四年级奥数乘法原理
小学四年级奥数题精选乘法原理章节2

小学四年级奥数题:乘法原理一:何为乘法原理(路线问题分析:树状图)二:乘法原理的相关经典题型1、 如下图由火柴组成的一个图形,一只蚂蚁由A 点顺着火柴走到B 点,一支火柴只能经过一次,问一共有几种走法?2、 课桌上有两个盒子,第一个盒子里装着标有1、2、3、4、5、6的6个同样大小的球,第二个盒子里装着7、8、9、0的4个同样大小的球,现分别从第一个盒子和第二个盒子分别抓出一个球;问题一:若第一个盒子里面的球放在十位上,第二个盒子的球放在个位上,共有几个数字?问题二:若第二个盒子里面的球放在十位上,第一个盒子里面的球放在个位上,共有几个数字?3、 好老师培训中心近期将举办一场户外比赛,共有跳绳、跳远、打乒乓球和游泳4个项目,学校的小花同学、小红同学和张三同学三位同学准备报名参加,若每个项目不限制人数,则报名结果有几种情况?4、 由数字0、1、2、3组成三位数,则:可组成多少个不相等的三位数?可组成多少没有重复数字的三位数?5、 由数字1、2、3、4、5、6、7可以组成多少个没有重复数字的四位奇数?可以组成多少个没有重复数字的四位偶数?6、 用1元、2元和5元的3种面值的纸币(每张纸币没有限制张数)组成10元钱,有多少种方法?AB四年级奥数题:速算与巧算(一)1.【试题】计算9+99+999+9999+999992【试题】计算199999+19999+1999+199+193【试题】计算(2+4+6+…+996+998+1000)--(1+3+5+…+995+997+999) 4【试题】计算9999×2222+3333×33345.【试题】56×3+56×27+56×96-56×57+566.【试题】计算98766×98768-98765×98769四年级奥数题:年龄问题1、父亲45岁,儿子23岁。
问几年前父亲年龄是儿子的2倍?2、李老师的年龄比刘红的2倍多8岁,李老师10年前的年龄和王刚8年后的年龄相等。
四年级下册数学讲义奥数导引 21 加法原理与乘法原理

一、 基本原理1、加法原理:如果完成一件事有k 类方式,每类分别有1n 、2n 、…、k n 种不同方法,那么这件事共有12k N n n n =+++种完成方法.2、乘法原理:如果完成一件事要分为k 个步骤,每个步骤分别有1n 、2n 、…、k n 种不同方法,那么这件事共有12k N n n n =⨯⨯⨯种完成方法.二、 判断方法分类用加法,分步用乘法是基本原则,但难点是如何判定问题属于分类还是分步. 类与类之间满足:只选一类即可完成整件事,且不能同时选多类;步与步之间满足:每步只是整件事的一个步骤,只选一步无法完成整件事,必须全部完成,且步与步之间通常有先后顺序.若光做A 之后整件事情就已经全部完成了,那么A 就是一类做法,应用加法原理;若做完A 后整件事情并没有完成,那么A 就只是整件事的其中一步,应用乘法原理.三、 其它说明(1)枚举法和加乘原理是整个计数模块的最基础内容,重要性极强,所有后续讲次的内容全是由它们推导出来的,务必记住相应方法结论并理解其原理.(2)点标数法本质上是加乘原理和倒推法的结合,标数前需把上一步的位置考虑周全. (3)只用加法原理或乘法原理就能解答的通常是中低档题,在用乘法原理前务必检验是否满足“前不影响后”,即前面步骤可以影响下一步的具体方法,但不能影响下一步的方法数.(4)难题通常是加乘混合型,即“类里套步”或“步里套类”,特别是需分很多类的题目.当乘法原理无法解决问题时,一定要分类,切忌“强行使用”乘法原理.当类别过多时,可考虑使用排除法,从反面考虑问题.第9讲 加法原理与乘法原理知识点【例1】爸爸、妈妈带小高去吃西餐.餐厅里有米饭和面条2种主食,烤牛排、烤羊排和烤鸡排3种主菜,奶油蘑菇汤1种汤,以及蛋糕和布丁2种甜点.如果小高想要点1种主食和1种主菜,汤和甜点可点可不点,而且种类不限.请问:小高一共有多少种点菜方法?【例2】如图所示,在一个34的方格表内放入4枚相同的棋子,要求每列至多有1枚棋子,一共有多少种不同的放法?如果放入4枚互不相同的棋子,要求每列至多有1枚棋子,一共有多少种不同的放法?【例3】如下图所示,将图中的八个部分用红、黄、绿、蓝这4种不同的颜色染色,而且相邻的部分不能使用同一种颜色,不相邻的部分可以使用同一种颜色.请问:这幅图共有多少种不同的染色方法?超越篇题目A B C DEFGH【例4】 用4种不同的颜色给下图中的圆圈染色,有线段相连的两个圆圈不能同色,一共有多少种不同的染色方法?【例5】 一只甲虫沿着下图中的方格线从A 爬到B ,每次只能向右爬一格或向上爬一格.图中画着黑点的地方不能通过.请问:这只甲虫可以选择多少条不同的路线?【例6】 王老师家装修新房,需要2个木匠和2个电工.现有木匠3人、电工3人,另有1人既能做木匠也能做电工.要从这7人中挑选出4人完成这项工作,共有多少种不同的选法?ABDCB【例7】 如下图所示,一只小甲虫要从A 点出发沿着线段爬到B 点,不能重复经过任何点.试问:这只甲虫有多少种不同的走法?【例8】 如图所示,国际象棋中的棋子“皇后”从左下角走到右上角,每步只能向右、向上或者向右上移动任意多格,一共有多少种不同的走法?【习题1】元旦前,小芳给她的五位同学做贺卡,将贺卡装入信封时她装错了,五位同学都没收到小芳给自己做的贺卡,收到的是小芳给别人的贺卡.则一共有几种可能出现的情?补充题目【习题2】如图,有一个48的棋盘,现将一枚棋子放在棋盘左下角格子A处,要求每一步只能向棋盘右上或右下走一步(如从C走一步可走到D或E),那么将棋子从A走到棋盘右上角B处共有多少种不同的走法?【习题3】用4种颜色给右图中的9个小圆圈染色,要求有线段相连的两个圆圈的颜色不能相同.那么一共有几种不同的染法?【习题4】甲、乙两人玩抓石子游戏,共有12个石子,甲先乙后轮流抓取.每次可以抓取其中的2个、3个或4个,直到最后抓取完毕为止,那么共有多少种抓取石子的方案?。
四年级奥数培优《乘法原理》

乘法原理一、知识梳理我们在完成一件事时往往要分为多个步骤,每个步骤又有多种方法,当计算一共有多少种完成方法时就要用到乘法原理。
乘法原理:一般地,如果完成一件事需要n个步骤,其中,做第一步有m1种不同的方法,做第二步有m2种不同的方法,…,做第n步有mn种不同的方法,则完成这件事一共有N=m1×m2×…×mn种不同的方法。
乘法原理运用的范围:这件事要分几个彼此互不影响....的独立步骤....来完成,这几步是完成这件任务缺一不可的.....,这样的问题可以使用乘法原理解决.我们可以简记为:“乘法分步,步步相关”。
二、例题精讲例1. 在下图中,一只甲虫要从A点沿着线段爬到B点,要求任何点不得重复经过,问这只甲虫最多各有几种不同走法?例 2. 要从五年级六个班中评选出学习,体育、卫生先进集体各一个,有多少种不同的评选结果(同一个班级只能得到一个先进集体?)例3. 5种不同颜色的笔来写“智康教育”这几个字,相邻的字颜色不同,共有多少种写法?例4. 如下图,A,B,C,D,E五个区域分别用红、黄、蓝、白、黑五种颜色中的某一种染色,要使相邻的区域染不同的颜色,共有多少种不同的染色方法?A B例5. 北京到上海之间一共有6站,车站应该准备多少种不同的车票?(往返车票算不同的两种)三、课堂小测7. 邮递员投递邮件由A村去B村的道路有3条,由B村去C村的道路有2条,那么邮递员从A村经B村去C村,共有多少种不同的走法?8.将四封不同的信投入3个不同的信箱中,有多少种不同的投法。
9. “IMO”是国际数学奥林匹克的缩写,把这3个字母写成三种不同颜色.现在有五种不同颜色的笔,按上述要求能写出多少种不同颜色搭配的“IMO”?10.用四种颜色给右图的五块区域染色,要求每块区域染一种颜色,相邻的区域染不同的颜色.问:共有多少种不同的染色方法?11. 北京到广州之间有10个站,其中有四个站是大站(包括北京、广州),从大站出发的车辆可以配卧铺,那么铁路局要准备多少种不同的卧铺车票。
小学四年级奥数教程-乘法原理

进阶练习题
总结词
强化乘法原理的应用
详细描述
通过较为复杂的乘法原理题目,引导学生运用乘法原理解决实际问题,培养 学生的数学思维和解决问题的能力。
高阶练习题
总结词
拓展思维和提高难度
详细描述
通过一些高难度的乘法原理题目,挑战学生的数学思维和逻辑推理能力,提高学 生对数学的兴趣和自信心。
THANKS
感谢观看
计算方法
将n进行组合,然后将m进行排列,最后计算组合数
利用乘法原理计算概率
概率公式
$P(A) = (n(A) / n(S))$
计算方法
将A事件发生的可能性n(A)与总事件数n(S)相除,得到概率P(A)
04
乘法原理在奥数中的应用
利用乘法原理解决奥数问题
涉及乘法原理的数学问题
这类问题通常涉及到分类和分步计数原理的运用,比如排列组合、概率统计等。
乘法原理的重要性
基础知识
乘法原理是概率论和统计学中的基础知识,是理解和分析数据的重要工具之 一。
实际应用
乘法原理在各个领域都有广泛的应用,如生物学、医学、社会科学、工程技 术和金融等。
乘法原理的应用
数据分析
乘法原理可以用来分析数据, 评估两个或多个因素之间的相 互作用,从而更好地理解数据
的分布和特征。
解决方法
通过将问题分解成多个步骤,每个步骤分别解决,最后再合并得到答案。
利用乘法原理解决复杂组合问题
涉及乘法原理的组合问题
这类问题需要运用到乘法原理和组合数学的知识,比如将一 排物品取出若干个的组合数等。
解决方法
通过运用乘法原理计算组合数的公式来解决,注意要分清是 有序还是无序的组合。
利用乘法原理解决概率问题
小学四年级奥数教程乘法原理

《小学四年级奥数教程乘法原理》2023-10-28contents •乘法原理概述•乘法原理基础•乘法原理进阶•乘法原理的应用•乘法原理的练习题与解析目录01乘法原理概述乘法原理定义乘法原理是关于两个或两个以上整数相乘的原理,即任何整数都可以表示为其他整数的和与倍数的乘积。
乘法原理公式乘法原理的公式为a×b=a×(b+n)−n,其中a、b和n均为整数,且n为任意整数。
什么是乘法原理基础数学知识乘法原理是小学数学中的基础知识,对于理解乘法的本质和解决乘法问题具有重要意义。
数学思维的培养学习乘法原理有助于培养学生的数学思维能力和逻辑推理能力,为后续学习更复杂的数学知识和解决实际问题打下基础。
乘法原理的重要性在古代数学中,乘法原理已经得到广泛应用。
例如,在古埃及和古希腊的数学文献中,都有关于乘法原理的记载和应用。
古代数学中的乘法原理在现代数学中,乘法原理不仅是基础数学知识之一,还在其他数学分支和实际应用领域发挥着重要作用。
现代数学中的乘法原理乘法原理的历史与发展02乘法原理基础如果有一个数 a 和另一个数 b 相乘,那么它们的乘积就是 a × b。
乘法原理定义乘法原理是关于乘法的数学原理,它描述了两个或多个数相乘的结果和如何进行这些乘法运算。
乘法原理公式乘法原理的公式与定义VS乘法结合律将三个数相乘,可以任意组合,它们的乘积不变。
例如:(a × b)× c = a × (b × c)。
乘法交换律交换两个数的位置,它们的乘积不变。
例如:a × b = b × a。
分配律将一个数与另一个数的和相乘,等于分别将这两个数相乘再求和。
例如:a × (b + c) = a × b+ a × c。
乘法原理的运算规则在购物时,如果一个商品的价格是 a 元,购买 b 个,那么总价就是 a × b 元。
四年级奥数详解答案乘法原理

四年级奥数详解答案第九讲乘法原理一、知识概要如果要完成一件任务需要分成几个步骤进行做,第一步有m1种方法,做第二步有m2种方法……,做第n步有m n种方法,即么,按这样的步骤完成这件任务共有N= m1×m2×…×m n种不同的方法。
这就是乘法原理。
乘法原理和加法原理的区别是:加法原理是指完成一件工作的方法有几类,之间不相关系,每类都能独立完成一件工作任务;而乘法原理是指完成一件工作的方法是一类中的几个不同步骤,互相关联,缺一不可,共同才能完成一件工作任务。
二、典型例题精讲1. 从甲地到乙地有两条路可走,从乙地到丙地有三条路可走,试问:从甲地经乙地到丙地共有多少种不同的走法?分析:如图,很明显,这是个乘法原理的题目。
要完成“从甲到丙的行走任务”必须分两步完成。
第一步:甲分别通过乙的三条路线到达丙,故有3种走法。
第二步:甲从第二条路线出发又分别通过乙的三条路线到达丙,故又有3种走法。
这两种走法相类似,共同完成“从甲到丙”的任务。
解:3×2=6(种) 答:共有6种不同的走法。
2. 右图中共有16个方格,要把A、B、C、D四个不同的棋子放在方格里,并使每行、每列只能出现一个棋子,共有多少种不同的放法?分析:(如图二)摆放四个棋子分四步来完成。
第一步放棋子A,A可任意摆放,有16种摆放;第二步摆B,由于A所在的位置那一行,那一列都不能放,故只有9种放法;第三步摆C子,也由A、B所在的那一行,那一到都不能,只有四格可任意放,故有4种放法;第四步,只剩一格放D子,当然只有一种放法。
解:16×9×4×1=576(种) 答:共有576种不同的放法。
3. 有五张卡片,分别写有数字1,2,4,5,8。
现从中取出3张片排在一起,组成一个三位数,如□1□5□2,可以组成个不同的偶数。
分析:分三步取出卡片:1.个位,个位只能放2、4、8;故有3种放法;2.百位,因个位用去1张,所以百位上还有四张可选,故有4种放法;3.十位,因个位和百位共放了两张,所以还有3张可选放,有3种放法。
小学四年级奥数-乘法原理共24页

60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
小学四年级奥数-乘法原理
61、辍学如磨刀之石,不见其损,日 有所亏 。 62、奇文共欣赞,疑义相与析。
63、暧暧远人村,依依墟里烟,狗吠 深巷中 ,鸡鸣 桑树颠 。 64、一生复能几,倏如流电惊。 65、少无适俗韵,性本爱丘山。
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿
小学四年级奥数教程-乘法原理共24页文档

15、机会表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
Thank you
小学四年级奥数教程-乘法原 理
11、战争满足了,或曾经满足过人的 好斗的 本能, 但它同 时还满 足了人 对掠夺 ,破坏 以及残 酷的纪 律和专 制力的 欲望。 ——查·埃利奥 特 12、不应把纪律仅仅看成教育的手段 。纪律 是教育 过程的 结果, 首先是 学生集 体表现 在一切 生活领 域—— 生产、 日常生 活、学 校、文 化等领 域中努 力的结 果。— —马卡 连柯(名 言网)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四年级奥数乘法原理 This manuscript was revised by the office on December 22, 2012
四年级奥数乘法原理
1、三位小朋友每两人通一次电话,一共通了多少次?
2、在一次聚会上,小刚遇见了他的5位朋友,他们彼此握了一次手,他们一共握了多少次手?
3、校运动会上,四年级有5人参加乒乓球单打比赛,每人都要和另外4人比赛一场,一共要比赛多少场
4、小红和她的爸爸,妈妈,弟弟去公园玩,每次选2人进行合影留念,有多少种不同的选法?
5、某旅行社推出"五一"黄金周的旅游景点为:桂林,花果山,周庄,苏州园林,南京中山陵.小红家想选择其中的两个景点游玩,他们家一共有多少种不同的选择方案?
6、有5位同学,如果每两人互赠一件礼物,共需多少件礼物?
7、某小姐有三件裙子,四件上衣,两双鞋子,问总共有几种不同的搭配方法?
8、设一室有五个门,甲分由不同之门进出此室各一次,但不得由同一门进出,则其方法有几种?
9、图书馆中有五本不同的三民主义书和八本不同的数学书,一学生欲选一本书的方法有几种若三民主义和数学各选一本,共有多少种选法?
10、某篮球校队是由二位高一学生,四位高二学生,六位高三学生所组成,现在要从校队中选出三人,每年级各选一人,参加篮球讲习会,问总共有多少种选法?
11、甲班有40位同学,乙班有45位同学, 丙班有50位同学,若各班推选一人筹办文艺展览会,共有几种选派法?
12、用0,1,2,3,4,5,6组成四位数的密码共有几种?
13、用0,1,2,3,4五个数字排成的三位数有几个其中数字相异的三位数有几个?
某人到食堂去买饭,主食有三种,副食有五种,他主食和副食各买一种,共有多少种不同的买法?
14.在小于10000的自然数中,含有数字1的数有多少个?
15.马戏团的小丑有红、黄、蓝三顶帽子和黑、白两双鞋,他每次出场演出都要戴一顶帽子、穿一双鞋。
问:小丑的帽子和鞋共有几种不同搭配?
16.从甲地到乙地有2条路,从乙地到丙地有3条路,从丙地到丁地也有2条路。
问:从甲地经乙、丙两地到丁地,共有多少种不同的走法?
17.用数字0,1,2,3,4,5可以组成多少个三位数(各位上的数字允许重复)
18.求360共有多少个不同的约数。
19.有10块糖,每天至少吃一块,吃完为止。
问:共有多少种不同的吃法?
20.从甲城到乙城有3条不同的道路,从乙城到丙城有4条不同的道路,那么从甲城经乙城到丙城共有多少条不同的道路?
21.变速自行车主动车轴上有48、36、24三种齿数的轮子,后轴飞轮有36、16、12、24四种齿数的轮子,变速车共有多少种不同的速变?
22.一个小组有6名成员,召开一次座谈会,见面后,每两个都要握一次手,一共要握多少次手?
第十四题答案:
解不妨将1至9999的自然数均看作四位数,凡位数不到四位的自然数在前面补0.使之成为四位数.
先求不含数字1的这样的四位数共有几个,即有0,2,3,4,5,6,7,8,9这九个数字所组成的四位数的个数.由于每一位都可有9种写法,所以,根据乘法原理,由这九个数字组成的四位数个数为
9×9×9×9=6561,
其中包括了一个0000,它不是自然数,所以比10000小的不含数字1的自然数的个数是6560,于是,小于10000且含有数字1的自然数共有9999-6560=3439个.
第十八题答案:
分析与解:先将360分解质因数,
360=2×2×2×3×3×5,
所以360的约数的质因数必然在2,3,5之中。
为了确定360的所有不同的约数,我们分三步进行:
第1步确定约数中含有2的个数,可能是0,1,2,3个,即有4种可能;
第2步确定约数中含有3的个数,可能是0,1,2个,即有3种可能;
第3步确定约数中含有5的个数,可能没有,也可能有1个,即有2种可能。
根据乘法原理,360的不同约数共有
4×3×2=24(个)。
第十九题答案:
分析与解:将10块糖排成一排,糖与糖之间共有9个空。
从头开始,如果相邻两块糖是分在两天吃的,那么就在其间画一条线。
下图表示10块糖分在五天吃:第一天吃2块,第二天吃3块,第三天吃1块,第四天吃2块,第五天吃2块。
因为每个空都有加线与不加线两种可能,根据乘法原理,不同的加线方法共有29=512(种)。
因为每一种加线方法对应一种吃糖的方法,所以不同的吃法共有512种。