点M,N运动的过程中,始终有∠APM小伟把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的一种思路:。
2020年山东省青岛市李沧区中考数学一模试卷

2020 年山东省青岛市李沧区中考数学一模试卷一、选择题(本大题共8 小题,共 24.0 分)1. -2020 的绝对值是 ()A. -2020B. 2020C. 2.下列手机手势解锁图案中,是轴对称图形的是 A. B. C.1- 2020( )D.D.1 20203. 2020 春节期间,一场突如其来的新冠肺炎疫情牵动着全国人民的心,因疫情发展迅速,全国口罩防护用品销售量暴涨、供应紧张,国有疫,我有责,在特殊时期,某集团紧急启动了应急响应机制,取消了工人休假,与疫情救灾相关的口罩、防护服生产线连续 24 小时运转,将援驰武汉的往武汉,其中 120 万用科学记数法表示为 A. 120 ×10 4 B. 12 ×10 54.下列运算正确的是 ( )A. 2??+ 3??= 25??C. 2 3 6?? ×?? = ??120 万片口罩和 8 万防护服第一时间发()C. 1.2 ×10 6D. 1.2 ×10 7B.22 2(??+ 2??) = ?? + 4??D. 2 3= -??36(-???? ) ??? :? :? :? :5. 如图,四边形 ABCD 内接于圆,并有 ????????????????= 45 6 5 ,则 ∠ ??的度数为 ( ) : :A. 90°B. 95°C. 99°D. 100 °6. 如图,点 A B 的坐标分别为 (-3,1) , (-1, -2) ,若将线段 AB 平移至 ???? 的位置,,1 1 点 ??, ??的坐标分别为 (??,4) , (3, ??),则 ??+ ??的值为 ( )1 1A.2B.3C.4D.57.如图,对折矩形纸片 ABCD ,使 AB 与 BC 重合,得到折痕 EF ,然后把 △??????再对折到 △??????,使点 A 落在EF 上的点 G 处,若 ????= 2,则 HG 的长度为 ( )二次函数2与一次函数 ??= ????+ ??在同一坐标系中的大致图象可能是( )8.??= ????A. B.C. D.二、填空题(本大题共 6 小题,共 18.0 分)9.计算:√18+√121-1= ______.-( )√2310.射击比赛中,某队员10 次射击成绩如图所示,则该队员的成绩的中位数是______环.11.随着市民环保意识的日渐增强,文明、绿色的环保祭扫方式(鲜花祭奠、网络祭奠等 )正成为一种趋势,清明节期间,我区某花店用4000 元购买了若干花束,很快就售完了,接着又用4500 元购买了第二批花束.已知第二次购买的花束的数量是第一批所购花束的数量的 1.5 倍,且每束花的进价比第一批的进价少 5 元.若设第一批所购花束的数量为x 束,则可列方程为______.12.如图,分别以正三角形的三个顶点为圆心,边长为半径画弧,三段弧围成的图形成为莱洛三角形.若正三角形边长为6cm,则该莱洛三角形的面积为2.______????13.如图,在 ?ABCD 中, ????= 3 ,????= 5 ,∠ ??与∠ ??的平分线 AE,BF 相交于点 N,点 M 为线段 CD 的中点,连接 MN ,则 MN 的长度为 ______.14.如图,是由 22 个边长为 1 厘米的小正方体拼成的立体图形,该图中由两个小正方体组成的长方体的个数为______.15.某宾馆有若干间标准房,当标准房的价格为 200 元时,每天入住的房间数为 60 间.经市场调查表明,该馆每间标准房的价格在170 ~240元之间 (含 170 元, 240 元 )浮动时,每天入住的房间数??(间 ) 与每间标准房的价格??(元) 的数据如下表:??(元 )190200210220??(间 )65605550(1)根据所给数据在坐标系中描出相应的点,并画出图象.(2) 求 y 关于 x 的函数表达式,并写出自变量x 的取值范围.(3)设客房的日营业额为 ??(元 ). 若不考虑其他因素,问宾馆标准房的价格定为多少元时,客房的日营业额最大?最大为多少元?四、解答题(本大题共9 小题,共72.0 分)16.已知:直线 l 及 l 上两点 A, B.求作: ????△??????,使点 C 在直线 l 的上方,∠??????= 90°,且 ????= ????.22??-??17. (1)?? +??化简: (- 2??)÷;????(2)2??+ ?? - 1的函数与 x 轴有两个交点,且与y 轴交于正半若二次函数 ??= 2?? -轴,求 m 的取值范围.18.每年夏季全国各地总有未成年人因溺水而丧失生命,令人痛心疾首.今年某校为确保学生安全,开展了“远离溺水 ?珍爱生命”的防溺水安全知识竞赛.现从该校七、八年级中各随机抽取 10 名学生的竞赛成绩 (百分制 ) 进行整理、描述和分析 (成绩得分用 x 表示,共分成四组:??.80 ≤ ??< 85 ;??.85 ≤ ??< 90 ; ??90. ≤ ??< 95;??.95 ≤ ??< 100) ,下面给出了部分信息:七年级 10 名学生的竞赛成绩是: 99,80,99,86,99,96,90, 100,89, 82八年级10 名学生的竞赛成绩在 C 组中的数据是:94, 90, 94八年级抽取的学生竞赛成绩扇形统计图七、八年级抽取的学生竞赛成绩统计表年级七年级八年级平均数b92中位数9394众数99100方差5250.4根据以上信息,解答下列问题:(1)直接写出上述图表中 a, b 的值;(2)根据以上数据,你认为该校七、八年级学生掌握防溺水安全知识较好?请说明理由 ( 一条理由即可 ) ;(3)该校七、八年级共 720 人参加了此次竞赛活动,估计参加此次竞赛活动成绩优秀 (??≥ 90) 的学生人数是多少?19. 将图中的 A 型、 B 型、 C 型矩形纸片分别放在 3 个盒子中,盒子的形状、大小、质地都相同,再将这 3 个盒子装入一只不透明的袋子中.(1)搅匀后从中摸出 1 个盒子,求摸出的盒子中是 A 型矩形纸片的概率;(2)搅匀后先从中摸出 1 个盒子 (不放回 ),再从余下的两个盒子中摸出一个盒子,求2 次摸出的盒子的纸片能拼成一个新矩形的概率( 不重叠无缝隙拼接 ) .20. 小明利用刚学过的测量知识来测量学校内一棵古树的高度.一天下午,他和学习小组的同学带着测量工具来到这棵古树前,由于有围栏保护,他们无法到达古树的底部 B,如图所示.于是他们先在古树周围的空地上选择一点D,并在点 D 处安装了测量器 DC ,测得古树的顶端 A 的仰角为 45°;再在 BD的延长线上确定一点 G,使????= 5米,并在 G 处的地面上水平放置了一个小平面镜,小明沿着 BG 方向移动,当移动到点 F 时,他刚好在小平面镜内看到这棵古树的顶端 A 的像,此时,测得 ????=2米,小明眼睛与地面的距离????= 1.6米,测量器的高度 ????= 0.5米.已知点 F 、G、D、B 在同一水平直线上,且 EF、CD、AB 均垂直于 FB ,求这棵古树的高度 ????(.小平面镜的大小忽略不计 )21. 为了参加西部博览会,资阳市计划印制一批宣传册.该宣传册每本共10页,由A、B 两种彩页构成.已知 A 种彩页制版费300 元/ 张, B 种彩页制版费 200元/ 张,共计 2400 元. (注:彩页制版费与印数无关)(1)每本宣传册 A、 B 两种彩页各有多少张?(2)据了解, A 种彩页印刷费 2.5元/ 张, B 种彩页印刷费 1.5 元/ 张,这批宣传册的制版费与印刷费的和不超过 30900 元.如果按到资阳展台处的参观者人手一册发放宣传册,预计最多能发给多少位参观者?22.如图,D是△??????的边AB的中点,????//????,????//????,AC与DE相交于点F,连接 AB, CD.(1)求证: ????= ????;(2)当△??????满足什么条件时,四边形 ADCE 是菱形?请说明理由.23.【模型介绍】古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸同侧的两个军营 A, ??他.总是先去 A 营,再到河边饮马,之后,再巡查 B营.如图①,他时常想,怎么走才能使每天走的路程之和最短呢?大数学家海伦曾用轴对称的方法巧妙地解决了这个问题.如图②,作点 B 关于直线 l 的对称点 ??,′连结 ????与′直线 l 交于点 P,连接 PB,则????+ ????的和最小.请你在下列的阅读、理解、应用的过程中,完成解答.理由:如图③,在直线 l 上另取任一点 ??,′连结 ????,′????,′??′,??′∵直线 l 是点 B, ??的′对称轴,点 P, ??在′l 上,∴????= ______, ?? ′=??______,∴????+ ????= ????+ ????=′______.在△????′中??,′∵????<′????+′??′,??′∴????+ ????< ????+ ??′,??即′????+ ????最小.【归纳总结】在解决上述问题的过程中,我们利用轴对称变换,把点A,B 在直线同侧的问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即转化为“三角形两边之和大于第三边”的问题加以解决 (其中点 P 为 ????与′l 的交点,即 A,P,??三′点共线).由此,可拓展为“求定直线上一动点与直线同侧两定点的距离和的最小值”问题的数学模型.【模型应用】(1)如图④,正方形 ABCD 的边长为 4,E 为 AB 的中点,F 是 AC 上一动点.求 ????+ ????的最小值.解析:解决这个问题,可借助上面的模型,由正方形对称性可知,点B与D关于直线 AC 对称,连结 DE 交 AC 于点 F ,则 ????+ ????的最小值就是线段ED 的长度,则 ????+ ????的最小值是______.(2) 如图⑤,圆柱形玻璃杯,高为14cm,底面周长为16cm,在杯内离杯底3cm 的点 C 处有一滴蜂蜜,此时一只蚂蚁正好在外壁,离杯上沿4cm 与蜂蜜相对的点 A 处,则蚂蚁到达蜂蜜的最短路程为______cm.(3) 如图⑥,在边长为 2 的菱形 ABCD 中,∠ ??????= 60 °,将△??????沿射线 BD 的方向平移,得到△??′??,′分??别′连接 ??′,???′,???′,??则??′+????′的??最小值为______.24.如图,已知 ????△??????,∠??????= 90°,∠??????= 30°,斜边 ????= 8????,将 ????△??????绕点 O 顺时针旋转 60°,得到△??????,连接 ????点. M 从点 D 出发,沿 DB 方向匀速行动,速度为 1????/??;同时,点 N 从点 O 出发,沿 OC 方向匀速运动,速度为 2????/??;当一个点停止运动,另一个点也停止运动.连接AM,MN ,MN 交 CD 于点 ??设.运动时间为 ??(??)(0< ??< 4) ,解答下列问题:(1)当 t 为何值时, OM 平分∠ ???????(2) 设四边形2AMNO 的面积为 ??(????),求 S 与 t 的函教关系式;(3)在运动过程中,当∠ ??????= 45 °时,求四边形 AMNO 的面积;(4) 在运动过程中,是否存在某一时刻t,使点 P 为线段 CD 的中点?若存在,求出t的值;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:根据绝对值的概念可知:| - 2020| = 2020 ,故选: B.根据绝对值的定义直接进行计算.本题考查了绝对值.解题的关键是掌握绝对值的概念,注意掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0 的绝对值是0.2.【答案】A【解析】解: A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误.故选: A.直接根据轴对称图形的概念求解.此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3.【答案】C【解析】解: 120 万= 1.2 ×10 6,故选: C.科学记数法的表示形式为??×10 ??的形式,其中 1 ≤ |??|< 10 ,n 为整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥ 10 时, n 是正数;当原数的绝对值< 1时, n 是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为??×10 ??的形式,其中1≤|??|< 10, n 为整数,表示时关键要正确确定 a 的值以及n 的值.4.【答案】D【解析】【分析】此题主要考查了合并同类项以及完全平方公式、积的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.直接利用合并同类项法则以及完全平方公式、积的乘方运算法则、同底数幂的乘除运算法则分别化简得出答案.【解答】解: A、2??+ 3??= 5??,故此选项错误;222B、 (??+ 2??) = ?? + 4????+4??,故此选项错误;2· 35 ,故此选项错误;C、?? ?? = ??2336D 、(-???? )= -?? ??,正确.故选: D.5.【答案】C【解析】解:连接OA、 OB、 OC、OD ,∵????:????:????:????= 4:5:6:5,∴∠ ??????:∠ ??????:∠ ??????:∠ ??????= 4: 5: 6:5,设∠??????、∠??????、∠??????、∠??????的度数分别为4x、 5x、6x、5x,则4??+ 5??+ 6??+ 5??= 360°,解得, ??= 18°,∴∠ ??????的度数 +∠ ??????的度数 = 6 ×18 °+ 5 ×18 °= 198 °,1∴∠ ??的度数为 198 °×2 = 99 °,故选: C.连接 OA、OB、OC、OD ,根据圆心角和弧之间的关系定理得到∠??????:∠??????:∠??????:∠??????= 4 :5:6:5,列方程求出∠ ??????的度数 +∠ ??????的度数,根据圆周角定理解答即可.本题考查的是圆内接四边形的性质、圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.6.【答案】A【解析】解:∵点 A、B 的坐标分别是为 (-3,1), (-1,-2),若将线段 AB 平移至 ??1??1的位置, ??1 (??,4) , ??(3,1??),∴线段 AB 向右平移了 4 个单位,向上平移了 3 个单位,∴??= 1,??= 1,∴??+ ??= 2,故选: A.由已知得出线段 AB 向右平移了 4 个单位,向上平移了3个单位,即可得出结果;本题考查坐标与图形变化- 平移,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.7.【答案】B【解析】解:如图,连接AG ,∵对折矩形 ABCD 的纸片,使 AB 与 DC 重合,∴????= ????, ????⊥????,∴????= ????,∵把△??????再对折到△??????,∴????= ????= 2,∠ ??????= ∠ ??????,∠ ??????= ∠ ??????=90 °,∴????= ????= ????,∴△??????是等边三角形,∴∠ ??????=60 °,∴∠ ??????=30 °,在 ????△??????中, ????= ????tan ∠??????= 2√3.3故选: B.由折叠的性质可得 ????= ????= ????,可得△ ??????是等边三角形,即可求∠??????= 60°,即可求解.本题考查了翻折变换,矩形的性质,证明△??????是等边三角形是本题的关键.8.【答案】D【分析】本题主要考查一次函数和二次函数的图象,解题的关键是熟练掌握二次函数的图象和一次函数的图象与系数之间的关系.由一次函数 ??= ????+ ??可知,一次函数的图象与x 轴交于点 (-1,0),即可排除 A、B,然后根据二次函数的开口方向,与y 轴的交点以及一次函数经过的象限,与y 轴的交点可对相关图象进行判断.【解答】解:由一次函数 ??= ????+ ??可知,一次函数的图象与x 轴交于点 (-1,0),排除 A、B;当 ??> 0时,二次函数开口向上,一次函数经过一、三、四象限,当??< 0 时,二次函数开口向下,一次函数经过二、三、四象限,排除C;故选: D.9.【答案】√61812【解析】解:原式 = √+√-322=3+√6-3=√6 .故答案为√6.利用二次根式的除法法则和负整数指数幂的意义计算.本题考查了二次根式的混合运算:在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.10.【答案】9【解析】解:由题意,可得该队员10 次射击成绩 ( 单位:环 ) 为: 6,7,8,8,9,9,9,9, 10, 10,第 5与第 6 个数据都是9,所以中位数是: (9 + 9) ÷2 = 9.故答案为: 9.根据条形统计图得出该队员10 次射击成绩,再利用中位数的定义解答即可.本题考查的是条形统计图和中位数.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.将一组数据按照从小到大(或从大到小 ) 的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.4000450011.【答案】??-1.5??= 5【解析】解:设第一批所购花束的数量为x 束,则第二次所购花束的数量为 1.5??束,40004500由题意,得??- 1.5?? =5.40004500故答案是:??- 1.5?? =5.设第一批所购花束的数量为x 束,则第二次所购花束的数量为 1.5??束,根据“第一批花的进价 - 第二批花的进价 = 5元”列出方程.本题主要考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.12.【答案】(18??- 18√3)∵????⊥????,∴????= ????= 3 , ????= √3????= 3√3 ,1∴△??????的面积为2 ????????= 9 √3,2??60??? ×6== 6??,扇形 ??????360∴莱洛三角形的面积??= 3 ×6??- 2 ×9√3 = (18?? -218 √3)????,故答案为: (18?? - 18√3).图中三角形的面积是由三块相同的扇形叠加而成,其面积= 三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.13.【答案】3.5【解析】解:∵四边形 ABCD 是平行四边形,∴????//????,∴∠ ??????= ∠ ??????,∠ ??????= ∠ ??????,∵∠ ??与∠ ??的平分线 AE, BF 相交于点 N,∴∠ ??????= ∠ ??????,∠ ??????= ∠ ??????,∴∠ ??????= ∠ ??????,∠ ??????= ∠ ??????,∴????= ????, ????= ????,∴????= ????= ????,∴四边形 ABEF 是平行四边形,∵????= ????,∴平行四边形ABEF 是菱形,∴????= ????,连接 EF,交 EF 于 G,∴????= ????= ????= ????= 3 ,∵??是 DC 的中点,1∴????= 2????= 1.5 ,????= ????= ????- ????= 5 -3= 2,∴????= 1.5 + 2 = 3.5,故答案为: 3.5 .根据平行四边形的性质得出????//????,进而利用角平分线的定义和等腰三角形的判定得出 ????= ????, ????= ????,进而得出四边形 ABEF 是菱形,利用三角形中位线定理解答即可.此题考查平行四边形的性质,关键是根据平行四边形的性质解答.14.【答案】40【解析】解: 13 + 13 + 14 = 40( 个).由两个小正方体组成的长方体,可以分为上下位,左右位,前后位三种,分别数出它们的个数,再相加即可求解.考查了认识立体图形,规律型:图形的变化类,关键是分类讨论,做到不重复不遗漏.15.【答案】解:(1)如图所示:(2) 设 ??= ????+ ??,将 (200,60) 、 (220,50) 代入,得: { 200??+ ??= 60,220??+ ??= 501??= -解得{2,1∴??= - 2 ??+ 160(170≤??≤240);(3)?? =112????= ??(- 2 ??+ 160) =- 2?? + 160??,??∴对称轴为直线 ??= - 2??= 160,1∵??= - 2 <0,∴在 170 ≤ ??≤ 240范围内, w 随 x 的增大而减小,∴当 ??= 170时, w由最大值,最大值为 12750 元.【解析】 (1) 描点、连线即可得;(2)待定系数法求解可得;(3)由营业额 = 入住房间数量×房价得出函数解析式,再利用二次函数的性质求解可得.此题主要考查了二次函数的应用以及待定系数法求一次函数解析式以及二次函数最值问题,由营业额 = 入住房间数量×房价得出函数解析式及二次函数的性质是解题关键.16.【答案】解:如图,所以 ????△??????即为所求.【解析】作 AB 的垂直平分线交 AB 于点 O,再以 AB 的中点 O 为圆心, OA 长为半径画弧交AB 的垂直平分线于点 C,此时 ????= ????,进而可作出 ????△??????.本题考查了作图 - 复杂作图、等腰直角三角形,解决本题的关键是掌握线段垂直平分线的性质.22??-??222?? +???? +?? -2??????(??-??);17.??- 2??)÷??=??×??-??=??-??= ??-??(2)∵函数与 x 轴有两个交点,且与 y 轴交于正半轴,∴△>0且??- 1 > 0,即△=(-1) 2 - 4×2×(?? - 1) > 0且??> 1,解得: 1 < ??< 9.8【解析】 (1) 按照分式的乘除法化简即可求解;(2)由题意得:△>0且 ?? - 1 > 0 ,即可求解.本题考查的是分式的乘除法和抛物线与坐标轴的交点的内容,其中 (2) ,确定△>0和?? -1 > 0是解题的关键.18.【答案】解:(1)?? = (1 - 20% - 10% -310) ×100 = 40,1七年级的平均数 ??= 10 (99 + 80 + 99 + 86 + 99 + 96 + 90+ 100+89+82)=92;(2) 八年级学生掌握防溺水安全知识较好,理由:虽然七、八年级的平均分均为92 分,但八年级的中位数和众数均高于七年级.(3) 八年级的优秀人数有:10 ×(1 - 20% - 10%) = 7( 人 ) ,6+7则720 ×20= 468(人 ) ,答:参加此次竞赛活动成绩优秀(??≥ 90) 的学生人数是468 人.【解析】 (1)用整体1 减去其它所占的百分比即可求出a;根据平均数的计算公式即可求出 b;(2)根据八年级的中位数和众数均高于七年级于是得到八年级学生掌握防溺水安全知识较好;(3)利用样本估计总体思想求解可得.本题考查读扇形统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.19.【答案】解:(1)搅匀后从中摸出 1 个盒子有 3 种等可能结果,1所以摸出的盒子中是 A 型矩形纸片的概率为3;(2)画树状图如下:由树状图知共有 6 种等可能结果,其中2 次摸出的盒子的纸片能拼成一个新矩形的有4种结果,所以 2 次摸出的盒子的纸片能拼成一个新矩形的概率为4 = 2.6 3【解析】 (1) 直接利用概率公式计算可得;(2) 画树状图得出所有等可能结果,从中找打 2 次摸出的盒子的纸片能拼成一个新矩形的结果数,利用概率公式计算可得.此题考查了列表法或树状图法求概率.用到的知识点为:概率 = 所求情况数与总情况数之比.【答案】解:如图,过点 C 作 ????⊥????于点 H ,20.则 ????= ????,????= ????= 0.5 . 在 ????△??????中, ∠??????= 45°, ∴????= ????= ????,∴????= ????+ ????= ????+ 0.5 . ∵????⊥????, ????⊥????,∴∠ ??????= ∠ ??????= 90 °.由题意,易知 ∠??????= ∠??????,∴△?????? ∽△??????,????????1.6 2,∴????=即????+0.5=???? 5+????解之,得 ????= 17.5 ,∴????= 17.5 + 0.5 = 18(??) . ∴这棵古树的高 AB 为 18m .【解析】过点 C 作 ????⊥????于点 H ,则????= ????,????= ????= 0.5.解 ????△ ??????,得出 ????=????= ????,那么 ????= ????+ ????= ????+ 0.5.再证明 △?????? ∽△??????,根据相似三角形对应边成比例求出 ????= 17.5 ,进而求出 AB 即可.本题考查了解直角三角形的应用 - 仰角俯角问题,相似三角形的应用,解题的关键是正确的构造直角三角形并选择正确的边角关系解直角三角形,难度一般.21.【答案】 解: (1) 设每本宣传册 A 、 B 两种彩页各有x , y 张,??+ ??= 10{300??+ 200??= 2400,解得: {??= 4,??= 6答:每本宣传册 A 、 B 两种彩页各有 4和 6张;(2) 设最多能发给 a 位参观者,可得: 2.5 ×4??+ 1.5 ×6??+ 2400 ≤ 30900 ,解得: ??≤ 1500 ,答:最多能发给1500 位参观者.A Bx y22.【答案】(1)证明:∵????//????,????//????,∴四边形 BCED 是平行四边形,∴????= ????,∵??是△??????的边 AB 的中点,∴????= ????,∴????= ????;(2)解:当△??????满足△??????是直角三角形,∠ ??????= 90 °时,四边形 ADCE 是菱形;理由如下:由 (1) 得: ????//????, ????= ????,∴四边形 ADCE 是平行四边形,∵∠ ??????= 90 °, D 是△??????的边 AB 的中点,1∴????= 2 ????= ????,∴四边形 ADCE 是菱形.【解析】 (1) 证四边形 BCED 是平行四边形,得出 ????= ????,证????= ????,即可得出 ????= ????;(2) 证四边形 ADCE 是平行四边形,由直角三角形斜边上的中线性质得出1????= ????=2 ????,即可得出结论.本题考查了菱形的判定、平行四边形的判定与性质、直角三角形斜边上的中线性质等知识;熟练掌握菱形的判定和直角三角形斜边上的中线性质是解题的关键.23.【答案】????′??′??????′ ′2√5 17 2√3【解析】【模型介绍】解:理由:如图③ ,在直线l上另取任一点??,′连结????,′????,′??′,??′∵直线 l 是点 B, ??的′对称轴,点P,??在′ l 上,∴????= ????,′?? ′=???? ′,?? ′∴????+ ????= ????+ ????=′????.′在△????′中??,′∵????<′????+′??′,??′∴????+ ????< ????+ ?? ′,??即′????+ ????最小.故答案为: ????,′??′,??????′;′【模型应用】解: (1) 连接 DE 交 AC 于 F,如图④所示:则 ????+ ????有最小值;∵四边形 ABCD 是正方形,∴????= ????= 4 ,∠ ??????=90 °, ????= ????,∴????+ ????= ????+ ????= ????,∵??为 AB 的中点,∴????= ????= 2 ,2222= 2√5 ,∴????= √ ????+ ????= √4+ 2即 ????+ ????的最小值为 2√5 ;故答案为: 2 √5 ;(2) 把图⑤的半个侧面展开为矩形EFGH ,如图⑤ - 1所示:作点A关于EH的对称点 ??,′连接EH P,作 ????⊥ ????于D,则 ??′=??????,??′交??于?? ′=??????= 4, ????= ????= 3 ,蚂蚁到达蜂蜜的最短路程为????+ ??????+′????= ?? ′,??∵????= 14 ,--∴????= ????????= 14 - 3 = 11 ,∴?? ′=???? ′+????? ═,15又∵圆柱形玻璃杯底面周长为16,∴????= 8 ,2222,∴?? ′=??√ ?? ′+????? = √ 15 + 8= 17(????)故答案为:17;(3)∵在边长为 2 的菱形 ABCD 中,∠ ??????=60 °,∴????= ????= 2 ,∠ ??????= 30 °,∵将△??????沿射线 BD 的方向平移得到△?? ′ ??,′ ?? ′∴?? ′ =??????=′ 1 ,?? ′ ?? ′,//????∵四边形 ABCD 是菱形,∴????= ????= ????= 2 , ????//????,∴?? ′=???? ′,??∴?? ′+??? ′的??最小值 = ?? ′+??? ′的??最小值, ∵点 ??在′过点 A 且平行于BD 的定直线 l 上,∴作点 D 关于定直线 l 的对称点 E ,连接 CE 交定直线 l 于 ??,′如图 ⑥ 所示:则 CE 的长度即为 ??′+????′的??最小值, ∵∠ ?? ′=????∠??????= 30 °, ????= 2,1∴∠ ??????= 60 °, ????= ????= 2 ????= 1,∴????= 2, ∴????= ????,作 ????⊥????于 G ,则 ????= ????,∵∠ ??????= ∠ ??????+∠′??????= 90 °+ 30 °= 120 °,1∴∠ ??= ∠ ??????= 30 °, ∴????= 2 ????= 1 , ????= √3????= √3 ,∴????= 2????= 2 √3 . 故答案为: 2 √3 .【模型介绍】由轴对称的性质和三角形的三边关系即可得出答案;【模型应用】 (1) 连接 DE 交 AC 于 F ,则 ????+ ????有最小值,由正方形的性质得出 ????=????= 4 ,∠ ??????= 90 °, ????= ????,则 ????+ ????= ????+ ????= ????,由勾股定理求出 DE即可;(2) 由侧面展开图和轴对称的性质以及勾股定理即可得出答案;(3) 由菱形的性质得到 ????= 2 , ∠ ??????= 30 °,由平移的性质得到?? ′=??????=′ 2 ,?? ′ ?? ′,//????证四边形 ?? ′ ??是′平????行四边形, 得 ?? ′=???? ′,??得?? ′+??? ′的??最小值 = ?? ′+???? ′的??最小值,由平移的性质得到点 ??在′过点 A 且平行于 BD 的定直线 l 上,作点 D 关于定直线 l E CE 交定直线 l 于 ??,′则 CE的长度即为 ??′+????′的??最小值, 的对称点 ,连接求得 ????= ????,得到 ∠??= ∠??????= 30°,于是得到结论. 本题是四边形综合题目,考查了轴对称- 最短路线问题,正方形的性质,菱形的性质,矩形的判定和性质,勾股定理,平行四边形的判定与性质,含30°角的直角三角形的性质,圆柱的侧面展开图, 等腰三角形的判定与性质, 平移的性质等知识; 本题综合性强,正确作出图形是解题的关键.24.【答案】 解:,,,斜边????= 8,(1) ∵????△??????∠ ??????= 90° ∠ ??????= 30 °∴∠ ??????= 60 °, 1????= 4 ,,????=222 4 2= 4 32????= √ ????- ???? =√8√∠ ??????= ∠ ??????在 △??????和 △??????中, { ????= ????,∠ ??????= ∠ ?????? ∴△?????? ≌△??????(??????), ∴????= ????= 4 ,4∴??= 2 = 2(??),∴当 t 为 2s 时, OM 平分 ∠ ??????;(2) 过点 A 作 ????⊥ ????于 E ,过点 N 作 ????⊥????于 F ,如图 1 所示:∵∠ ??????= ∠ ??????= 60 °,∴????= ??????????60= 4°×√23= 2√3, ????= ???????????60= ° 2??×√3= √3??,2∵????= ????+ ????= 4 + ??,1 1 1 1∴??= ??△ ??????+ ??△ ??????= 2 ?????????+ 2 ?????????= 2 (4 + ??)×2 √3+ 2 (4 + ??)×√3??=√3 2√3??+ 4√3;??+ 32(3) 当 ∠ ??????= 45 °时,则 △??????为等腰直角三角形, ∴????= ????, ∵∠ ??????= 60 °, ∴∠ ??????= 30 °,1∴????= 2 ????= 2,∴????= ????- ????= 4 - 2= 2,∴????= 2+ ??,∴2 + ??= 2 √3,∴??= 2√3 - 2,√3 2√32+ 3√3(2 √3 -∴??= 2 ?? + 3 √3??+ 4 √3 = 2 (2√3- 2)2) + 4√3= 6√3+ 6;(4) 存在某一时刻 t ,使点 P 为线段 CD 的中点,理由如下:过点 N 作 ????⊥????于 Q ,如图 2 所示:∵??为线段 CD 的中点,1∴????= 2 ????= 2 √3,∵∠ ??????= 60 °,∴∠ ??????= 30 °, ????= ???????????60= 2??°×√23= √3??,1∴????= 2 ????= ??,∴????= ????- ????= 4 - ??,∵??=1 1?????????=(4 + ??)×√3??,△ ??????221 1 12 ??×2√3 + 2 (2 √3 + √3??)(4- ??)+ 2 ×??× √3??,11√3 + √3??)(4-11(4 + ??)×√3??,∴ ??×2√3 +(2 ??)+ ×??×√3??=2 2 222整理得: ?? = 8, ∴??= 2 √2, 即存在 ??=时,使点 P 为线段 CD 的中点. 2√2??【解析】 (1) 当 OM 平分 ∠??????时,即 ∠??????= ∠??????,由 ASA 证得 △??????≌△??????,得出 ????= ????= 4,即可得出结果;(2) 过点 A 作 ????⊥ ????于 E ,过点 N 作 ????⊥????于 F ,求出 ????= 2√3 ,,????=????= √3?? 4 + ??,由 ??= ??+ ??= 1 ?????????+ 1?????????,即可得出结果;2 2△ ?????? △ ??????(3) 当 ∠ ??????= 45 °时, △??????为等腰直角三角形,得出????= ????,求出 ????= 2+??,则2+ ??= 2√3 ,得出 ??= 2√3 - 2 ,代入 (2) 的 S 与 t 的函教关系式即可得出结果;(4) 过1点 N 作????⊥????于 Q ,求出 ????= 2 ????= 2 √3 ,????= √3??, ????= ??, ????= 4 -??,由??1?????????,??= ?? + ?? + ??1?????????+ 1(????+ ????)?= =2△ ?????? 2△ ?????? △ ?????? 梯形 ????????△ ?????? 21????+ 2 ?????????,代入即可得出结果.本题是四边形综合题,主要考查了角平分线的性质、全等三角形的判定与性质、勾股定理、等腰直角三角形的判定与性质、三角函数、三角形面积的计算、梯形面积的计算等知识;熟练掌握三角函数定义与三角形面积的计算是解题的关键.。
山东省青岛市2019-2020学年中考一诊数学试题含解析

山东省青岛市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若a+|a|=0,则()222a a -+等于( ) A .2﹣2a B .2a ﹣2 C .﹣2 D .2 2.平面上直线a 、c 与b 相交(数据如图),当直线c 绕点O 旋转某一角度时与a 平行,则旋转的最小度数是( )A .60°B .50°C .40°D .30°3.下列实数中,为无理数的是( )A .13B .2C .﹣5D .0.31564.函数y =ax+b 与y =bx+a 的图象在同一坐标系内的大致位置是( )A .B .C .D .5.下列方程有实数根的是( )A .420x +=B 221x -=-C .x+2x−1=0D .111x x x =-- 6.李老师在编写下面这个题目的答案时,不小心打乱了解答过程的顺序,你能帮他调整过来吗?证明步骤正确的顺序是( )已知:如图,在ABC V 中,点D ,E ,F 分别在边AB ,AC ,BC 上,且DE //BC ,DF//AC , 求证:ADE V ∽DBF V .证明:①又DF//AC Q ,DE //BC Q ②,A BDF ∠∠∴=③,ADE B ∠∠∴=④,ADE ∴V ∽DBF V .A .③②④①B .②④①③C .③①④②D .②③④①7.在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是( )A .众数是90B .中位数是90C .平均数是90D .极差是158.下列图形中,属于中心对称图形的是( )A .B .C .D .9.若关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 的值是( )A .1B .-1C .1或-1D .1210.如图,△ABC 中,∠ACB=90°,∠A=30°,AB=1.点P 是斜边AB 上一点.过点P 作PQ ⊥AB ,垂足为P ,交边AC (或边CB )于点Q ,设AP=x ,△APQ 的面积为y ,则y 与x 之间的函数图象大致为( )A .B .C .D .11.如果y =2x -+2x -+3,那么y x 的算术平方根是( )A .2B .3C .9D .±3 12.如图,已知11(,)3A y ,2(3,)B y 为反比例函数1y x=图象上的两点,动点(,0)P x 在x 轴正半轴上运动,当线段AP 与线段BP 之差达到最大时,点P 的坐标是( )A .1(,0)3B .4(,0)3C .8(,0)3D .10(,0)3二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.分解因式:24xy x -=____14.将2.05×10﹣3用小数表示为__.15.若x ,y 为实数,y =22441x x -+-+,则4y ﹣3x 的平方根是____. 16.分解因式:2363m m -+=__________.17.如图,正方形ABCD 的边长为2,分别以A 、D 为圆心,2为半径画弧BD 、AC ,则图中阴影部分的面积为_____.18.如图,点E 是正方形ABCD 的边CD 上一点,以A 为圆心,AB 为半径的弧与BE 交于点F ,则∠EFD =_____°.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,矩形ABCD 绕点C 顺时针旋转90°后得到矩形CEFG ,连接DG 交EF 于H ,连接AF交DG于M;(1)求证:AM=FM;(2)若∠AMD=a.求证:DGAF=cosα.20.(6分)如图所示,在平面直角坐标系xOy中,正方形OABC的边长为2cm,点A、C分别在y轴的负半轴和x轴的正半轴上,抛物线y=ax2+bx+c经过点A、B和D(4,).(1)求抛物线的表达式.(2)如果点P由点A出发沿AB边以2cm/s的速度向点B运动,同时点Q由点B出发,沿BC边以1cm/s 的速度向点C运动,当其中一点到达终点时,另一点也随之停止运动.设S=PQ2(cm2).①试求出S与运动时间t之间的函数关系式,并写出t的取值范围;②当S取时,在抛物线上是否存在点R,使得以点P、B、Q、R为顶点的四边形是平行四边形?如果存在,求出R点的坐标;如果不存在,请说明理由.(3)在抛物线的对称轴上求点M,使得M到D、A的距离之差最大,求出点M的坐标.21.(6分)如图,在△ABC中,AB=AC,以AB为直径作⊙O交BC于点D,过点D作⊙O的切线DE 交AC于点E,交AB延长线于点F.(1)求证:BD=CD;(2)求证:DC2=CE•AC;(3)当AC=5,BC=6时,求DF的长.22.(8分)某校组织学生去9km外的郊区游玩,一部分学生骑自行车先走,半小时后,其他学生乘公共汽车出发,结果他们同时到达.己知公共汽车的速度是自行车速度的3倍,求自行车的速度和公共汽车的速度分别是多少?23.(8分)求不等式组()7153x3x134x x⎧+≥+⎪⎨-->⎪⎩的整数解.24.(10分)如图,对称轴为直线x=72的抛物线经过点A(6,0)和B(0,4).(1)求抛物线解析式及顶点坐标;(2)设点E(x,y)是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求四边形OEAF的面积S与x之间的函数关系式,并写出自变量x的取值范围;(3)①当四边形OEAF的面积为24时,请判断OEAF是否为菱形?②是否存在点E,使四边形OEAF为正方形?若存在,求出点E的坐标;若不存在,请说明理由.25.(10分)随着地铁和共享单车的发展,“地铁+单车”已经成为很多市民出行的选择.李华从文化宫站出发,先乘坐地铁,准备在离家较近的A,B,C,D,E中的某一站出地铁,再骑共享单车回家.设他出地铁的站点与文化宫距离为x(单位:千米),乘坐地铁的时间1y(单位:分钟)是关于x的一次函数,其关系如下表:地铁站 A B C D EX(千米) 8 9 10 11.5 131y (分钟) 18 20 22 25 28(1)求1y 关于x 的函数表达式;李华骑单车的时间2y (单位:分钟)也受x 的影响,其关系可以用221y x 11x 782=-+来描述.请问:李华应选择在哪一站出地铁,才能使他从文化宫回到家所需的时间最短?并求出最短时间.26.(12分)已知:二次函数C 1:y 1=ax 2+2ax+a ﹣1(a≠0)把二次函数C 1的表达式化成y =a(x ﹣h)2+b(a≠0)的形式,并写出顶点坐标;已知二次函数C 1的图象经过点A(﹣3,1).①求a 的值;②点B 在二次函数C 1的图象上,点A ,B 关于对称轴对称,连接AB .二次函数C 2:y 2=kx 2+kx(k≠0)的图象,与线段AB 只有一个交点,求k 的取值范围.27.(12分)某汽车厂计划半年内每月生产汽车20辆,由于另有任务,每月上班人数不一定相等,实每月生产量与计划量相比情况如下表(增加为正,减少为负)生产量最多的一天比生产量最少的一天多生产多少辆?半年内总生产量是多少?比计划多了还是少了,增加或减少多少?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】直接利用二次根式的性质化简得出答案.【详解】∵a+|a|=0,∴|a|=-a,则a≤0,故原式=2-a-a=2-2a.故选A.【点睛】此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.2.C【解析】【分析】先根据平角的定义求出∠1的度数,再由平行线的性质即可得出结论.【详解】解:∵∠1=180°﹣100°=80°,a∥c,∴∠α=180°﹣80°﹣60°=40°.故选:C.【点睛】本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.3.B【解析】【分析】根据无理数的定义解答即可.【详解】选项A、13是分数,是有理数;选项B2是无理数;选项C、﹣5为有理数;选项D、0.3156是有理数;故选B.【点睛】本题考查了无理数的判定,熟知无理数是无限不循环小数是解决问题的关键.4.B【解析】【分析】根据a 、b 的符号进行判断,两函数图象能共存于同一坐标系的即为正确答案.【详解】分四种情况:①当a >0,b >0时,y=ax+b 的图象经过第一、二、三象限,y=bx+a 的图象经过第一、二、三象限,无选项符合;②当a >0,b <0时,y=ax+b 的图象经过第一、三、四象限;y=bx+a 的图象经过第一、二、四象限,B 选项符合;③当a <0,b >0时,y=ax+b 的图象经过第一、二、四象限;y=bx+a 的图象经过第一、三、四象限,B 选项符合;④当a <0,b <0时,y=ax+b 的图象经过第二、三、四象限;y=bx+a 的图象经过第二、三、四象限,无选项符合.故选B .【点睛】此题考查一次函数的图象,关键是根据一次函数y=kx+b 的图象有四种情况:①当k >0,b >0,函数y=kx+b 的图象经过第一、二、三象限;②当k >0,b <0,函数y=kx+b 的图象经过第一、三、四象限;③当k <0,b >0时,函数y=kx+b 的图象经过第一、二、四象限;④当k <0,b <0时,函数y=kx+b 的图象经过第二、三、四象限.5.C【解析】分析:根据方程解的定义,一一判断即可解决问题;详解:A .∵x 4>0,∴x 4+2=0无解;故本选项不符合题意;B 22x -≥022x -=﹣1无解,故本选项不符合题意;C .∵x 2+2x ﹣1=0,△=8=4=12>0,方程有实数根,故本选项符合题意;D .解分式方程1x x -=11x -,可得x=1,经检验x=1是分式方程的增根,故本选项不符合题意. 故选C .点睛:本题考查了无理方程、根的判别式、高次方程、分式方程等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【分析】根据平行线的性质可得到两组对应角相等,易得解题步骤;【详解】证明:DE //BC Q ②,ADE B ∠∠∴=④,①又DF//AC Q ,A BDF ∠∠∴=③,ADE ∴V ∽DBF V .故选B .【点睛】本题考查了相似三角形的判定与性质;关键是证明三角形相似.7.C【解析】【分析】由统计图中提供的数据,根据众数、中位数、平均数、极差的定义分别列出算式,求出答案:【详解】解:∵90出现了5次,出现的次数最多,∴众数是90;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;∵平均数是(80×1+85×2+90×5+95×2)÷10=89;极差是:95﹣80=1.∴错误的是C .故选C .8.B【解析】【分析】A 、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.【详解】A 、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;B 、将此图形绕中心点旋转180度与原图重合,所以这个图形是中心对称图形;C 、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形;D 、将此图形绕任意点旋转180度都不能与原图重合,所以这个图形不是中心对称图形.本题考查了轴对称与中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.9.B【解析】【分析】根据一元二次方程的解的定义把x=0代入方程()22110a x x a -++-=得到关于a 的一元二次方程,然后解此方程即可【详解】把x=0代入方程()22110a x x a -++-=得210a -=,解得a=±1. ∵原方程是一元二次方程,所以 10a -≠,所以1a ≠,故1a =-故答案为B【点睛】本题考查了一元二次方程的解的定义:使一元二次方程左右两边成立的未知数的值叫一元二次方程的解.10.D【解析】解:当点Q 在AC 上时,∵∠A=30°,AP=x ,∴PQ=xtan30°=,∴y=×AP×PQ=×x×=x 2;当点Q 在BC 上时,如下图所示:∵AP=x ,AB=1,∠A=30°,∴BP=1﹣x ,∠B=60°,∴PQ=BP•tan60°=(1﹣x ),∴ =AP•PQ= = ,∴该函数图象前半部分是抛物线开口向上,后半部分也为抛物线开口向下.故选D .点睛:本题考查动点问题的函数图象,有一定难度,解题关键是注意点Q 在BC 上这种情况. 11.B【解析】解:由题意得:x ﹣2≥0,2﹣x≥0,解得:x=2,∴y=1,则y x =9,9的算术平方根是1.故选B . 12.D【解析】【分析】求出AB 的坐标,设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入求出直线AB 的解析式,根据三角形的三边关系定理得出在△ABP 中,|AP-BP|<AB ,延长AB 交x 轴于P′,当P 在P′点时,PA-PB=AB ,此时线段AP 与线段BP 之差达到最大,求出直线AB 于x 轴的交点坐标即可.【详解】Q 把11(,)3Ay ,2(3,)B y 代入反比例函数1y x = ,得:13y =,213y =, 11(,3),(3,)33A B ∴, Q 在ABP ∆中,由三角形的三边关系定理得:AP BP AB -<,∴延长AB 交x 轴于P',当P 在P'点时,PA PB AB -=,即此时线段AP 与线段BP 之差达到最大,设直线AB 的解析式是y kx b =+,把A ,B 的坐标代入得:133133k b k b ⎧=+⎪⎪⎨⎪=+⎪⎩, 解得:101,3k b =-=, 1215x ->∴直线AB 的解析式是103y x =-+, 当0y =时,103x =,即10(,0)3P , 故选D.【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P 点的位置,题目比较好,但有一定的难度.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.x(y+2)(y-2)【解析】【分析】原式提取x ,再利用平方差公式分解即可.【详解】原式=x (y 2-4)=x (y+2)(y-2),故答案为x (y+2)(y-2).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.14.0.1【解析】试题解析:原式=2.05×10-3=0.1. 【点睛】本题考查了科学记数法-原数,用科学记数法表示的数还原成原数时,n >0时,n 是几,小数点就向右移几位;n <0时,n 是几,小数点就向左移几位.15.【解析】同时成立,∴224040x x ⎧-≥⎨-≥⎩ 故只有x 2﹣4=0,即x=±2, 又∵x ﹣2≠0,∴x=﹣2,y=12x -=﹣14, 4y ﹣3x=﹣1﹣(﹣6)=5,∴4y ﹣3x 的平方根是故答案:16.3(m-1)2【解析】试题分析:根据因式分解的方法,先提公因式,再根据完全平方公式分解因式即可,即3m 2-6m+3=3(m 2-2m+1)=3(m-1)2.故答案为:3(m-1)2点睛:因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解).17.23π 【解析】【分析】过点F作FE⊥AD于点E,则AE=12AD=12AF,故∠AFE=∠BAF=30°,再根据勾股定理求出EF的长,由S弓形AF=S扇形ADF-S△ADF可得出其面积,再根据S阴影=2(S扇形BAF-S弓形AF)即可得出结论【详解】如图所示,过点F作FE⊥AD于点E,∵正方形ABCD的边长为2,∴AE=12AD=12AF=1,∴∠AFE=∠BAF=30°,∴EF=3.∴S弓形AF=S扇形ADF-S△ADF=60412233 36023ππ⨯-⨯⨯=-,∴ S阴影=2(S扇形BAF-S弓形AF)=2×[304233603ππ⨯⎛⎫--⎪⎝⎭]=2×(12333ππ-+)=2233π-.【点睛】本题考查了扇形的面积公式和长方形性质的应用,关键是根据图形的对称性分析,主要考查学生的计算能力.18.45【解析】【分析】由四边形ABCD为正方形及半径相等得到AB=AF=AD,∠ABD=∠ADB=45°,利用等边对等角得到两对角相等,由四边形ABFD的内角和为360度,得到四个角之和为270,利用等量代换得到∠ABF+∠ADF=135°,进而确定出∠1+∠2=45°,由∠EFD为三角形DEF的外角,利用外角性质即可求出∠EFD 的度数.【详解】∵正方形ABCD,AF,AB,AD为圆A半径,∴AB=AF=AD,∠ABD=∠ADB=45°,∴∠ABF=∠AFB,∠AFD=∠ADF,∵四边形ABFD内角和为360°,∠BAD=90°,∴∠ABF+∠AFB+∠AFD+∠ADF=270°,∴∠ABF+∠ADF=135°,∵∠ABD=∠ADB=45°,即∠ABD+∠ADB=90°,∴∠1+∠2=135°−90°=45°,∵∠EFD为△DEF的外角,∴∠EFD=∠1+∠2=45°.故答案为45【点睛】此题考查了切线的性质,四边形的内角和,等腰三角形的性质,以及正方形的性质,熟练掌握性质是解本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)见解析;(2)见解析.【解析】【分析】(1)由旋转性质可知:AD=FG,DC=CG,可得∠CGD=45°,可求∠FGH=∠FHG=45°,则HF=FG=AD,所以可证△ADM≌△MHF,结论可得.(2)作FN⊥DG垂足为N,且MF=FG,可得HN=GN,且DM=MH,可证2MN=DG,由第一问可得2MF=AF,由cosα=cos∠FMG=MNMF,代入可证结论成立【详解】(1)由旋转性质可知:CD=CG且∠DCG=90°,∴∠DGC=45°从而∠DGF=45°,∵∠EFG=90°,∴HF=FG=AD又由旋转可知,AD∥EF,∴∠DAM=∠HFM,又∵∠DMA=∠HMF,∴△ADM≌△FHM∴AM=FM(2)作FN⊥DG垂足为N∵△ADM≌△MFH∴DM=MH,AM=MF=12AF∵FH=FG,FN⊥HG∴HN=NG∵DG=DM+HM+HN+NG=2(MH+HN)∴MN=12DG∵cos∠FMG=MN MF∴cos∠AMD=2=2MN DG MF AF∴DGAF=cosα【点睛】本题考查旋转的性质,矩形的性质,全等三角形的判定,三角函数,关键是构造直角三角形.20.(1)抛物线的解析式为:;(2)①S与运动时间t之间的函数关系式是S=5t2﹣8t+4,t的取值范围是0≤t≤1;②存在.R点的坐标是(3,﹣);(3)M的坐标为(1,﹣).【解析】试题分析:(1)设抛物线的解析式是y=ax2+bx+c,求出A、B、D的坐标代入即可;(2)①由勾股定理即可求出;②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形,求出P、Q的坐标,再分为两种种情况:A、B、C即可根据平行四边形的性质求出R的坐标;(3)A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M,求出直线BD的解析式,把抛物线的对称轴x=1代入即可求出M的坐标.试题解析:(1)设抛物线的解析式是y=ax2+bx+c,∵正方形的边长2,∴B的坐标(2,﹣2)A点的坐标是(0,﹣2),把A(0,﹣2),B(2,﹣2),D(4,﹣)代入得:,解得a=,b=﹣,c=﹣2,∴抛物线的解析式为:,答:抛物线的解析式为:;(2)①由图象知:PB=2﹣2t,BQ=t,∴S=PQ2=PB2+BQ2,=(2﹣2t)2+t2,即S=5t2﹣8t+4(0≤t≤1).答:S与运动时间t之间的函数关系式是S=5t2﹣8t+4,t的取值范围是0≤t≤1;②假设存在点R,可构成以P、B、R、Q为顶点的平行四边形.∵S=5t2﹣8t+4(0≤t≤1),∴当S=时,5t2﹣8t+4=,得20t2﹣32t+11=0,解得t=,t=(不合题意,舍去),此时点P的坐标为(1,﹣2),Q点的坐标为(2,﹣),若R点存在,分情况讨论:(i)假设R在BQ的右边,如图所示,这时QR=PB,RQ∥PB,则R的横坐标为3,R的纵坐标为﹣,即R(3,﹣),代入,左右两边相等,∴这时存在R(3,﹣)满足题意;(ii)假设R在QB的左边时,这时PR=QB,PR∥QB,则R(1,﹣)代入,,左右不相等,∴R不在抛物线上.(1分)综上所述,存点一点R(3,﹣)满足题意.答:存在,R点的坐标是(3,﹣);(3)如图,M′B=M′A,∵A关于抛物线的对称轴的对称点为B,过B、D的直线与抛物线的对称轴的交点为所求M, 理由是:∵MA=MB,若M不为L与DB的交点,则三点B、M、D构成三角形,∴|MB|﹣|MD|<|DB|,即M到D、A的距离之差为|DB|时,差值最大,设直线BD的解析式是y=kx+b,把B、D的坐标代入得:,解得:k=,b=﹣,∴y=x﹣,抛物线的对称轴是x=1,把x=1代入得:y=﹣∴M的坐标为(1,﹣);答:M的坐标为(1,﹣).考点:二次函数综合题.21.(1)详见解析;(2)详见解析;(3)DF=607.【解析】【分析】(1)先判断出AD⊥BC,即可得出结论;(2)先判断出OD∥AC,进而判断出∠CED=∠ODE,判断出△CDE∽△CAD,即可得出结论;(3)先求出OD,再求出CD=3,进而求出CE,AE,DE,再判断出DF ODEF AE=,即可得出结论.【详解】(1)连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD;(2)连接OD,∵DE是⊙O的切线,∴∠ODE=90°,由(1)知,BD=CD,∵OA=OB,∴OD∥AC,∴∠CED=∠ODE=90°=∠ADC,∵∠C=∠C,∴△CDE∽△CAD,∴CD CE AC CD=,∴CD2=CE•AC;(3)∵AB=AC=5,由(1)知,∠ADB=90°,OA=OB,∴OD=12AB=52,由(1)知,CD=12BC=3,由(2)知,CD2=CE•AC,∵AC=5,∴CE=295 CDAC=,∴AE=AC-CE=5-95=165,在Rt△CDE中,根据勾股定理得,12 5 =,由(2)知,OD∥AC,∴DF OD EF AE=,∴52121655 DFDF+=,∴DF=607.【点睛】此题是圆的综合题,主要考查了圆的性质,等腰三角形的性质,相似三角形的判断和性质,勾股定理,判断出△CDE∽△CAD是解本题的关键.22.自行车的速度是12km/h,公共汽车的速度是1km/h.【解析】【分析】设自行车的速度为xkm/h,则公共汽车的速度为3xkm/h,根据题意得:99132x x-=,解分式方程即可.【详解】解:设自行车的速度为xkm/h,则公共汽车的速度为3xkm/h,根据题意得:99132x x-=,解得:x=12,经检验,x=12是原分式方程的解,∴3x=1.答:自行车的速度是12km/h,公共汽车的速度是1km/h.【点睛】本题考核知识点:列分式方程解应用题.解题关键点:找出相等关系,列出方程. 23.-1,-1,0,1,1【解析】分析:先求出不等式组的解集,然后求出整数解.详解:()715331?34x x x x ⎧+≥+⎪⎨-->⎪⎩①②, 由不等式①,得:x≥﹣1,由不等式②,得:x <3,故原不等式组的解集是﹣1≤x <3, ∴不等式组71533134x x x x +≥+⎧⎪-⎨-⎪⎩()>的整数解是:﹣1、﹣1、0、1、1. 点睛:本题考查了解一元一次不等式的整数解,解答本题的关键是明确解一元一次不等式组的方法. 24.(1)抛物线解析式为22725()326y x =--,顶点为;(2)274()252S x =--+,1<x <1;(3)①四边形OEAF 是菱形;②不存在,理由见解析【解析】【分析】(1)已知了抛物线的对称轴解析式,可用顶点式二次函数通式来设抛物线,然后将A 、B 两点坐标代入求解即可.(2)平行四边形的面积为三角形OEA 面积的2倍,因此可根据E 点的横坐标,用抛物线的解析式求出E 点的纵坐标,那么E 点纵坐标的绝对值即为△OAE 的高,由此可根据三角形的面积公式得出△AOE 的面积与x 的函数关系式进而可得出S 与x 的函数关系式.(3)①将S=24代入S ,x 的函数关系式中求出x 的值,即可得出E 点的坐标和OE ,OA 的长;如果平行四边形OEAF 是菱形,则需满足平行四边形相邻两边的长相等,据此可判断出四边形OEAF 是否为菱形.②如果四边形OEAF 是正方形,那么三角形OEA 应该是等腰直角三角形,即E 点的坐标为(3,﹣3)将其代入抛物线的解析式中即可判断出是否存在符合条件的E 点.【详解】(1)由抛物线的对称轴是72x =,可设解析式为27()2y a x k =-+. 把A 、B 两点坐标代入上式,得227(6)0,2{7(0) 4.2a k a k -+=-+=解之,得225,.36a k ==- 故抛物线解析式为22725()326y x =--,顶点为725(,).26- (2)∵点(,)E x y 在抛物线上,位于第四象限,且坐标适合22725()326y x =--, ∴y<0,即-y>0,-y 表示点E 到OA 的距离.∵OA 是OEAF Y 的对角线, ∴2172264()2522OAE S S OA y y x ==⨯⨯⋅=-=--+V . 因为抛物线与x 轴的两个交点是(1,0)的(1,0),所以,自变量x 的取值范围是1<x <1.(3)①根据题意,当S = 24时,即274()25242x --+=. 化简,得271().24x -=解之,得123, 4.x x == 故所求的点E 有两个,分别为E 1(3,-4),E 2(4,-4).点E 1(3,-4)满足OE = AE ,所以OEAF Y 是菱形;点E 2(4,-4)不满足OE = AE ,所以OEAF Y 不是菱形.②当OA ⊥EF ,且OA = EF 时,OEAF Y 是正方形,此时点E 的坐标只能是(3,-3).而坐标为(3,-3)的点不在抛物线上,故不存在这样的点E ,使OEAF Y 为正方形.25. (1) y 1=2x +2;(2) 选择在B 站出地铁,最短时间为39.5分钟.【解析】【分析】(1)根据表格中的数据,运用待定系数法,即可求得y1关于x 的函数表达式;(2)设李华从文化宫回到家所需的时间为y ,则y=y 1+y 2=12x 2-9x+80,根据二次函数的性质,即可得出最短时间. 【详解】(1)设y 1=kx+b,将(8,18),(9,20),代入 y 1=kx+b,得:818,920.k b k b +=⎧⎨+=⎩解得2,2.k b =⎧⎨=⎩所以y 1关于x 的函数解析式为y 1=2x+2.(2)设李华从文化宫回到家所需的时间为y,则y=y 1+y 2=2x+2+12x 2-11x+78=12x 2-9x+80=12(x-9)2+39.5. 所以当x=9时,y 取得最小值,最小值为39.5,答:李华应选择在B 站出地铁,才能使他从文化宫回到家所需的时间最短,最短时间为39.5分钟.本题主要考查了二次函数的应用,解此类题的关键是通过题意,确定出二次函数的解析式,然后确定其最大值最小值,在求二次函数的最值时,一定要注意自变量x的取值范围.26.(1)y1=a(x+1)2﹣1,顶点为(﹣1,﹣1);(2)①12;②k的取值范围是16≤k≤12或k=﹣1.【解析】【分析】(1)化成顶点式即可求得;(2)①把点A(﹣3,1)代入二次函数C1:y1=ax2+2ax+a﹣1即可求得a的值;②根据对称的性质得出B的坐标,然后分两种情况讨论即可求得;【详解】(1)y1=ax2+2ax+a﹣1=a(x+1)2﹣1,∴顶点为(﹣1,﹣1);(2)①∵二次函数C1的图象经过点A(﹣3,1),∴a(﹣3+1)2﹣1=1,∴a=12;②∵A(﹣3,1),对称轴为直线x=﹣1,∴B(1,1),当k>0时,二次函数C2:y2=kx2+kx(k≠0)的图象经过A(﹣3,1)时,1=9k﹣3k,解得k=16,二次函数C2:y2=kx2+kx(k≠0)的图象经过B(1,1)时,1=k+k,解得k=12,∴16≤k≤12,当k<0时,∵二次函数C2:y2=kx2+kx=k(x+12)2﹣14k,∴﹣14k=1,∴k=﹣1,综上,二次函数C2:y2=kx2+kx(k≠0)的图象,与线段AB只有一个交点,k的取值范围是16≤k≤12或k=﹣1.【点睛】本题考查了二次函数和系数的关系,二次函数的最值问题,轴对称的性质等,分类讨论是解题的关键.27.(1)生产量最多的一天比生产量最少的一天多生产9辆;(2)半年内总生产量是121辆.比计划多了1辆.【解析】(1)由表格可知,四月生产最多为:20+4=24;六月最少为:20-5=15,两者相减即可求解;(2)把每月的生产量加起来即可,然后与计划相比较.【详解】(1)+4-(-5)=9(辆)答:生产量最多的一天比生产量最少的一天多生产9辆.(2)20×6+[+3+(-2)+(-1)+(+4)+(+2)+(-5)]=120+(+1)=121(辆),因为121>120 121-120=1(辆)答:半年内总生产量是121辆.比计划多了1辆.【点睛】此题主要考查正负数在实际生活中的应用,所以学生在学这一部分时一定要联系实际,此题主要考查有理数的加减运算法则.。
山东省青岛市2019-2020学年中考数学一模考试卷含解析

山东省青岛市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.为了大力宣传节约用电,某小区随机抽查了10户家庭的月用电量情况,统计如下表,关于这10户家庭的月用电量说法正确的是()月用电量(度)25 30 40 50 60户数 1 2 4 2 1A.极差是3 B.众数是4 C.中位数40 D.平均数是20.52.已知代数式x+2y的值是5,则代数式2x+4y+1的值是()A.6 B.7 C.11 D.123.81的算术平方根是()A.9 B.±9 C.±3 D.34.由若干个相同的小立方体搭成的几何体的三视图如图所示,则搭成这个几何体的小立方体的个数是()A.3 B.4 C.5 D.65.已知18xx-=,则2216xx+-的值是()A.60 B.64 C.66 D.726.若直线y=kx+b图象如图所示,则直线y=−bx+k的图象大致是( )A.B.C.D.7.下列图形中,既是中心对称图形又是轴对称图形的是( ) A.B.C.D.8.下列命题中,真命题是()A.如果第一个圆上的点都在第二个圆的外部,那么这两个圆外离B .如果一个点即在第一个圆上,又在第二个圆上,那么这两个圆外切C .如果一条直线上的点到圆心的距离等于半径长,那么这条直线与这个圆相切D .如果一条直线上的点都在一个圆的外部,那么这条直线与这个圆相离 9.两个有理数的和为零,则这两个数一定是( ) A .都是零B .至少有一个是零C .一个是正数,一个是负数D .互为相反数10.下列运算中,正确的是( ) A .(a 3)2=a 5 B .(﹣x )2÷x=﹣x C .a 3(﹣a )2=﹣a 5D .(﹣2x 2)3=﹣8x 6 11.四张分别画有平行四边形、菱形、等边三角形、圆的卡片,它们的背面都相同。
2020年山东省青岛市数学一模试卷与详细解析

同一坐标系做出曲线 、 的图象:
由图可知,当 点为 与 轴的交点 , 点为双曲线的下顶点 时, 最小为1.
故选: .
【点睛】
本题考查了双曲线方程的求法和三角函数的图象变换.同时考查了利用数形结合解决问题的能力.属于中档题.
8.A
【解析】
【分析】
利用 次独立重复试验中事件 恰好发生 次概率计算公式能求出该参赛者答完三道题后至少答对两道题的概率.
A. B. C. D.
7.在同一直角坐标系下,已知双曲线 的离心率为 ,双曲线 的一个焦点到一条渐近线的距离为2,函数 的图象向右平移 单位后得到曲线 ,点 , 分别在双曲线 的下支和曲线 上,则线段 长度的最小值为()
A.2B. C. D.1
8.某单位举行诗词大会比赛,给每位参赛者设计了“保留题型”、“升级题型”、“创新题型”三类题型,每类题型均指定一道题让参赛者回答.已知某位参赛者答对每道题的概率均为 ,且各次答对与否相互独立,则该参赛者答完三道题后至少答对两道题的概率()
18.在 中, , , 分别为内角 , , 的对边, .
(1)求角 ;
(2)若 , 为 中点,在下列两个条件中任选一个,求 的长度.
条件①: 的面积 且 ;
条件②: .
19.在如图所示的四棱锥 中,四边形 为平行四边形, 为边长为2的等边三角形, ,点 , 分别为 , 的中点, 是异面直线 和 的公垂线.
【详解】
解:某单位举行诗词大会比赛,给每位参赛者设计了“保留题型”、“升级题型”、“创新题型”三类题型,
每类题型均指定一道题让参赛者回答.某位参赛者答对每道题的概率均为 ,且各次答对与否相互独立,
则该参赛者答完三道题后至少答对两道题的概率:
.
2020年青岛市数学中考第一次模拟试题及答案

18.如图,在平行四边形 ABCD 中,连接 BD,且 BD=CD,过点 A 作 AM⊥BD 于点
M,过点 D 作 DN⊥AB 于点 N,且 DN= 3 2 ,在 DB 的延长线上取一点 P,满足∠ABD
=∠MAP+∠PAB,则 AP=_____.
19.如图,在矩形 ABCD 中,AB=3,AD=5,点 E 在 DC 上,将矩形 ABCD 沿 AE 折叠,点 D
25.已知抛物线 y=ax2﹣ 1 x+c 经过 A(﹣2,0),B(0,2)两点,动点 P,Q 同时从原点出发 3
均以 1 个单位/秒的速度运动,动点 P 沿 x 轴正方向运动,动点 Q 沿 y 轴正方向运动,连接 PQ,设运动时间为 t 秒 (1)求抛物线的解析式;
(2)当 BQ= 1 AP 时,求 t 的值; 3
为相反数,可直接求解.
9.A
解析:A 【解析】
考点:1、矩形的性质;2、全等三角形的判定与性质;3、角平分线的性质;4、等腰三角 形的判定与性质
7.B
解析:B 【解析】
【分析】
由题意可知 A= 1 (1 1 ) ,再将括号中两项通分并利用同分母分式的减法法则计算, x 1 x 1
再用分式的乘法法则计算即可得到结果.
【详解】
解:A=
1 1 x 1
由上述①、②、③可得 CD=BE、DF=EH=CE,CF=CD-DF, ∴BC-CF=(CD+HE)-(CD-HE)=2HE,所以④正确; ∵AB=AH,∠BAE=45°, ∴△ABH 不是等边三角形, ∴AB≠BH, ∴即 AB≠HF,故⑤错误; 综上所述,结论正确的是①②③④共 4 个. 故选 C. 【点睛】
∴延长 AB 交 x 轴于 P′,当 P 在 P′点时,PA-PB=AB,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年山东省青岛市李沧区中考数学一模试卷
一、选择题(本大题共8小题,共24.0分)
1.−2的绝对值是
A. −2
B. 2
C. ±2
D. −1
2
2.下列图案属于轴对称图案的是()
A. B. C. D.
3.据报道,2019年参加全国硕士研究生考试的人数约有260万人.其中,“260万”用科学记数
法可表示为()
A. 26×108
B. 2.6×106
C. 0.26×108
D. 260×104
4.下列运算,正确的是()
A. 2x+3y=5xy
B. (x−3)2=x2−9
C. (xy2)2=x2y4
D. x6÷x3=x2
5.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为BD⏜的中点,
若∠DAB=50°,则∠ABC的大小是()
A. 55°
B. 60°
C. 65°
D. 70°
6.如图,A,B的坐标分别为(0,1),(3,0),若将线段AB平移至A1B1,则a+b的值为()
A. 4
B. 5
C. 6
D. 7
7.如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,
使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长
为()
A. 6cm
B. 4cm
C. 2cm
D. 1cm
8.在同一坐标中,一次函数y=−kx+2与二次函数y=x2+k的图象可能是()
A. B.
C. D.
二、填空题(本大题共6小题,共18.0分)
9.计算√3
的结果是______.
√3+√12
10.如果某市6月份日平均气温统计如图所示,那么在日平均气温这组数据中,中位数是______.
11.清明节期间,小明和小新约好同时出发到中山公园踏青,小明家、小新家到中山公园的距离分
别是4千米和10千米,小明步行前往,小新则骑免费单车,已知小新骑车的速度是小明步行速度的4倍,结果小新提前15分钟到达.若设小明步行速度为x千米/小时,则根据题意可列方程为______.
12.如图,△ABC是等边三角形,AB=2,分别以A,B,C为圆心,以2为
半径作弧,则图中阴影部分的面积是______.
13.如图,在平行四边形ABCD中,AB=6cm,∠BCD的平分线交AD
于点E,则线段DE的长度是______ cm.
14.如图,都是由边长为1的正方体叠成的立体图形,例如第(1)个图形由1个正方体叠成,第(2)个
图形由4个正方体叠成,第(3)个图形由10个正方体叠成,依次规律,第(6)个图形由______个正方体叠成.
三、解答题(本大题共10小题,共78.0分)
15.已知:如图,∠AOB=90°,点C、D分别在OA、OB上。
(1)用直尺和圆规作图(不写作法,保留作图痕迹):作∠AOB的平分线OP;作线段CD的垂直平
分线EF,分别与CD、OP相交于点E、F,连接CF、DF。
(2)在所画图中,△CDF是什么三角形?试证明你的结论。
16.抛物线y=−x2+(m−1)x+m与y轴交点坐标是(0,3).
(1)求出m的值;
(2)求抛物线与x轴的交点;
(3)当x取什么值时,y<0?
17.某校在七年级、八年级开展了阅读文学名著知识竞赛,该校七、八年级各有学生400人,各随
机抽取20名学生进行了抽样调查,获得了他们知识竞赛成绩(单位:分),并对数据进行整理、描述和分析.下面给出了部分信息.
a.七年级学生知识竞赛成绩的平均数、中位数、众数、优秀率(80分及以上)如下表所示:
年级平均数中位数众数优秀率
七年级84.2777445%
b.八年级学生知识竞赛成绩的扇形统计图如图(数据分为5组,A:50≤x≤59;B:60≤x≤69;
C:70≤x≤79;D:80≤x≤89;E:90≤x≤100)
c.八年级学生知识竞赛成绩在D组的是:8788888889898989
根据以上信息,回答下列问题:
(1)八年级学生知识竞赛成绩的中位数是_________分;
(2)请你估计该校七、八年级所有学生中达到“优秀”的有多少人?
(3)下列结论:①八年级成绩的众数是89分;②八年级成绩的平均数可能为86分;③八年级
成绩的极差可能为50分.其中所有正确结论的序号是__________.
18.如图,A型、B型、C型三张矩形卡片的边长如图所示,将三张矩形卡片分别放入三个信封中,
三个信封的外表完全相同;
(1)从这三个信封中随机抽取1个信封,则抽中A型矩形的概率为______;
(2)先从这三个信封中随机抽取1个信封(不放回),再从余下的两个信封中随机抽取1个信封,
求事件“两次抽中的矩形卡片能拼成(无重叠无缝隙)一个新矩形”发生的概率.(列表法或树状图)
19.在一次数学测验活动中,小明到操场测量旗杆AB的高度.他手拿一支铅笔MN,边观察边移动
(铅笔MN始终与地面垂直).
如示意图,当小明移动到D点时,眼睛C与铅笔、旗杆的顶端M、A共线,同时,眼睛C与它们的底端N、B也恰好共线.此时,测得DB=50m,小明的眼睛C到铅笔的距离为0.65m,铅笔MN的长为0.16m,请你帮助小明计算出旗杆AB的高度(结果精确到0.1m).
20.小明与小红开展读书比赛.小明找出了一本以前已读完84页的古典名著打算继续往下读,小红上
个周末恰好刚买了同一版本的这本名著,不过还没开始读.于是,两人开始了读书比赛.第5天结束时,小明还领先小红24页,此时两人所读到位置的页码之和为424.已知两人各自每天所读页数相同.
(1)小明、小红每人每天各读多少页⋅
(2)已知这本名著有488页,问:从第6天起,小明至少平均每天要比原来多读几页,才能确保
第10天结束时还不被小红超过?(答案取整数)
21.如图,在△ABC中,∠ACB=90°,CD为AB边上的中线,过点C作CE//AB,过点B作BE//CD,
CE、BE相交于点E.求证:四边形BECD为菱形.
22.一名在校大学生利用“互联网+”自主创业,销售一种产品,这种产品的成本价10元/件,已知
销售价不低于成本价,且物价部门规定这种产品的销售价不高于16元/件,市场调查发现,该产品每天的销售量y(件)与销售价x(元/件)之间的函数关系如图所示.
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)求每天的销售利润W(元)与销售价x(元/件)之间的函数关系式,并求出每件销售价为多少元
时,每天的销售利润最大?最大利润是多少?
23.如图,正方形ABCD的边长为√2,点P为对角线BD上一动点,点E在射线BC上,
(1)填空:BD=______;
(2)若BE=t,连结PE、PC,求PE+PC的最小值(用含t的代数式表示);
(3)若点E是直线AP与射线BC的交点,当△PCE为等腰三角形时,求∠PEC的度数.
24.如图,在矩形ABCD中,AB=6cm,AD=8cm,直线EF从点A出发沿AD方向匀速运动,速
度是2cm/s,运动过程中始终保持EF//AC.F交AD于E,交DC于点F;同时,点P从点C出发沿CB方向匀速运动,速度是1cm/s,连接PE、PF,设运动时间t(s)(0<t<4).
(1)当t=1时,求EF长;
(2)求t为何值时,四边形EPCD为矩形;
(3)设△PEF的面积为S(cm2),求出面积S关于时间t的表达式,并求出S的最大值;
(4)在运动过程中,是否存在某一时刻使S△PCF:S矩形ABCD=3:16?若存在,求出t的值;若不存在,请说明理由.
-------- 答案与解析 --------
1.答案:B
解析:
【分析】
本题考查了绝对值的概念.一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.
【解答】
解:|−2|=2.
故选B.
2.答案:A
解析:解:A、是轴对称图形,故此选项正确;
B、不是轴对称图形,故此选项错误;
C、不是轴对称图形,故此选项错误;
D、不是轴对称图形,故此选项错误;
故选:A.
根据轴对称图形的概念求解.
此题主要考查了轴对称图形,关键是正确确定对称轴位置.
3.答案:B
解析:解:“260万”用科学记数法可表示为2.6×106,
故选:B.
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于等于10时,n是正数;当原数的绝对值小于1时,n是负数.
此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.
4.答案:C
解析:。