第12章 联立方程估计与模拟
联立方程模型(计量经济学课件南京农业大学-周曙东)

能够处理内生性问题,提高估计的准确性。
缺点
需要满足一定的假设条件,如误差项与解释变量无关 等。
三阶段最小二乘法
原理
在两阶段最小二乘法的基础上,引入第三个 方程来修正第二阶段的估计偏误。
优点
进一步提高了估计的准确性。
缺点
计算复杂度增加,需要满足更多的假设条件。
PART 04
联立方程模型的检验
REPORTING
研究劳动力市场供需关系,解释工资水平、就业率等
经济现象。
02 考虑劳动力市场的竞争性和供需双方的相互作用。
03
通过联立方程模型,可以分析劳动力市场的动态变化
,为政策制定提供依据。
货币市场模型
01
02
03
研究货币供应和需求之 间的关系,解释利率水 平、货币价值等经济现
象。
考虑货币市场的供求因 素和中央银行的货币政
01
联立方程模型能够综合考虑多个经济变量之间的关系,提供 更全面的经济分析。
02
通过联立方程模型,可以更好地理解经济系统的内在机制和 动态变化。
03
联立方程模型还可以用于预测和政策分析,帮助决策者制定 更加科学和有效的经济政策。
联立方程模型的应用场景
宏观经济分析
联立方程模型可以用于分析宏观 经济变量之间的关系,例如国内 生产总值、通货膨胀率、利率等。
联立方程模型的优势与局限性
• 可以更好地处理经济系统的动态性和非线 性关系。
联立方程模型的优势与局限性
01
模型设定和识别问 题
联立方程模型的设定和识别具有 一定的主观性和难度,容易产生 模型误设和识别错误。
计算复杂性
02
03
数据要求高
计量经济学之联立方程模型

计量经济学之联立方程模型引言联立方程模型(Simultaneous Equation Model,简称SEM)是计量经济学中的一个重要分析工具,用于研究多个经济变量之间的相互关系。
通过建立一组方程,可以理解变量之间的联动效应,并进行预测和政策分析。
本文将介绍联立方程模型的基本概念、建模步骤和常见的估计方法等内容。
基本概念联立方程模型的定义联立方程模型是指由多个方程组成的一种数学模型,用于描述多个经济变量之间的关系。
每个方程都包含一个因变量和若干个解释变量,以及一个误差项。
联立方程模型的核心思想是通过解方程组,得到各个变量的估计值,进而分析它们之间的关系。
基本假设在建立联立方程模型时,需要对变量之间的关系进行假设。
常见的基本假设有:1.线性关系假设:方程中的变量之间的关系是线性的。
2.独立性假设:各个方程中的误差项是独立的,即它们之间不存在相关性。
3.零条件均值假设:解释变量的条件均值为零,即解释变量的期望与误差项无关。
4.同方差假设:各个方程中的误差项方差相等。
建模步骤建立联立方程模型的步骤如下:步骤一:确定变量根据研究主题和数据可获得的变量,确定需要建立模型的变量集合。
步骤二:构建方程根据经济理论和实际问题,构建联立方程模型的方程形式。
每个方程包含一个因变量和若干个解释变量。
步骤三:参数估计通过收集数据,对联立方程模型进行参数估计。
常用的估计方法有最小二乘估计(Ordinary Least Squares,简称OLS)和广义矩估计(Generalized Method of Moments,简称GMM)等。
步骤四:模型诊断对估计得到的模型进行诊断,检验模型的拟合优度、参数显著性和误差项的假设等。
常见的诊断方法有虚拟变量检验、异方差性检验和序列相关性检验等。
步骤五:模型解释与政策分析根据估计得到的模型结果,解释各个变量之间的关系,并进行政策分析。
可以利用模型进行预测和模拟,评估不同政策对经济变量的影响。
联立方程模型估计方法

供给方程 需求方程
Q P
t
1
2t
t
Q P Y
t
1
2t
3t
t
我们可以得到相应的结构式模型和简化式模型:
供给方程 需求方程
q p
t
2t
t
q p y
t
2t
3t
t
q
23
y
2t
2t
y
t t
12 t
1t
2
2
2
2
p
3
y
t
t
y
t t
22 t
2t
2
2
2
2
结构式 简化式
t
1
2t
t
由对应的结构式模型可以导出下面的简化式模型
p t
t
t
2
2
q 2 t
2t
t
2
2
显然由简化式模型无法得到结构式模型参数α2、β2 的估计,因此两个方程都是不可识别的。过市场均衡
点E,根本无法得到确定的供给曲线和需求曲线。
第12章 联立方程模型的估计方法
⑵一个方程含有一个先决变量的模型
已知消费和收入模型
消费方程 收入方程
c y
t
t
t
y c i g
t
t
t
t
其中ct、yt分别表示总消费和国民可支配收入,it、gt 为投资和政府支出,β为边际消费倾向(0<β<1)。
第12章 联立方程模型的估计方法
用OLS法可以得到参数β的估计
ˆ
ct yt
yt (yt
) t
y tt
y2 t
联立方程模型估计

例1:设有如下的农产品供需模型:
供给函数: Qt 0 1 Pt 1t 需求函数: Q P Y
t 0 1 t 2 t
2t
供需均衡量Q与价格P为内生变量,消费个人收入Y 为前定变量。
表 12.1 1970~1991 年美国作物产量指数(Q) 、价格指数(P)与个人消费支出(Y) 单位:1977 年=100,1982 年美元 Q P Y 年份 Q P Y 年份 Q P Y 年份 1970 77 52 3152 1978 102 105 6384 1986 109 107 11843 1971 86 56 3372 1979 113 116 7035 1987 108 106 12568 1972 87 60 3658 1980 101 125 7677 1988 92 126 13448 1973 92 91 4002 1981 117 134 8375 1989 107 134 14241 1974 84 117 4337 1982 117 121 8868 1990 114 127 14996 1975 93 105 4745 1983 88 128 9634 1991 111 130 15384 1976 92 102 5241 1984 111 138 10408 1977 100 100 5772 1985 118 120 11184
Y X Y X
2
1 Y1 X 2 2 Y2 X 2 1 X 1 X 2 X 2 1 Y1 X 3 2 Y2 X 3 1 X 1 X 3 X 3
3
Y X
1
1 Y1 X 1 2 Y2 X 1 1 X 1 X 1 X 1
第十二章 联立方程组:模型、识别与估计

β11 = β 22 = L = β MM = 1 , 用以说明它是每个结构式方程中的因变量系数为 1;x t
的第 1 个元素通常是常数 1,主要用以说明 K 个外生变量中含常数项。 运用经济理论可以在参数矩阵上加上一些约束条件, 从而使整个联立方程组
模型能够被估计。 在讨论联立方程组模型的简约式之前,我们再来看一个联立方程组模型结构 式的特殊情况: 如果结构式方程组中的 Β 是一个上三角矩阵,则模型具有如下形式: y t1 = f 1 ( xt ) + ε t1 y t2 = f 2 ( yt1 , xt ) + ε t 2 … … … … … … … … ..
−1 ′ −1 + ε ′ ′ ′ y′ t = − xt ΓΒ t Β = x t Π + vt
′ ′ y′ , 2, L, T 为联立方程组模型的简约式。 t = x t Π + vt , t = 1
′ −1 。 v′ t = ε tΒ
这里, Π = −ΓΒ −1 ,同时还有
如果完全从矩阵角度描述联立方程组模型的简约式,我们有:
y11 y 21 L y T1 x11 x + 21 L x T1 x12 x22 L xT 2
y12 y 22 L yT 2
L y1M L y 2M L L L y TM
β 11 β 21 L β M1
收入恒等式: Yt = Ct + I t (12.1.5) 其中 C=消费支出、Y=收入、I=投资、t=时间 。 简单的凯恩斯消费模型展示的是其结构式方程 。里面有二个内生变量,即 Ct , Yt 。所以这个经济模型是完备的。 消费行为方程是根据“收入决定说”的理论建立的,即认为当期消费仅由当 期收入决定。投资被认为是一个外生变量。 收入是一个均衡条件。 1.3 小型宏观经济模型 消费行为方程: 投资行为方程: 需求恒等式: Ct = α 0 + α1 y t + α 2C t−1 + ε t1 I t = β 0 + β1rt + β 2 ( y t − y t−1 ) + ε t 2 y t = Ct + I t + G t ( α1 + β 2 ≠ 1) (12.1.6) (12.1.7) (12.1.8)
计量学-联立方程组模型的参数估计

因此第一个结构式方程参数的间接最小二乘估
计,与简约式参数的最小二乘估计的关系为:
βˆ1 Πˆ Γˆ 1
也就是
ˆ11 ˆ12
ˆ1K1
0
0
XX
1
XY
1
ˆ12
ˆ1g1
0
0
9
分别由分块矩阵 和
Y Y1 Y11 Y12
Yi XΠi ui , i 2,, g1
对它们分别作最小二乘估计,得:
Πˆ i XX1XYi , i 2,, g1
因此这些内生变量的估计量为:
Yˆi XΠˆ i XXX1XYi , i 2,, g1
29
它们可以合并为:
Yˆ10 Yˆ 2 Yˆ 3 Yˆ g1
XXX1 X Y2 Y3 Yg1
以简约式的第l个方程为例:
Ylt l1 X1t l 2 X 2t lK X Kt ult
该方程的系数构成行向量 Πl l1,,lK
,它的最小二乘估计量为:
Πˆ l XX1XYl
6
这些参数估计向量可以合并成下列简约式 模型参数的估计量矩阵:
Πˆ
Πˆ 1Πˆ 2 Πˆ g
ˆˆ 1211
X X11 X12
表示 Y 和X 。
X11
X12 X11
ˆ11
X12
ห้องสมุดไป่ตู้
ˆ1K1
0
X11
0
X12 Y1
Y11
1
ˆ12
Y12
ˆ1g1
0
0
10
X11X11
X12X11
ˆ11
X11X12
ˆ1K1
X11Y1
X12X12
计量第12章联立方程模型
VS
假设条件
为了使模型具有可解性和可估计性,需要 设定一些假设条件。这些条件可能包括变 量的线性关系、误差项的独立性、同方差 性等。这些假设条件的选择应根据实际问 题和数据的特征来确定。
参数估计方法
最小二乘法(OLS)
最小二乘法是联立方程模型中最常用的参数估计方法之一。它通过最小化残差平方和来估 计模型的参数。这种方法简单易行,但在存在异方差性、自相关等问题时,可能导致估计 结果不准确。
联立方程模型的估计需要使用复 杂的计算方法和软件,对研究者 的计量经济学知识要求较高。
改进方向探讨
模型识别方法的改进
01
通过引入新的识别方法或改进现有数据收集和处理技术的提升
02 利用现代数据收集和处理技术,提高数据的质量和可
获得性,从而扩大联立方程模型的应用范围。
递归模型
模型中某些变量可以由其他变量唯一确定。
非递归模型
模型中所有变量相互依赖,无法由其他变量 唯一确定。
建模目的与意义
分析经济政策变化对经济系统的 影响。
描述经济系统中多个变量之间的 相互关系。
目的
01
03 02
建模目的与意义
• 预测经济变量的未来走势。
建模目的与意义
01
意义
02
提供了一种全面、系统的分析方法,有助于深入了解经济系统的运行 规律。
计量第12章联立方程模型
目录
• 联立方程模型概述 • 联立方程模型的构建 • 联立方程模型的识别与估计 • 联立方程模型的应用举例 • 联立方程模型与其他模型的关系 • 联立方程模型的优缺点及改进方向
01
联立方程模型概述
定义与特点
定义
联立方程模型(Simultaneous Equation Models)是一组 相互依赖的线性方程,用于描述经济系统中多个变量之间的 相互关系。
联立方程估计与模拟
5
KleinⅠ模型框图
政府工资 WG 政府支出 G
消费
CS
收入
Y
投资
I
私人工资
WP
企业利润
P
资本存量
K
间接税收 T
注:方框内是行为方程内生变量,椭圆内是恒等方程内生变量,
粗体是外生变量。
6
前3个方程称为行为方程,后面的3个方程称为恒等方程。
这是一个简单描述宏观经济的联立方程模型。式(12.1.2) 中的前3个行为方程构成联立方程系统:
生变量的已知方程组称为“模型”(model) ,给定了联立方程 模型中外生变量的信息就可以使用联立方程模型对内生变量进
行模拟、评价和预测。
一般的联立方程系统形式是
f yt , z t , Δ ut
t =1, 2, , T (12.1.1)
其中:yt 是内生变量向量,zt 是外生变量向量,ut 是一个可能 存在序列相关的扰动项向量,T 表示样本容量。估计的任务是
(均衡需求)
(企业利润)
(资本存量) (12.1.2) 此模型包含3个行为方程,1个定义方程,2个会计方程。式中变量: 6个内生变量: 4个外生变量: Y:收入(GDP中除去净出口); G:政府非工资支出; CS:消费; Wg :政府工资; I:私人国内总投资; T:间接税收; Wp :私人工资; Trend:时间趋势; P:企业利润; K:资本存量
18
式(12.2.1)可以简单地表示为
Y XΔ u
其中:设 m k i , δ1 Δ
i 1 k
(12.2.2)
δk 是m维向量。 δ2
联立方程系统残差的分块协方差矩阵的 kT×kT 方阵 V 大体有如下 4 种形式。本章的估计方法都是在这些情形的基 础上进行讨论的。
联立方程模型的估计课件
详细描述
该模型假设货币供应和需求之间存在某种关 系,例如货币供应和需求都受到其他因素的 影响。通过联立方程模型,我们可以估计这 些关系,并进一步了解通货膨胀和货币价值 的变化对经济的影响。
案例四:经济增长模型
总结词
该模型通过经济增长的驱动因素,探讨了如何促进经济的长期稳定增长。
详细描述
该模型假设经济增长受到多种因素的影响,例如技术进步、投资、劳动力等。通过联立方程模型,我 们可以估计这些因素对经济增长的影响,并进一步了解如何促进经济的长期稳定增长。
的差异,评估模型的预测能力和解释能力。 根据评估结果,可以对模型进行修正和改进,
以提高模型的精度和可靠性。
联立方程模型估计的注意事项与挑战
内生性问题
总结词
内生性问题是指模型中的一个或多个解释变量与误差项相关,导致估计结果偏误。
详细描述
内生性问题的出现通常是由于解释变量与误差项相关,这会导致OLS估计量不一致。为 了解决内生性问题,可以采用工具变量法(IV)进行估计。
04
随着人工智能和机器学习技术的发展,未来联立方程模型的估计方法 将更加智能化和自动化。
THANKS
感谢观看
联立方程模型估计的步骤与流程
数据收集与整理
数据准备
在进行联立方程模型估计之前,需要收集相关的数据并进行整理。数据来源可以是调查、统计或其他 途径,需要确保数据的准确性和完整性。数据整理包括数据清洗、缺失值处理、异常值检测等步骤, 以确保数据质量。
模型设定与识别
模型构建
根据研究目的和问题背景,选择合适的联立方程模型进行设定。模型设定需要考虑变量之间的关系、因果关系等因素,并确 定模型的形式和结构。在模型设定后,需要进行识别,确定模型中变量的内生性和外生性,为后续的参数估计提供基础。
联立方程模型的估计
,
23
14 22 22 12
, 24
12 23 22 12
v1
u1 u2
22 12
,
v2
22u1 22
12u2 12
联立方程模型的识别
例题5.5:过度识别的模型
在本例中,有7个待估结构系数,却有8个简化系数, 无法确定唯一的结构系数
ቤተ መጻሕፍቲ ባይዱ
联立方程模型的识别
例题5.6:不可识别
Q D
Q
t
S
t
Q
D
t
11 21
QS t
12 Pt 22 Pt
Q
u1t u2t
P Q
11 21
v1 v2
11
11 22
21 12
, 21
2211 22
cov( Y t , u t ) E {[ Y t E ( Y t )][ u t E ( u t )]}
1
1 1
E(
u
2 t
)
1
1 1
2
0
联立性偏误
联立性偏误:OLS估计量的有偏性
1
(
Ct
C )(Yt Y (Yt Y )2
)
i
程中内生
变量的个
数
ki:该方程中前定变量的个数
K:模型中前定变量的个数
若K ki mi 1,方程不可识别 若K ki mi 1,方程恰可识别 若K ki mi 1,方程过度识别
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中的前3个行为方程构成联立方程系统:
CS t 0 1 Pt 2 Pt 1 3 (Wt p Wt g ) u1t (消 费) ( 投 资) I t 0 1 Pt 2 Pt 1 3 K t 1 u2t p (私 人 工 资 ) Wt 0 1Yt 2Yt 1 3 At u3t
0 δ1 u1 0 δ2 u2 δ u Xk k k
(12.2.1)
其中:yi 表示第 i 个方程的 T 维因变量向量,T 是样本观测值个 数,Xi 表示第 i 个方程的 Tki 阶解释变量矩阵,如果含有常数 项,则 Xi 的第一列全为1,ki 表示第 i 个方程的解释变量个数 (包含常数项),i 表示第 i 个方程的 ki 维系数向量,i=1, 2, … , k。
18
2. 加权最小二乘法(Weighted Least Squares , WLS) 这种方法通过使加权的残差平方和最小来解决联立方程的
异方差性,方程的权重是被估计的方程的方差的倒数,来自未 加权的系统参数的估计值。如果方程组没有联立约束,该方法
与加权单方程最小二乘法产生相同的结果。 加权最小二乘法的估计值为:
规则2
系统方程可以包含自回归误差项(注意不能有 MA、 SAR 或 SMA误 差项),每一个 AR 项必须伴随系数说明(用方括号,等号,系数,逗 号),例如:
cs=c(1)+c(2)*gdp+[ar(1)=c(3), ar(2)=c(4)]
规则3
如果方程没有未知参数,则该方程就是恒等,即定义方程,系统1 1 1 ˆ ˆ ˆ ΔWLS ( X V X ) X V Y
(12.2.10)
ˆ 其中, V
V 中的元素 i2 的估计值 sii 为
diags11 , s22 , , skk I T 是 V 的一个一致估计量。
ˆ ˆ y i X i δi , LS y i X i δ i , LS T
(12.2.5)
16
4. 在更一般的水平下,k 个方程间的残差存在异方差、 同期相关的同时,每个方程的残差还存在自相关。此时残 差分块协方差矩阵应写成
11 Ω11 12 Ω12 21 Ω21 22 Ω22 V Σ Ω Ω k 1 k 1 k 2 Ωk 2
t =1, 2, , T (12.1.3)
待估计出未知参数后,与式(12.1.2)中的后3个恒等方 程一起组成联立方程模型。
6
在联立方程模型中,对于其中每个方程,其变量 仍然有被解释变量与解释变量之分。但是对于模型系
统而言,已经不能用被解释变量与解释变量来划分变 量。对于同一个变量,在这个方程中作为被解释变量,
9
这里使用了 EViews 缺省系数如 c(10)、 c(20)等等,当然 可以使用其它系数向量,但应事先声明,方法是单击主菜单
上Object/New Object/Martrix-Vector-Coef/Coeffient Vector。 在说明方程时有一些规则:
10
规则1
方程组中,变量和系数可以是非线性的。可以通过在不同方程组中 使用相同的系数对系数进行约束。
4
KleinⅠ模型框图
政府工资 WG 政府支出 G
消费
CS
收入
Y
投资
I
私人工资
WP
企业利润
P
资本存量
K
间接税收 T 注:方框内是行为方程内生变量,椭圆内是恒等方程内生变量,
粗体是外生变量。
5
前3个方程称为行为方程,后面的3个方程称为恒等方程。 这是一个简单描述宏观经济的联立方程模型。式(12.1.2)
8
建立和说明联立方程系统
为了估计联立方程系统参数,首先应建立一个系统对 象并说明方程系统。单击Object/New Object/system或者在
命令窗口输入 system,系统对象窗口就会出现,如果是第 一次建立系统,窗口是空白的,在指定窗口用文本方式输
入方程,当然也包含了工具变量和参数初值。 使用标准的EViews表达式用公式形式输入方程,系统 中的方程应该是带有未知参数和隐含误差项的行为方程。 例12.1含有三个行为方程的系统是这样的:
寻找未知参数向量 的估计量。
2
例12.1
克莱因联立方程系统
克莱因(Lawrence Robert Klein )于1950年建立的、
旨在分析美国在两次世界大战之间的经济发展的小型宏观 计量经济模型。模型规模虽小,但在宏观计量经济模型的
发展史上占有重要的地位。以后的美国宏观计量经济模型 大都是在此模型的基础上扩充、改进和发展起来的。以至
V Euu 2 I k I T
(12.2.3)
其中:算子 表示克罗内克积 (kronecker product),简称叉 积, 2 是系统残差的方差。
14
2. k个方程间的残差存在异方差,但是不存在同期相关
时,用表示第i个方程残差的方差,i=1, 2, …, k,此时的矩阵 形式为
进行约束并且使用能解决不同方程残差相关的方法。
虽然利用系统方法估计参数具有很多优点,但是这种方 法也要付出相应的代价。最重要的是在系统中如果错误指定
了系统中的某个方程,使用单方程估计方法估计参数时,如 果某个被估计方程的参数估计值很差,只影响这个方程;但
如果使用系统估计方法,这个错误指定的方程中较差的参数 估计就会“传播”给系统中的其它方程。
在另一个方程中则可能作为解释变量。对于联立方程 系统而言,将变量分为内生变量和外生变量两大类,
外生变量与滞后内生变量又被统称为前定变量。
7
§12.2 联立方程系统的估计方法
EViews 提供了估计系统参数的两类方法。一类方法是单 方程估计方法,使用前面讲过的单方程法对系统中的每个方
程分别进行估计。第二类方法是系统估计方法,同时估计系 统方程中的所有参数,这种同步方法允许对相关方程的系数
生变量的已知方程组称为“模型”(model) ,给定了联立方程 模型中外生变量的信息就可以使用联立方程模型对内生变量进
行模拟、评价和预测。 一般的联立方程系统形式是
f yt , z t , Δ ut
t =1, 2, , T (12.1.1)
其中:yt 是内生变量向量,zt 是外生变量向量,ut 是一个可能 存在序列相关的扰动项向量,T 表示样本容量。估计的任务是
Kt Kt 1 I t
(资本存量) (12.1.2) 此模型包含3个行为方程,1个定义方程,2个会计方程。式中变量: 6个内生变量: 4个外生变量: Y:收入(GDP中除去净出口); G:政府非工资支出; CS:消费; Wg :政府工资; I:私人国内总投资; T:间接税收; Wp :私人工资; Time:时间趋势; P:企业利润; K:资本存量
12
联立方程系统残差协方差矩阵的形式
下面的讨论是以线性方程所组成的平衡系统为对象的,但 是这些分析也适合于包含非线性方程的系统。若一个系统,含 有 k 个方程,用分块矩阵形式表示如下:
y1 X 1 0 y2 0 X 2 y 0 0 k
I t 0 1Pt 2 Pt 1 3 Kt 1 u2t
(消费)
(投资) (私人工资)
(均衡需求) (企业利润)
Wt p 0 1Yt 2Yt 1 3Timet u3t Yt Ct I t Gt
Pt Yt Wt p Tt
于萨缪尔森认为,“美国的许多模型,剥到当中,发现都 有一个小的Klein模型”。所以,对该模型 的了解与分析
对于了解西方宏观计量经济模型是重要的。 Klein模型是以美国两次世界大战之间的1920-1941年 的年度数据为样本建立的。
3
KleinⅠ模型:
CSt 0 1Pt 2 Pt 1 3 (Wt p Wt g ) u1t
之间的相互依存关系。在估计了联立方程组的参数后就可 以利用不同的解释变量值对被解释变量进行模拟和预测。
1
12.1 联立方程系统概述
本章将包含一组未知参数,并且变量之间存在着反馈关 系的联立方程组称为“系统”(systems) ,可以利用12.2节介绍
的多种估计方法求解未知参数。本章的12.3节中将一组描述内
13
式(12.2.1)可以简单地表示为
Y XΔ u
其中:设 m k i ,Δ δ1
i 1 k
δ2
是m维向量。 δk
(12.2.2)
联立方程系统残差的分块协方差矩阵的 kT×kT 方阵 V 大体有如下 4 种形式。本章的估计方法都是在这些情形的基 础上进行讨论的。 1. 在古典线性回归的标准假设下,系统残差的分块协方 差矩阵是 kT×kT 的方阵 V
相关的,那么,对于i j,则ij = 0,如果k个方程间的残 差是异方差且同期相关的,则有
11 I T 12 I T 1k I T 21 I T 22 I T 2 k I T V Σ IT I I I k2 T kk T k1 T
1k Ω1k 2 k Ω2 k
(12.2.6) kk Ωkk
其中:ij 是第 i 个方程残差和第 j 个方程残差的自相关矩 阵。
17
12.2.1 单方程估计方法
1.普通最小二乘法(Ordinary Least Squares , OLS) 这种方法是在联立方程中服从关于系统参数的约束条件的
第十二章 联立方程模型的估计与模拟
本章讲述的内容是估计联立方程组参数的方法。包括 最小二乘法 LS 、加权最小二乘法 WLS 、似乎不相关回归 法 SUR 、二阶段最小二乘法 TSLS 、加权二阶段最小二乘