五年级数学培优:分解质因数
小学奥数五年级数学质数、合数和分解质因数

• 总结 • 见积分解质因数。
• 例3:708除以一个两位数,余数为43,求这个两位数。
• 708-43=665
• 分解质因数:665=5×7×19
• 665=35×19
•
=7×95
• 因为除数必须比余数大,所以这个两位数是95。
• 答:这个两位数是95。
• 练习 • 1、310除以一个两位数,余数是37,求这样的两位数。 • 2、一个两位数除250余25,这个数可以是几?
• 14=2×7 24=2×2×2×3 27=3×3×3 • 55=5×11 56=2×2×2×7 99=3×3×11 • 共有:8个2,6个3,2个5,2个7,2个11 • 每一组可分:4个2,3个3,1个5,1个7,1个11 • 第一组:55、27、56、2 • 第二组:99、5、24、14
• 练习 • 1、把40,44,45,63,65个数的乘积相同。 • 2、把10,14,21,30,33,66这六个数平均分成两组,使两组
• 练习 • 1、植树节,赵老师带领同学排成两列人数相等的纵队去植树,已知赵老师和同学
们每人植树的棵数相等,一共植了111棵树。求有多少个同学?每人植树多少棵? • 2、五(2)班在班主任的带领下去种树,学生恰好平均分成3组,如果师生每人种树
一样多,一共种了1073棵,求有多少个同学?平均每人种多少棵?
• 15120=5×(2×3)×7×(2×2×2)×(3×3)
•
=5×6×7×8×9
• 答:这几个连续自然数是5、6、7、8、9。
• 练习 • 1、四个连续自然数的积是1680,这四个自然数是多少? • 2、小兰、小红、小明、小马四个人是好朋友,更巧的是他们的
年龄正好是四个连续的自然数,并且乘积是3024,你知道她们的 年龄分别是多少吗?
分解质因数问题-2023年五年级下册数学思维拓展含答案

2023年小学五年级数学下册思维通用版分解质因数问题习题及答案知识点总结:1.分解质因数:把一个合数分解成多个质数相乘的形式。
用短除法分解质因数(一个合数写成几个质数相乘的形式)。
比如:30分解质因数是:(30=2×3×5)2.互质数:公因数只有1的两个数,叫做互质数。
两个质数的互质数:5和7两个合数的互质数:8和9一质一合的互质数:7和8两数互质的特殊情况:⑴1和任何自然数互质;⑵相邻两个自然数互质;⑶两个质数一定互质;⑷2和所有奇数互质;⑸质数与比它小的合数互质;3.公因数、最大公因数几个数公有的因数叫这些数的公因数。
其中最大的那个就叫它们的最大公因数。
用短除法求两个数或三个数的最大公因数(除到互质为止,把所有的除数连乘起来)几个数的公因数只有1,就说这几个数互质。
如果两数是倍数关系时,那么较小的数就是它们的最大公因数。
如果两数互质时,那么1就是它们的最大公因数。
4.公倍数、最小公倍数几个数公有的倍数叫这些数的公倍数。
其中最小的那个就叫它们的最小公倍数。
用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。
如果两数互质时,那么它们的积就是它们的最小公倍数。
【经典例题1】(“创新杯”五年级初赛试题)用210个大小相同的正方形拼成一个长方形,不同的拼法有__种。
A.2B.4C.6D.8 2.【思路分析】因为“长×宽=210”,所以只要把210分解成两个整数的乘积即可,首先把210分解质因数,再把质因数按要求分成两组。
【本题解答】把210 分解质因数:210=2×3×5×7210=1×210=2×105=3×70=5×42=6×35=7×30=10×21=14×15。
分解质因数100道题五年级

分解质因数100道题五年级1. 将24分解质因数。
24 = 2 × 2 × 2 × 3。
2. 将36分解质因数。
36 = 2 × 2 × 3 × 3。
3. 将75分解质因数。
75 = 3 × 5 × 5。
4. 将60分解质因数。
60 = 2 × 2 × 3 × 5。
5. 将98分解质因数。
98 = 2 × 7 × 7。
6. 将64分解质因数。
64 = 2 × 2 × 2 × 2 × 2 × 2。
7. 将40分解质因数。
40 = 2 × 2 × 2 × 5。
8. 将54分解质因数。
54 = 2 × 3 × 3 × 3。
9. 将86分解质因数。
86 = 2 × 43。
10. 将120分解质因数。
120 = 2 × 2 × 2 × 3 × 5。
11. 将77分解质因数。
77 = 7 × 11。
12. 将90分解质因数。
90 = 2 × 3 × 3 × 5。
13. 将105分解质因数。
105 = 3 × 5 × 7。
14. 将48分解质因数。
48 = 2 × 2 × 2 × 2 × 3。
15. 将63分解质因数。
63 = 3 × 3 × 7。
16. 将72分解质因数。
72 = 2 × 2 × 2 × 3 × 3。
17. 将81分解质因数。
81 = 3 × 3 × 3 × 3。
18. 将66分解质因数。
66 = 2 × 3 × 11。
分解质因数的简便方法

分解质因数的简便方法
1、相乘法:写成几个质数相乘的形式(这些不重复的质数即为质因数),实际运算时可采用逐步分解的方式。
如:36=2*2*3*3,运算时可逐步分解写成36=4*9=2*2*3*3或3*12=3*2*2*3。
2、短除法:从最小的质数除起,一直除到结果为质数为止。
分解质因数的算式的叫短除法。
每个合数都可以写成几个质数相乘的形式,其中每个质数都是这个合数的因数,把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
如30=2×3×5。
分解质因数只针对合数。
把一个合数分解成若干个质因数的乘积的形式,即求质因数的过程叫做分解质因数。
分解质因数只针对合数。
(分解质因数也称分解素因数)求一个数分解质因数,要从最小的质数除起,一直除到结果为质数为止。
分解质因数的算式叫短除法,和除法的性质相似,还可以用来求多个数的公因式。
定理
不存在最大质数的证明:(使用反证法)
假设存在最大的质数为N,则所有的质数序列为:N1,N2,N3……N
设M=(N1×N2×N3×N4×……N)+1,
可以证明M不能被任何质数整除,得出M也是一个质数。
而M>N,与假设矛盾,故可证明不存在最大的质数。
分解质因数的技巧

分解质因数的技巧在数学中,质因数分解是指把一个数表示成质数的乘积,例如12可以进行质因数分解为2 × 2 × 3。
质数是自然数中大于1且只有1和自身两个因子的数,如2、3、5、7、11等等。
掌握分解质因数的技巧对于学习数论、代数及解决一些数学问题至关重要。
本文将详细探讨分解质因数的方法与技巧,并结合实例帮助读者更好地理解。
质因数分解的基本概念质因数分解不仅是数学中的基础概念,也是许多复杂数学问题的核心。
一个合成数可以被表示为多个质数的乘积,而进行这一过程时,我们需要遵循以下步骤:选择合适的质数:从最小的质数2开始,如果该数能被整除,则将其作为一个因子。
重复整除:使合成数继续除以质因数,直到无法再整除。
继续下一步:若还有余下的合成部分,选择下一个更大的质数来尝试分解。
完成分解:当最终结果为1时,分解完成。
以36为例进行讲解。
首先,36是个合成数。
我们可以用2去除以36:第一步:(36 = 18)第二步:(18 = 9)第三步:9不能被2整除,因此尝试下一个质数3:第四步:(9 = 3)第五步:(3 = 1)最终,36的质因数分解结果为(2^2 × 3^2)。
手动分解的技巧在手动进行质因数分解时,会遇到较大的合成数,这时采用以下技巧可以提高效率:利用数组方法一种有效的方法是利用素数表。
我们可以提前准备好小于某个范围(如100或200)的所有素数组成的列表。
在开始分解之前,先找出该数字的最大平方根,以便限制尝试的素数组。
例如,对于84,其平方根大约为9.16,因此我们只需用小于10的素数组(2、3、5、7)进行试验。
使用快速判断法对于一些特定种类的数字,可以使用速判法来加快判断。
例如:如果数字是偶数,直接用2去做初步分解。
对于末尾是0或5的数字,可以先用5去除。
如果数字和9相加后的和能被3整除,则该数字也能被3整除。
使用这些简单规则,可以帮助我们很快确定几个初始因子,从而加速整个分解过程。
五年级培优奥数——质数、合数与分解质因数

质数、合数与分解质因数知识讲解:例题讲解:【例1】试写出1 —-100中的所有质数,并将111111分解质因数.【例2] 2004个连续自然数的和是“a×b×c×d,若出a、b、c、d都是不同的质数,则a+b+c+d 最小值应是____(全国第二届“创新杯”数学邀请赛试题)【例3】两个质数的和是39.这两个质数的积是多少?【例4】在三张纸片上分别写上三个最小的奇质数,如果随意从其中至少取出一张组成一个数,其中有几个是质数,将它们写出来。
【例5] 2002=2×7×11×13,其特点是4个不相等的质数之积.20世纪(1901—2000年)具有相同特点(即可以分解成4个小同质数的积)的所有年份为_______________。
【例6】将2l、30、65、126、143、169、275分成两组,使两纽数的积相等。
【例7】边长是自然数,面积是165的形状不同的长方形共有多少种?【例8】用216元去买一种钢笔,正好将钱用完,如果每支钢笔便宜1元.则可以多买3支钢笔,钱也正好用完.问共买了多少支钢笔?【例9】小兰家的电话号码是个七位数,它恰好是几个连续质数的乘积,这个积的末4位数是前3位数的1 0倍,小兰家的电话号码是多少?【例10】一个自然数可以分解为3个质因数的积,如果这3个质因数的平方和为3 9 6 30,求这个自然数.【例1l】求3 6 0有多少个因数?其因数和是多少?【例12】问:100以内有6个因数的数有哪些?基础训练:1。
165有多少个因数?这些因数的和是多少?2.已知自然数a有两个因数,那么3a有几个因数?3.两个质数的和是1995,这两个质数的乘积是多少?4.两个连续自然数的积加上11,其和是一个合数,这两个自然数的和最小是多少? 5.两个相邻的自然数积是1980,求这两个相邻的自然数.6.某四年级学生参加数学竞赛,他获得的名次,他的年龄,他得的分数的乘积是2910。
五年级数学教案:分解质因数

五年级数学教案:分解质因数五年级数学教案:分解质因数1教学目标(一)知识与能力:理解质因数、分解质因数的意义。
会把一个合数分解质因数,掌握用短除式分解质因数。
(二)过程与方法:通过引导学生把(1)、(2)中所给的合数写成比每个数本身小的两个数相乘的形式,进而引出质因数和分解质因数的概念。
(三)情感与态度:培养学生的分析、概括能力。
教学重点和难点(一)质因数与分解质因数的意义。
(二)用短除式分解质因数。
教学用具投影片。
教学过程设计(一)复习准备1.请说出1~12这些数中的质数和合数。
(投影片)学生口答后,投影出示答案:①2,3,5,7,11是质数;②4,6,8,9,10,12是合数。
2.说一说质数与合数的区别?3.请想一想,第1题答案中的两组数,哪一组数能分成比它本身小的两个数相乘的形式?哪一组不能?为什么?学生口答后,老师指出:像这样的数,即合数,因为它们除了1和本身外,还有别的约数,所以都可以用几个比本身小的数相乘的形式表示出来。
这节课就来研究要求连乘式子里的因数都是质数的情况。
(二)学习新课1.质因数的意义,分别质因数的意义和方法。
(1)板书例36,28和60可以写成哪几个质数相乘的形式?教师板书出6,学生口答后,老师再用塔式分解式写出2,3,圈上。
教师:用算式如何表示,学生口答后老师板书;6=2×3。
教师板书出28,学生口答后,老师按塔式分解式写出:4,7,7是质数,圈上。
问:4老师为什么没圈?(4不是质数,继续分解。
)板书;2,2,圈上。
请用算式表示。
板书;28=2×2×7。
教师:请用上面的方法把60分成几个质数相乘的形式。
老师巡视中请一位同学板书出塔式分解式和算式。
(如下)(2)教师:请观察,(指塔式分解式和算式)每个合数都写成什么形式?(每个合数都写成了几个质数相乘的形式。
) 教师:这些质数,在式子里与原来的合数是什么关系?(这些质数都是原来合数的因数。
小学数学培优之 分解质因数(一)

.. .a < a < < a 为自然数,并且这种表示是唯一的.该式称为 n 的质因子分解式. 5-3-4.分解质因数(一)1.2. 教学目标 能够利用短除法分解整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为 △☆ ⨯ △☆ ⨯ ... ⨯ △☆ 的结构,而且表达形式唯一”知识点拨一、质因数与分解质因数(1).质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数(2).互质数:公约数只有 1 的两个自然数,叫做互质数.(3).分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.例如: 30 = 2 ⨯ 3 ⨯ 5 .其中 2、3、5 叫做 30 的质因数.又如12 = 2 ⨯ 2 ⨯ 3 = 2 2 ⨯ 3 ,2、3 都叫做 12 的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征(4).分解质因数的方法:短除法2 12例如: 2 6 ,(┖是短除法的符号) 所以12 = 2 ⨯ 2 ⨯ 3 ; 3二、唯一分解定理1 2 k任何一个大于 1 的自然数 n 都可以写成质数的连乘积,即: n = p a 1 ⨯ p a 2 ⨯ p a 3 ⨯ 1 2 3 ⨯ p a k 其中为质数, k 例如:三个连续自然数的乘积是 210,求这三个数.分析:∵210=2×3×5×7,∴可知这三个数是 5、6 和 7.三、部分特殊数的分解111 = 3 ⨯ 37 ;1001 = 7 ⨯ 11 ⨯ 13 ;11111 = 41 ⨯ 271 ;10001 = 73 ⨯ 137 ;1995 = 3 ⨯ 5 ⨯ 7 ⨯ 19 ;1998 = 2 ⨯ 3 ⨯ 3 ⨯ 3 ⨯ 37 ;2007=3⨯3⨯223;2008=2⨯2⨯2⨯251;10101=3⨯7⨯13⨯37.例题精讲模块一、分解质因数【例1】分解质因数20034=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级数学培优:分解质因数
分解质因数(一)
【专题导引】
一个自然数的因数中,为质数的因数叫做这个数的质因数.
把一个合数,用质因数相乘的形式表示出来,叫做分解质因数.例如:24=2×2×2×3,75=3×5×5.
我们数学课本上介绍的分解质因数,是为求最大公因数、最小公倍数服务的.其实,把一个数分解成质因数相乘的形式,能启发我们寻找解答许多难题的突破口,从而顺利解题.
【典型例题】
【例1】把18个苹果平均分成若干份,每份大于1个,小于18个.一共有多少种不同的分法?
【试一试】
1、有60个同学分成人数相等的小组去慰问解放军叔叔,每组不少于6人,不多于15人,有哪几种分法?
2、195个同学排成长方形队伍做早操,行数和列数都大于1,共有几种排法?【例2】写出若干个连续的自然数,使它的积是15120.
【试一试】
1、有一个长方体,它的长、宽、高是三个连续的自然数,且体积是39270立方厘米,求这个长方体的表面积.
2、有4个孩子,恰好一个比一个大1岁,4人的年龄积是3024,问这4个孩子中最大的几岁?
【例3】将下面八个数平均分成两组,使这两组数的乘积相等.
2、5、14、24、27、55、56、99
【试一试】
1、有三个自然数a、b、c,已知a×b=30,b×c=35,c×a=42,求a×b×c的积是多少?
2、把40、44、45、6
3、65、78、99、105这八个数平均分成两组,使两组四个数的乘积相等.
【例4】王老师带领一班同学去植树,学生恰好分成4组,如果王老师和学生每人植树一样多,那么他们一共植了539棵.这个班有多少个学生?每人植树多少棵?
【试一试】
1、3月12日是植树节,李老师带领同学排成两路人数相等的纵队去植树,已知李老师和同学们每人植树的棵数相等,一共植了111棵树,求有多少个同学?
2、小青去看电影,他买的票的排数与座位号数的积是391,而且排数比座位号数大6,小青买的电影票是几排几座?
【﹡例5】下面的算式里,□里数字各不相同,求这四个数字的和.
□□×□□=1995
【﹡试一试】
1、在下面算式的框内,各填入一个数字,使算式成立.
□□□×□=1995
2、下面四张小纸片各盖住一个数字,如果这四个数字是连续的偶数,请写出这个完整的算式.
□□×□□=1288
课外作业
家长签名:
1、100以内的质数有哪些?
2、54÷()=()……4,在括号内填入适当的数,使等式成立,共有几种不同的填法?
3、甲数比乙数大9,两个数的积是792,求甲、乙两数分别是多少?
4、四个连续奇数的积是19305,这四个奇数各是多少?
5、把30、33、42、52、65、6
6、6
7、7
8、105九个数分成三组,使每个组的数的乘积相等,写出这三组数.
6、把一篮苹果分给4人,使四人的苹果数一个比一个多2,且他们的苹果个数之积是1920,这篮苹果共有几个?
﹡7、在下面算式里,四个小纸片各盖住一个数字,被盖住的四个数字总和是多少?
第三讲 分解质因数(二)
【专题导引】
许多题目,特别是一些竞赛题,初看起来很玄妙,但它们都与乘积有关,对于这类题目,我们可以用分解质因数的方法来解.因此,掌握并灵活应用分解× 6 5 3 1
质因数的知识,能解答许多一般方法不能解答的与积有关的应用题.
【典型例题】
【例1】三个质数的和是80,这三个数的积最大可以是多少?
【试一试】
1、如果A+B=70,A×B=1161,那么A-B等于多少?
1、把1、
2、
3、
4、
5、
6、
7、
8、9九张卡片分给甲、乙、丙三人,每人各3张.
甲说:“我的三个数的积是48.”乙说:“我的三个数的和是16.”丙说:“我的三个数的积是63.”问甲、乙、丙各拿了哪几张卡片?
【例2】一个两位数除310余37,这个数可以是()或().
【试一试】
1、237除以一个两位数,所得的余数是6,请写出适合于这个条件的所有两位数.
2、5100除以一个三位数,余数是95,这个三位数最大是多少?
【例3】某班同学在班主任老师带领下去种树,学生恰好平均分成三组,如果师生每人种树一样多,一共种了1073棵.那么,平均每人种了多少棵?
【试一试】
1、一个长方体的长、宽、高是三个连续的自然数.已知这个长方体的体积是9240立方厘米,那么,这个长方体的表面积是多少?
2、老师用216元买一种钢笔若干支,如果每支钢笔便宜1元钱,那么他就能多买3支.问:每支钢笔原价多少元?
【例4】把
186155和187221约分.
【试一试】
把下面的几个分数约分.
1、
69
46 2、 117143
【﹡例5】小明用2.16元买了一种画片若干张,如果每张画片的价钱便宜1分钱,那么他还能多买3张.问小明买了多少张画片?
【﹡试一试】
1、求2310的约数中,除它本身以外最大的约数是多少?
2、自然数a乘以2376,所得的积正好是自然数b的平方.求a最小是多少?
课外作业
家长签名:
1、在下面括号内填上15以内适当的质数.
10=()+()=()×()=()-()
2、如果A×B=50,它们的和最大是多少?
3、长方形的面积是375平方米,已知它的宽比长少10米,长和宽的和是多少米?
4、有一块长方形的场地,它是由319块1平方分米的水泥方砖铺成的,求这块长方形场地的周长.
5、王老师带同学们擦玻璃,同学们恰好平均分成3组.如果师生每人擦的块数同样多,一共擦111块,那么,平均每人擦了多少块?
6、把下面的几个分数约分.
(1)
323
247 (2)253161
﹡7、将750元奖金平均分给若干个获奖者,如果每人所得的钱数化成角为单位的数就正好是得钱人数的12倍.求获奖人数和每人分得的钱数.。