自动控制原理西北工大版习题解答第四章Word版
自动控制原理 课后习题答案(2020年7月整理).pdf

第1章控制系统概述【课后自测】1-1 试列举几个日常生活中的开环控制和闭环控制系统,说明它们的工作原理并比较开环控制和闭环控制的优缺点。
解:开环控制——半自动、全自动洗衣机的洗衣过程。
工作原理:被控制量为衣服的干净度。
洗衣人先观察衣服的脏污程度,根据自己的经验,设定洗涤、漂洗时间,洗衣机按照设定程序完成洗涤漂洗任务。
系统输出量(即衣服的干净度)的信息没有通过任何装置反馈到输入端,对系统的控制不起作用,因此为开环控制。
闭环控制——卫生间蓄水箱的蓄水量控制系统和空调、冰箱的温度控制系统。
工作原理:以卫生间蓄水箱蓄水量控制为例,系统的被控制量(输出量)为蓄水箱水位(反应蓄水量)。
水位由浮子测量,并通过杠杆作用于供水阀门(即反馈至输入端),控制供水量,形成闭环控制。
当水位达到蓄水量上限高度时,阀门全关(按要求事先设计好杠杆比例),系统处于平衡状态。
一旦用水,水位降低,浮子随之下沉,通过杠杆打开供水阀门,下沉越深,阀门开度越大,供水量越大,直到水位升至蓄水量上限高度,阀门全关,系统再次处于平衡状态。
开环控制和闭环控制的优缺点如下表1-2 自动控制系统通常有哪些环节组成?各个环节分别的作用是什么?解:自动控制系统包括被控对象、给定元件、检测反馈元件、比较元件、放大元件和执行元件。
各个基本单元的功能如下:(1)被控对象—又称受控对象或对象,指在控制过程中受到操纵控制的机器设备或过程。
(2)给定元件—可以设置系统控制指令的装置,可用于给出与期望输出量相对应的系统输入量。
(3)检测反馈元件—测量被控量的实际值并将其转换为与输入信号同类的物理量,再反馈到系统输入端作比较,一般为各类传感器。
(4)比较元件—把测量元件检测的被控量实际值与给定元件给出的给定值进行比较,分析计算并产生反应两者差值的偏差信号。
常用的比较元件有差动放大器、机械差动装置和电桥等。
(5)放大元件—当比较元件产生的偏差信号比较微弱不足以驱动执行元件动作时,可通过放大元件将微弱信号作线性放大。
《自动控制原理》章节习题含答案(大学期末复习资料).doc

自动控制原理(1) 生活中有哪些物理量之间是比例关系、积分关系或微分关系?答:单价一定时,总价与数量成比例;速度一定时,总路程与时间成比例。
加速度的积分是速度,速度的积分是路程;反之,速度的微分是加速度,路程的微分是路程。
(2) 常用的数学模型有哪些?答:常用的数学模型有:微分方程、传递函数、系统框图、频率特性和状态方程。
(3) 传递函数的定义是什么,定义传递函数的前提条件是什么?如何将微分方程转换为传递函数?答:传递函数(Transfer Function)定义如下,在零初始条件下,线性定常系统(或元件) 输出量的拉氏变换与其输入量的拉氏变换之比,即为线性定常系统的传递函数,记为G(s), 即u. 输出量的拉氏变换传递函数G(s)= -------------------------------输入量的拉氏变换零初始条件(4) 典型输入信号有哪些,分别适用于作为哪些控制系统的输入?答:常用的典型输入信号有:阶跃信号(Step signal)、斜坡信号(Slope signal)>加速度信号(Acceleration signal)、脉冲信号(Pulse signal)及正弦信号(sinusoidal signaDo实际的控制系统中,室温控制系统和水位控制系统,以及一些工作状态突然改变或突然受到恒定输入作用的控制系统,都可以采用阶跃信号作为典型输入信号。
跟踪通信卫星的天线控制系统、数控机床加工斜面的进给控制系统、机械手的等速移动控制系统等其输入信号随时间逐渐变化的控制系统,斜坡信号是比较合适的典型输入。
当控制系统的输入信号为冲击输入,例如脉冲电信号、撞击力、武器弹射的爆发力等, 均可视为理想脉冲信号。
实际的控制系统中,如果输入信号为周期性变化的信号,一般都可将其进行傅里叶变换为多个正弦信号的叠加,这种情况下,可用正弦函数作为系统的输入对系统进行性能分析。
(5) 比例系数、积分时间常数和微分时间常数分别对系统的时域响应有什么影响?答:当比例系数(增益)K>1时,输出量为输入量等比例放大;当K<1时,输出量为输入量等比例缩小;当K=1时,输出量与输入量相等。
自动控制原理课后习题第四章答案

G(s)H(s)=
Kr s(s+1)(s+3)
σ根 s=3-K+ω轨r4-3-迹+p4s132ω1-3的+~3ω32分p===s2-离+001K点.p-3r=3:KK~0θrr===012+ωω6021,o=3,=0+±1810.7o
8
jω
1.7
s1
A(s)B'系(s)统=根A'轨(s迹)B(s)
s3 p3
s=sK2±r没=j24有.8.6位×于2K.r根6=×4轨80.迹6=上7,. 舍去。
2
第四章习题课 (4-9)
4-9 已知系统的开环传递函数,(1) 试绘制出
根轨迹图。
G(s)H与(s虚)=轴s交(0点.01s+1K)(系0.统02根s+轨1迹)
jω
70.7
解: GKK(rr=s=)10H5(0s)=ωω2s1,(3=s=0+±17000K.7)r(s+50)
s1
A(s)B'(系s)统=A根'(轨s)迹B(s)
s3 p3
p2
p1
-4
-2
0
((24))ζ阻=尼03.振5s2荡+1响2应s+s的81==K-r0值0.7范+围j1.2
s=s-s10=3=.-80-56.8+50K.7r×=20=s.82-=54×-.631..1155×3.15=3.1
-2.8
450
1080
360
0σ
0σ
第四章习题课 (4-2)
4-2 已知开环传递函数,试用解析法绘制出系
统的根轨迹,并判断点(-2+j0),(0+j1),
国防《自动控制原理》教学资料包 课后习题答案 第四章

第4章课后习题参考答案4-1(a)(b)(c)(d)4-2(1)(2)4-3(1)(2)(j 24.20 ),K=10.14 4-4 (1)(2)(3)4-5(1)0>K (2)2>K 4-6(1)(2) 闭环极点(j 7.597.0±-),K=34.77 4-7 (1)110222-=+++s s s a(2)130202-=+ss a4-8正反馈 负反馈表明K>0对于正反馈系统不稳定,负反馈系统稳定。
4-90.707ξ=,系统开环传递函数为)4(8)(+=s s s G ,系统的单位阶跃响应为)(t h =)452sin(5.012 +--t e t4-10σωj 007.17-93.2-5-10-(1) K=5;(2)不含有衰减振荡分量的K 值范围为86.00<<K 或29>K 。
4-11 系统的开环极点为0和-p ,开环零点为-z 。
由根轨迹的幅角条件, 得π)12()()(+=+∠-∠-+∠q p s s z s 。
将ωσj s +=代入,整理有pz++︒=-+---σωσωσω111tan 180tan tan取上述方程两端的正切,并利用下列关系yx yx y x tan tan 1tan tan )tan( ±=±有p z z +=++-σωωσσω2)(,则zp z z -=++222)(ωσ,这是一个圆的方程,圆心位于(-z ,j 0)处,而半径等于zp z -2(注意,圆心位于开环传递函数的零点上)。
证毕。
4-12(1)分离点-0.465,对应K=0.88;虚轴的交点j 2± (2)88.00<<K ,阶跃响应不出现超调。
4-13(1)(2)70MAX K =4-14负反馈稳定K 值范围为0<K<73.8,正反馈稳定K 值范围为0<K<35,所以确定根轨迹增益K 的范围为0<K<35。
《自动控制原理》西北工业大学参考题整理

《自动控制原理》西北工业大学参考题整理西北工业大学《自动控制原理》参考习题1-3、1-4;2-1(c)&(d)、2-6、2-8、2-10、2-11、2-12、2-133-1、3-3、3-4、3-6、3-7、3-9、3-11、3-13、3-15、3-16、3-17、3-21、3-22、3-23、3-24、3-28(1)、3-38、3-394-2、4-3(1)&(3)5-1、5-2(1)、5-3、5-6、5-9(1)&(2)&(3)、5-11(1)、5-13(1)~(4)6-2、6-3、6-4、6-5(1)、6-6、6-7、6-8、6-10(1)、6-12、6-13、6-16第一章习题及答案1-3、1-41-3 题1-3图为工业炉温自动控制系统的工作原理图。
分析系统的工作原理,指出被控对象、被控量和给定量,画出系统方框图。
题1-3图 炉温自动控制系统原理图解 加热炉采用电加热方式运行,加热器所产生的热量与调压器电压c u 的平方成正比,c u 增高,炉温就上升,c u 的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流电动机驱动。
炉子的实际温度用热电偶测量,输出电压f u 。
f u 作为系统的反馈电压与给定电压r u 进行比较,得出偏差电压e u ,经电压放大器、功率放大器放大成a u 后,作为控制电动机的电枢电压。
在正常情况下,炉温等于某个期望值T °C ,热电偶的输出电压f u 正好等于给定电压r u 。
此时,0=-=f r e u u u ,故01==a u u ,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使c u 保持一定的数值。
这时,炉子散失的热量正好等于从加热器吸取的热量,形成稳定的热平衡状态,温度保持恒定。
当炉膛温度T °C 由于某种原因突然下降(例如炉门打开造成的热量流失),则出现以下的控制过程:控制的结果是使炉膛温度回升,直至T °C 的实际值等于期望值为止。
自动控制原理第4章习题解——邵世凡

第四章 习题4-1 绘制具有下列开环传递函数的负反馈系统的根轨迹1、()()()()54*++=s s s K s H s G解:首先确定开环传递函数中的零极点的个数各是多少。
由开环传递函数可知 m=0,n=3,n -m=3。
即,有限零点为0个,开环极点为3个。
其中,3个开环极点的坐标分别为:p 1=0,p 2=-4,p 3=-5。
然后,在[s]平面上画出开环极点的分布情况,根据根轨迹方程的幅角条件:首先确定实轴上的闭环系统的根轨迹。
如图所示。
接着再通过所需参数的计算画出比较精确的根轨迹通过画实轴上的根轨迹图可知,有3条闭环根轨迹,分别从p 1=0,p 2=-4,p 3=-5出发奔向无穷远处的零点。
在这一过程中,从p 1=0,p 2=-4两个极点出发的根轨迹在实轴上相遇后进入复平面,因此,有必要进行分离点的坐标计算,渐进线在实轴上的坐标点和渐进线的角度计算,以及与虚轴交点的计算。
根据公式有:渐进线303054011-=----=--=∑∑==mn zp n i mj jiσ()() ,,331212ππππϕ±±=+=-+=k mn k a从p 1=0,p 2=-4两个极点出发的根轨迹在实轴上相遇后将沿着±60º进入复平面,分离点:设:()1=s N ;()()()s s s s s s s D 2095423++=++=;()0'=s N ;()201832'++=s s s D则有:()()()()()0201832''=++-=⋅-⋅s s s D s N s D s N[s ]0201832=++s s解得方程的根为s 1= -4.5275(不合题意舍去);s 2= -1.4725 得分离点坐标:d = -1.4725。
与虚轴的交点:在交点处,s=j ω,同时也是闭环系统的特征根,必然符合闭环特征方程,于是有:()020********=++--=+++*=*K j j K s s sj s ωωωω整理得: 0203=-ωω;092=-*ωK 解得01=ω;203,2±=ω;18092==*ωK 最后,根据以上数据精确地画出根轨迹。
自动控制原理第4章课后习题答案

第4章4-1 已知系统的开环传函如下,试绘制系统参数K 从0→∞时系统的根轨迹图,对特殊点要加以简单说明. (1) ()()(4)(1)(2)K s G s H s s s s +=++ (2) ()()2(4)(420)KG s H s s s s s =+++ 解:(1)有3个开环几点,1个开环零点,固有3条根轨迹分别始于0,-1,-2; 1条根轨迹终于-4,另外2条根轨迹趋于无穷远处 实轴上的根轨迹分布在-1~0之间及-4~-2之间 渐近线条数为n-m=3-1=2 渐进线的交点12041312σ++-=-=-渐近线的倾角90θ︒=±分离点22[()()]02152480d G s H s s s s ds =⇒+++= 解得: 12s =- 其它舍去求与虚轴交点:令s j ω=代入特征方程(1)(2)(4)0s s s K s ++++=中得(1)(2)(4)0j j j K j ωωωω++++= 令上式两边实部和虚部分别相等,有226430(2)0 2.83K K K ωωωω⎧=⎧-=⎪⎪⇒⎨⎨+-==±=±⎪⎪⎩⎩绘制系统根轨迹,如图4-1(1)(2)有4个开环几点,无开环零点,有4条根轨迹,分别起始于0,-4, 24j -±终于无穷远处 实轴上的根轨迹分布在-4~0之间; 渐近线条数为n-m=4-0=4 渐进线的交点04242424j j σ++++-=-=-渐近线的倾角45,135θ︒︒=±±分离点22[()()]042472800d G s H s s s s ds=⇒+++=解得: 2s =-由()()1G s H s =得21224(2)4220K=--+--⨯+, K=64绘制系统根轨迹,如图4-1(2)图4-1(1)图4-1(2)4-2 已知系统的开环传函为(2)(3)()()(1)K s s G s H s s s ++=+(1) 试绘制系统参数K 从0→∞时系统的根轨迹图,求取分离点和会和点 (2) 试证明系统的轨迹为圆的一部分解:有2个开环极点,2个开环零点,有2条根轨迹,分别起始于0,-1; 终于-2,-3;实轴上的根轨迹分布在-3~-2之间及-1~0之间分离会和点2221,2,321[()()]02401,12123(2)()()()[()()]0[2(6)4]0203602,18()()[()()]00020,d G s H s s ds KK K s G s H s s s a d G s H s s s a s a dsa a a a s KG s H s sd G s H s s ds a s s =⇒+===-+⨯-++=+=⇒+++=⇒-+≥⇒≤≥===⇒=≤≤=23s ==解得:当10.634s =-时 由()()1G s H s =得(0.6342)(0.6343)10.070.6340.6341K K -+-+=⇒=-⨯-+当2 2.366s =-时 同理 K=13.9 绘制系统根轨迹 如图4-2证明:如果用s j αβ=+代入特征方程1()()0G s H s +=中,并经整理可得到以下方程式:2233()24αβ++=(注:实部虚部相等后消K 可得)显然,这是个圆的方程式,其圆心坐标为3(,0)2-,半径为2图4-24-3 已知系统的开环传函()()(1)(3)KG s H s s s =++(1) 试绘制系统参数K 从0→∞时系统的根轨迹图(2) 为了使系统的阶跃响应呈现衰减振荡形式,试确定K 的范围 解:有2个开环极点,无开环零点,有2条根轨迹,分别起始于-1,-3; 终于无穷远处;实轴上的根轨迹分布-3~-1之间; 渐近线条数2; 渐近线的交点13022σ+-=-=- 渐近线的倾角90θ︒=± 分离会和点[()()]0240d G s H s s ds=⇒+=解:S=-2由()()1G s H s =得1,12123KK ==-+⨯-+绘制系统根轨迹图4-3由图知 当1<K<+∞时系统的响应呈现衰减振荡形式4-4 设负反馈控制系统的开环传函为2(2)()()()K s G s H s s s a +=+试分别确定使系统根轨迹有一个,两个和三个实数分离点的a 值,分别画出图形 解:求分离点2[()()]0[2(6)4]0d G s H s s s a s a ds=⇒+++=解得s=0,或分离点为实数2203602a a a ⇒-+≥⇒≤或18a ≥当a=18时 实数分离点只有s=0 如图4-4(1)当a>18时 实数分离点有三个,分别为1,2,3(6)0,4a s -+=如图4-4(2)当a=2时2()()K G s H s s =分离点[()()]00d G s H s s ds=⇒= 即分离点只有一个s=0 如图4-4(3) 当02a ≤≤分离点有一个s=0 如图4-4(4) 当a<0时 分离点有1230,s s s ===(舍去)如图4-4(5)综上所述:当a=18,0≤a ≤2时,系统有一个分离点 当a >18时,系统有三个实数分离点 当a <0时,系统有两个分离点a=18图4-4(1) a=2图4-4(2)图4-4(3) a=1图4-4(4)图4-4(5)4-65 已知系统的开环传递函数为3(1)(3)()()K S S G S H S S++=(1)绘制系统的根轨迹。
自动控制原理课后习题第四章答案

然后,根据闭环传递函数的定义,闭环传递函数F(s)=G(s)/(1+G(s)H(s))。
解析3
将G(s)H(s)代入闭环传递函数的定义中,得到F(s)=100/((s+1)^2+3)/(1+100/((s+1)^2+4)((s+1)^2+3))。
解析4
化简得到F(s)=100/((s+1)^2+3)(4((s+1)^2+3))=400/(4(s^2+2s+3))。
1)(s + 2)/(s^2 + 3s + 2)。
04
题目四答案
题目内容
• 题目四:已知系统的开环传递函数为 G(s)H(s)=K/(s^2+2s+2),其中K>0,试 求系统的闭环极点和稳定性。
答案解析
闭环极点
根据开环传递函数,我们可以求出闭环传递函数为 G(s)H(s)/(1+G(s)H(s)),然后求出闭环极点。由于开环传递函 数为K/(s^2+2s+2),所以闭环极点为-1±√2i。
标准形式,即 G(s)H(s) = (s + 1)(s + 2)/(s^2 + 3s + 2)。
02
解析二
根据开环传递函数的分子和分母,可以得出系统的开环传递函数为
G(s)H(s) = (s + 1)(s + 2)/(s^2 + 3s + 2)。
03
解析三
根据开环传递函数,可以求出系统的闭环传递函数为 G(s)H(s) = (s +
自动控制原理课后习题第四章 答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四章根轨迹法习题及答案4-1 系统的开环传递函数为)4)(2)(1()()(*+++=sssKsHsG试证明点311js+-=在根轨迹上,并求出相应的根轨迹增益*K和开环增益K。
解若点1s在根轨迹上,则点1s应满足相角条件π)12()()(+±=∠ksHsG,如图解4-1所示。
对于31js+-=,由相角条件=∠)()(11sHsG=++-∠-++-∠-++-∠-)431()231()131(0jjjππππ-=---632满足相角条件,因此311js+-=在根轨迹上。
将1s代入幅值条件:1431231131)(*11=++-⋅++-⋅++-=jjjKsHsG)(解出:12*=K,238*==KK4-2 已知开环零、极点如图4-22所示,试绘制相应的根轨迹。
(a)(b)(c)(d)解根轨如图解4-2所示:4-3 已知单位反馈系统的开环传递函数,试概略绘出系统根轨迹。
⑴)15.0)(12.0()(++=sssKsG⑵)3)(2()5()(*+++=ssssKsG⑶)12()1()(++=sssKsG(e)(f)(g)(h)题4-22图开环零、极点分布图图解4-2 根轨迹图解 ⑴ )2)(5(10)15.0)(12.0()(++=++=s s s Ks s s K s G系统有三个开环极点:01=p ,22-=p ,53-=p ① 实轴上的根轨迹: (]5,-∞-,[]0,2-② 渐近线: ⎪⎪⎩⎪⎪⎨⎧±=+=-=--=πππϕσ,33)12(373520k a a③ 分离点:021511=++++d d d 解之得:88.01-=d ,7863.32-d (舍去)。
④ 与虚轴的交点:特征方程为 010107)(23=+++=k s s s s D令 ⎩⎨⎧=+-==+-=010)](Im[0107)](Re[32ωωωωωj D k j D 解得⎩⎨⎧==710k ω与虚轴的交点(0,j 10±)。
根轨迹如图解4-3(a)所示。
⑵ 根轨迹绘制如下: ① 实轴上的根轨迹:[]3,5--, []0,2-② 渐近线: ⎪⎪⎩⎪⎪⎨⎧±=+==----=22)12(02)5(320ππϕσk a a③ 分离点: 5131211+=++++d d d d 用试探法可得 886.0-=d。
根轨迹如图解4-3(b)所示。
⑶ )21(2)1()12()1()(++=++=s s s K s s s K s G 根轨迹绘制如下:① 实轴上的根轨迹:(]1,-∞-, []0,5.0- ② 分离点:115.011+=++d d d 解之得:707.1,293.0-=-=d d 。
根轨迹如图解4-3(c)所示。
4-4已知单位反馈系统的开环传递函数,试概略绘出相应的根轨迹。
⑴ )21)(21()2()(*j s j s s K s G -++++=⑵ )1010)(1010()20()(*j s j s s s K s G -++++=解 ⑴ )21)(21()2()(*j s j s s K s G -++++=根轨迹绘制如下:① 实轴上的根轨迹: (]2,-∞-② 分离点:21211211+=-++++d j d j d解之得:23.4-=d③ 起始角:43.15390435.631801=-+=p θ由对称性得另一起始角为43.153-。
根轨迹如图解4-4(a)所示。
⑵ )1010)(1010()20()(*j s j s s s K s G -++++=系统有三个开环极点和一个开环零点。
根轨迹绘制如下:① 实轴上的根轨迹:[]0,20-② 起始角:︒=--+=01359045180θ 根轨迹如图解4-4(b)所示。
4-5 已知系统的开环传递函数,试概略绘出相应的根轨迹。
⑴ )208()()(2++=*s s s K s H s G⑵ )5)(2)(1()()(+++=*s s s s K s H s G⑶ )22)(3()2()()(2++++=*s s s s s K s H s G ⑷ )164)(1()1()()(2++-+=*s s s s s K s H s G 解 ⑴ )208()()(2++=*s s s K s H s G ① 实轴上的根轨迹: (]0,∞-② 渐近线:⎪⎪⎩⎪⎪⎨⎧±=+=-=--++-+=πππϕσ,33)12(383)24()24(0k j j a a ③分离点:02412411=-+++++j d j d d 解之得:33.3,2-=-=d d 。
④与虚轴交点:*+++=Ks s s s D 208)(23把ωj s =代入上方程,整理,令其实、虚部分别为零得:⎩⎨⎧=-==-=*020))(Im(08))(Re(32ωωωωωj D K j D解得: ⎩⎨⎧==*K ω ⎪⎩⎪⎨⎧=±=*16052K ω⑤起始角:由相角条件 632-=p θ, 633=p θ。
根轨迹如图解4-5(a)所示。
⑵ )5)(2)(1()()(+++=*s s s s K s H s G① 实轴上的根轨迹:[],2,5-- []0,1-② 渐近线: ⎪⎪⎩⎪⎪⎨⎧±=+=-=-+-+-+=43,44)12(24)1()2()5(0πππϕσk a a③ 分离点:05121111=++++++d d d d 解之得:54.1,399.0,06.4321-=-=-=d d d (舍去);④ 与虚轴交点:*++++=K s s s s s D 10178)(234令ωj s =,带入特征方程,令实部,虚部分别为零⎩⎨⎧=-+==+-=**05)6())(Im(028))(Re(324ωωωωωωK j D K j D 解得: ⎩⎨⎧==*0K ω ⎩⎨⎧=±=*7.1912.1K ω根轨迹如图解4-5(b)所示。
⑶ )22)(3()2()()(2++++=*s s s s s K s H s G系统有四个开环极点、一个开环零点。
根轨迹绘制如下: ① 实轴上的根轨迹: [],3,-∞- []0,2-② 渐近线: ⎪⎪⎩⎪⎪⎨⎧±=+=-=----++-+-=πππϕσ,33)12(13)2()11()11(3k j j a a ③ 与虚轴交点:闭环特征方程为)2()22)(3()(2+++++=*s K s s s s s D把ωj s =代入上方程,令⎪⎩⎪⎨⎧=-+==+-=**5)6())(Im(028))(Re(324ωωωωωωK j D K j D 解得: ⎩⎨⎧==*00K ω ⎩⎨⎧=±=*03.761.1K ω④ 起始角︒-=︒-︒-︒-︒+︒=57.2557.2513590451803p θ根轨迹如图解4-5(c)所示。
⑷ )164)(1()1()()(2++-+=*s s s s s K s H s G 系统根轨迹绘制如下:① 实轴上的根轨迹:[],1,-∞- []1,0② 渐近线: ⎪⎪⎩⎪⎪⎨⎧±=+=-=----++-+=πππϕσ,33)12(323)1()32()32(1k j j a a③ 分离点:1132213221111+=+++-++-+d j d j d d d 解得:16.276.0,49.0,26.24321j d d d ±-==-=、 (舍去)④ 与虚轴交点:闭环特征方程为0)1()164)(1()(2=++++-=*s K s s s s s D 把ωj s =代入上方程,整理,令实虚部分别为零得:⎪⎩⎪⎨⎧=--==+-=**3)16())(Im(012))(Re(324ωωωωωωK j D K j D 解得: ⎩⎨⎧==*0K ω ⎩⎨⎧=±=*7.2138.1K ω ⎩⎨⎧=±=*3.3766.2K ω⑤ 起始角:79..5489..130120901..1061803-=---+=p θ由对称性得,另一起始角为79.54,根轨迹如图解4-5(d)所示。
4-6 已知单位反馈系统的开环传递函数,要求:(1)确定)20)(10()()(2+++=*s s s z s K s G 产生纯虚根为1j ±的z 值和*K 值;(2)概略绘出)23)(23)(5.3)(1()(j s j s s s s K s G -+++++=*的闭环根轨迹图(要求确定根轨迹的渐近线、分离点、与虚轴交点和起始角)。
解(1)闭环特征方程020030)()20)(10()(2342=++++=++++=***z K s K s s s z s K s s s s D有 0)30()200()(324=-++-=**ωωωωωK j z K j D令实虚部分别等于零即: ⎪⎩⎪⎨⎧=-=+-**0300200324ωωωωK z K 把1=ω代入得: 30=*K , 30199=z 。
(2)系统有五个开环极点:23,23,5.3,1,054321j p j p p p p --=+-=-=-==① 实轴上的根轨迹:[],5.3,-∞- []0,1-② 渐近线: 1 3.5(32)(32) 2.15(21)3,,555a a j j k σπππϕπ--+-++--⎧==-⎪⎪⎨+⎪==±±⎪⎩③ 分离点:02312315.31111=+++-++++++j d j d d d d 解得: 45.01-=d , 4.22-d (舍去) , 90.125.343j d ±-=、 (舍去)④ 与虚轴交点:闭环特征方程为0)23)(23)(5.3)(1()(=+-+++++=*K j s j s s s s s D把ωj s =代入上方程,整理,令实虚部分别为零得:⎪⎩⎪⎨⎧=+-==-+=*05.455.43 )Im(05.795.10)Re(3524ωωωωωωωj K j解得:⎩⎨⎧==*00K ω ,⎩⎨⎧=±=*90.7102.1K ω,⎩⎨⎧-=±=*3.1554652.6K ω(舍去) ⑤ 起始角:根据法则七(相角条件),根轨迹的起始角为74..923..1461359096..751804=----=p θ由对称性得,另一起始角为74.92,根轨迹如图解4-6所示。
4-7 已知控制系统的开环传递函数为22)94(2)()(+++=*s s s K s H s G )( 试概略绘制系统根轨迹。
解 根轨迹绘制如下: ① 实轴上的根轨迹: []2,-∞-图解4-6 根轨迹图② 渐近线:⎪⎪⎩⎪⎪⎨⎧±=+=-=--+---=πππϕσ,33)12(323)2(5252k j j a a ③ 分离点:21522522+=-++++d j d j d解之得:29.3-=d 71.0=d (舍去)④ 与虚轴交点:闭环特征方程为02)94()(22=++++=*)(s K s s s D把ωj s =代入上方程,令⎪⎩⎪⎨⎧=-+==++-=**8)72())(Im(028134))(Re(324ωωωωωωK j D K j D 解得:⎩⎨⎧=±=*9621K ω ⑤ 起始角: πθ)()(129022901+=⨯--k p解出135,4521-==p p θθ 根轨迹如图解4-7所示。