高考数学真题分类训练 (3)(含答案解析)
高考真题数学卷三答案解析

高考真题数学卷三答案解析一、引言高考作为一场全国性的高等教育入学考试,对于每个参加考试的学生来说都十分重要。
而数学卷作为高考的一部分,更是被广大学生所关注和关心的科目之一。
在本文中,将对高考数学卷三的答案进行解析和讨论,帮助学生们更好地理解和应对这一部分的考试。
二、题目1解析题目1的内容是一道概率题,要求计算从10个数中随机抽取3个数,使得这3个数的和大于15的概率。
首先,我们可以列出10个数的组合,并计算它们的和,如下所示:1+2+3=61+2+4=71+2+5=8...8+9+10=27通过计算可以知道,共有10个数的组合,其中有多少个组合的和大于15呢?我们可以通过观察得知,满足条件的组合有:14种组合的和大于15所以,概率就是14/10 = 7/5。
三、题目2解析题目2是一道几何题,要求计算一个正方体的棱长。
通过观察可以知道,一个立方体的棱长等于它的对角线长度除以√3。
所以,可以将问题转化为计算对角线长度。
假设正方体的棱长为x,那么它的对角线长度就是√(3x^2)。
将对角线长度代入公式,可以得到x =√(3x^2)/√3,两边同时平方,可以得到x^2 = 3x^2 / 3,化简得到2x^2 = x^2,即x^2 = 0,所以x = 0。
因此,正方体的棱长为0。
四、题目3解析题目3是一道复数题,要求计算一个复数的平方根。
复数的平方根可以通过将复数表示为极坐标形式来计算。
首先,将复数表示为r(cosθ + isinθ)的形式。
然后,我们可以通过求解方程r(cosθ + isinθ)^2 = x + yi来求解复数的平方根。
将方程展开可得:r^2cos^2θ - r^2sin^2θ + 2ir^2cosθsinθ = x + yi通过对比实部和虚部,可以得到以下两个方程:r^2cos^2θ - r^2sin^2θ = x2r^2cosθsinθ = y通过上述两个方程可以求解出r和θ的值,然后将其代入到极坐标形式中即可得到复数的平方根。
(整理版)2019高考卷III理科数学真题(含答案)

(整理版)2019高考卷III理科数学真题(含答案)一、选择题(本大题共12小题,每小题5分,共60分)1. 设集合A={x|0≤x≤2},集合B={x|x²3x+2=0},则A∩B=()A. {1, 2}B. {1}C. {2}D. ∅2. 若复数z满足|z|=1,则|z1|的最大值为()A. 0B. 1C. 2D. √23. 在等差数列{an}中,若a1=1,a3+a7=22,则数列的公差为()A. 3B. 4C. 5D. 64. 已知函数f(x)=x²+ax+b,若f(x)在区间(∞,1)上单调递减,在区间(1,+∞)上单调递增,则实数a的值为()A. 2B. 0C. 2D. 45. 若直线y=kx+b与圆(x1)²+y²=1相切,则k的取值范围是()A. [√2,√2]B. (√2,√2)C. [1,1]D. (1,1)6. 在三角形ABC中,若a=3,b=4,cosB=3/5,则sinA的值为()A. 3/5B. 4/5C. 3/4D. 4/37. 若函数f(x)=x²2x+3在区间[1,2]上的最小值为m,最大值为M,则Mm的值为()A. 0B. 1C. 2D. 38. 设平面直角坐标系xOy中,点A(2,3),点B在直线y=2x上,若|AB|=√10,则点B的坐标为()A. (1,2)B. (2,4)C. (1,2)D. (1,2)9. 已知数列{an}的通项公式为an=2n+1,则数列的前n项和为()A. n²B. n²+1C. n²+nD. 2n²+2n10. 若函数f(x)=x³3x在区间(1,2)上的最大值为M,最小值为m,则M+m的值为()A. 0B. 1C. 2D. 311. 在平行四边形ABCD中,若AB=3,BC=4,∠ABC=120°,则平行四边形ABCD的面积为()A. 6B. 8C. 10D. 1212. 已知函数f(x)=x²+ax+b,若f(x)在区间(∞,1)上单调递减,在区间(1,+∞)上单调递增,且f(0)=4,则函数f(x)的零点个数为()A. 0B. 1C. 2D. 3二、填空题(本大题共4小题,每小题5分,共20分)13. 已知等差数列{an}的公差为2,且a1+a3+a5=21,则a4的值为______。
高考数学试卷三卷答案解析

一、选择题1. 答案:C解析:此题考查了函数的奇偶性。
首先,将函数f(x) = x^3 + 2x^2 - 3x在x=0处代入,得到f(0) = 0,说明函数在原点有定义。
然后,将x替换为-x,得到f(-x) = (-x)^3 + 2(-x)^2 - 3(-x) = -x^3 + 2x^2 + 3x。
由于f(-x) ≠ f(x),说明函数不是偶函数;同时,f(-x) ≠ -f(x),说明函数也不是奇函数。
因此,选项C正确。
2. 答案:A解析:此题考查了数列的通项公式。
根据题意,数列{an}是一个等差数列,首项a1 = 1,公差d = 2。
因此,数列的通项公式为an = a1 + (n - 1)d = 1 + 2(n - 1) = 2n - 1。
代入n = 10,得到a10 = 210 - 1 = 19。
所以,选项A正确。
3. 答案:B解析:此题考查了复数的运算。
根据题意,已知复数z = 1 + i,求复数z的平方。
计算z^2 = (1 + i)^2 = 1^2 + 21i + i^2 = 1 + 2i - 1 = 2i。
因此,选项B正确。
4. 答案:D解析:此题考查了三角函数的性质。
根据题意,已知sin(α + β) = sinαcosβ + cosαsinβ,sin(α - β) = sinαcosβ - cosαsinβ。
将这两个式子相加,得到sin(α + β) + sin(α - β) = 2sinαcosβ。
由于cosβ ≠ 0,可以除以cosβ,得到sin(α + β) + sin(α - β) = 2sinα。
因此,选项D正确。
5. 答案:C解析:此题考查了平面几何中的线段比例。
根据题意,已知三角形ABC中,D、E、F分别为AB、BC、AC上的点,且AD:DB = 2:1,BE:EC = 3:1。
根据线段比例的性质,可以得到AD:AB = 2:3,BE:BC = 3:4。
因此,选项C正确。
2020年新高考III卷数学代数运算题及答案

2020年新高考III卷数学代数运算题及答案题目一:简化并求值已知实数a满足a^2 + a - 2 = 0,求a + a^2 + a^3 + ... + a^2020的值。
解析:首先,我们可以通过求解方程a^2 + a - 2 = 0来得到a的值。
这是一个二次方程,可使用因式分解或配方法求解。
对于此题,我们选择因式分解的方法:(a + 2)(a - 1) = 0解得:a = -2 或 a = 1因此,a的值可以是-2或1。
接下来,我们需要计算a + a^2 + a^3+ ... + a^2020的值。
当a = -2时,代入到数列中,我们可以得到:(-2) + (-2)^2 + (-2)^3 + ... + (-2)^2020注意到这是一个等比数列,首项为-2,公比为-2。
根据等比数列的求和公式,我们可以得到:S1 = (-2) * (1 - (-2)^2021) / (1 - (-2))= (-2) * (1 - 2^2021) / 3当a = 1时,代入到数列中,我们可以得到:1 + 1^2 + 1^3 + ... + 1^2020注意到这是一个等差数列,首项为1,公差为0。
根据等差数列的求和公式,我们可以得到:S2 = 2020综上所述,a + a^2 + a^3 + ... + a^2020的值为:(-2) * (1 - 2^2021) / 3 + 2020题目二:解线性方程组已知二元线性方程组:2x + 5y = 17x - 3y = 9求解方程组的解。
解析:我们可以使用消元法或代入法来解线性方程组。
首先,我们使用消元法。
将第二个方程乘以2,得到:2x - 6y = 18将第一个方程与新方程相加,得到:(2x + 5y) + (2x - 6y) = 17 + 184x - y = 35现在,我们有两个方程:4x - y = 35x - 3y = 9将第二个方程乘以4,得到:4x - 12y = 36将新方程与第一个方程相加,得到:(4x - y) + (4x - 12y) = 35 + 368x - 13y = 71我们得到了一个新的方程:8x - 13y = 71现在,我们有两个方程:4x - y = 358x - 13y = 71通过消元法,我们得到x = 4和y = -3。
高考真题三卷数学答案解析

高考真题三卷数学答案解析高考对于每个学生来说都是一场重要的考试,尤其是数学科目。
数学是一门需要逻辑思维和解决问题能力的科目,因此高考数学题目往往复杂且考查深度较高。
为了帮助同学们更好地理解和解答高考数学题目,下面将对高考真题三卷数学答案进行解析。
首先,我们来看看第一卷中的选择题。
选择题是高考中数学部分的重要组成部分。
在解答选择题时,我们不仅需要运用正确的数学知识,还需要灵活应用解题技巧。
例如,第一题是可以通过列方程的方法来解答的。
我们要先设x表示甲的年龄,那么乙的年龄就是x+2。
根据题目中的条件,我们可以得到一个方程2x+(x+2)=12,最后求解出x 的值等于4,即甲的年龄为4岁。
接着,我们来看看第二卷中的计算题。
计算题是考查学生数学运算能力的重要环节。
在解答计算题时,我们首先要仔细审题,理清思路,然后进行计算。
例如,第二卷中的第五题是一道二次函数求解的题目。
我们首先要将二次函数写成标准形式,然后运用求根公式来求解。
最后得到的解是x=1和x=2,即该二次函数与x轴有两个交点。
最后,我们来看看第三卷中的解答题。
解答题是考查学生综合运用数学知识和解决实际问题的能力。
在解答解答题时,我们需要耐心阅读题目,理解题意,然后展开思考,分析问题,解决问题。
例如,第三卷中的第八题是一道概率题目。
我们要通过计算概率的定义来求解。
根据题目中的条件,我们知道袋子中共有10个球,其中6个是红球,4个是蓝球。
我们的目标是从袋子中随机取出两个球,且两个球的颜色相同。
我们可以分别计算取出两个红球和取出两个蓝球的概率,然后将两者相加即可得到最终结果。
综上所述,高考数学题目的解答需要我们运用正确的数学知识,灵活运用解题技巧,并注意审题和推理分析。
通过对高考真题三卷数学答案的解析,我们可以更好地理解和掌握高考数学题型的解题方法,从而提高解答题目的准确性和速度。
同学们在备考高考数学时,可以多做一些真题,加深对数学知识点的理解和运用,提高解题的能力和自信心。
历年(2020-2024)全国高考数学真题分类(解三角形大题)汇编(附答案)

历年(2020-2024)全国高考数学真题分类(解三角形大题)汇编考点01 求面积的值及范围或最值1.(2024∙北京∙高考真题)在ABC 中,内角,,A B C 的对边分别为,,a b c ,A ∠为钝角,7a =,sin 2cos B B =.(1)求A ∠;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC 存在,求ABC 的面积.条件①:7b =;条件②:13cos 14B =;条件③:sin c A =注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.2.(2023∙全国甲卷∙高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知2222cos b c aA+-=.(1)求bc ; (2)若cos cos 1cos cos a B b A ba Bb A c--=+,求ABC 面积.3.(2023∙全国乙卷∙高考真题)在ABC 中,已知120BAC ∠=︒,2AB =,1AC =. (1)求sin ABC ∠;(2)若D 为BC 上一点,且90BAD ∠=︒,求ADC △的面积.4.(2022∙浙江∙高考真题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知34,cos 5a C ==. (1)求sin A 的值;(2)若11b =,求ABC 的面积.考点02 求边长、周长的值及范围或最值1.(2024∙全国新Ⅱ卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A =. (1)求A .(2)若2a =sin sin 2C c B =,求ABC 的周长.2.(2024∙全国新Ⅰ卷∙高考真题)记ABC 的内角A 、B 、C 的对边分别为a ,b ,c ,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC 的面积为3c .3.(2023∙全国新Ⅱ卷∙高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知ABCD 为BC 中点,且1AD =.(1)若π3ADC ∠=,求tan B ; (2)若228b c +=,求,b c .4.(2022∙全国新Ⅱ卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知123123S S S B -+==. (1)求ABC 的面积;(2)若sin sin 3A C =,求b . 5.(2022∙全国乙卷∙高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+; (2)若255,cos 31a A ==,求ABC 的周长.6.(2022∙北京∙高考真题)在ABC 中,sin 2C C =. (1)求C ∠;(2)若6b =,且ABC 的面积为ABC 的周长.7.(2022∙全国新Ⅰ卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ; (2)求222a b c +的最小值.8.(2020∙全国∙高考真题)ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a,b ,求ABC 的面积;(2)若sin AC C . 9.(2020∙全国∙高考真题)ABC 中,sin 2A -sin 2B -sin 2C =sin B sin .C(1)求A ;(2)若BC =3,求ABC 周长的最大值.考点03 求角和三角函数的值及范围或最值1.(2024∙天津∙高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a Bbc ===,,. (1)求a ; (2)求sin A ;(3)求()cos 2B A -的值.2.(2023∙天津∙高考真题)在ABC 中,角,,A B C 所对的边分别是,,a b c .已知2,120a b A ==∠= . (1)求sin B 的值; (2)求c 的值; (3)求()sin B C -的值.3.(2022∙天津∙高考真题)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ===-.(1)求c 的值; (2)求sin B 的值; (3)求sin(2)A B -的值.4.(2021∙天津∙高考真题)在ABC ,角 ,,A B C 所对的边分别为,,a b c ,已知sin :sin :sin 2A B C =b =. (I )求a 的值; (II )求cos C 的值;(III )求sin 26C π⎛⎫- ⎪⎝⎭的值.5.(2021∙全国新Ⅰ卷∙高考真题)记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=. (1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.6.(2020∙天津∙高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c .已知 5,a b c === (Ⅰ)求角C 的大小; (Ⅱ)求sin A 的值;(Ⅲ)求sin 24A π⎛⎫+ ⎪⎝⎭的值.7.(2020∙浙江∙高考真题)在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin 0b A =. (I )求角B 的大小;(II )求cos A +cos B +cos C 的取值范围.8.(2020∙江苏∙高考真题)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知3,45a c B ==︒.(1)求sin C 的值;(2)在边BC 上取一点D ,使得4cos 5ADC ∠=-,求tan DAC ∠的值.考点04 求三角形的高、中线、角平分线及其他线段长1.(2023∙全国新Ⅰ卷∙高考真题)已知在ABC 中,()3,2sin sin A B C A C B +=-=. (1)求sin A ;(2)设5AB =,求AB 边上的高.考点05 三角形中的证明问题1.(2022∙全国乙卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-.(1)若2A B =,求C ; (2)证明:2222a b c =+2.(2021∙全国新Ⅰ卷∙高考真题)记ABC 是内角A ,B ,C 的对边分别为a ,b ,c .已知2b ac =,点D 在边AC 上,sin sin BD ABC a C ∠=. (1)证明:BD b =;(2)若2AD DC =,求cos ABC ∠.参考答案考点01 求面积的值及范围或最值1.(2024∙北京∙高考真题)在ABC 中,内角,,A B C 的对边分别为,,a b c ,A ∠为钝角,7a =,sin 2cos B B =.(1)求A ∠;(2)从条件①、条件②、条件③这三个条件中选择一个作为已知,使得ABC 存在,求ABC 的面积. 条件①:7b =;条件②:13cos 14B =;条件③:sin c A =注:如果选择的条件不符合要求,第(2)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分. 【答案】(1)2π3A =; (2)选择①无解;选择②和③△ABC【详细分析】(1)利用正弦定理即可求出答案; (2)选择①,利用正弦定理得3B π=,结合(1)问答案即可排除;选择②,首先求出sin 14B =,再代入式子得3b =,再利用两角和的正弦公式即可求出sin C ,最后利用三角形面积公式即可;选择③,首先得到5c =,再利用正弦定理得到sin 14C =,再利用两角和的正弦公式即可求出sin B ,最后利用三角形面积公式即可;【答案详解】(1)由题意得2sin cos cos B B B =,因为A 为钝角, 则cos 0B ≠,则2sin 7B b =,则7sin sin sin b a BA A ===,解得sin 2A =, 因为A 为钝角,则2π3A =. (2)选择①7b =,则sin 7B ===2π3A =,则B 为锐角,则3B π=, 此时πA B +=,不合题意,舍弃;选择②13cos 14B =,因为B为三角形内角,则sin 14B ==,则代入2sin 7B =得2147⨯=,解得3b =,()2π2π2πsin sin sin sin cos cos sin 333C A B B B B ⎛⎫=+=+=+ ⎪⎝⎭131********⎛⎫=+-⨯= ⎪⎝⎭,则11sin 7322ABC S ab C ==⨯⨯=选择③sin c A =2c ⨯=5c =,则由正弦定理得sin sin a c A C =5sin C ,解得sin C =,因为C 为三角形内角,则11cos 14C ==, 则()2π2π2πsin sin sin sin cos cos sin 333B A C C C C ⎛⎫=+=+=+⎪⎝⎭11121421414⎛⎫=+-⨯= ⎪⎝⎭,则11sin 7522144ABC S ac B ==⨯⨯⨯=△ 2.(2023∙全国甲卷∙高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知2222cos b c a A+-=.(1)求bc ; (2)若cos cos 1cos cos a B b A ba Bb A c--=+,求ABC 面积.【答案】(1)1(2)4【详细分析】(1)根据余弦定理即可解出;(2)由(1)可知,只需求出sin A 即可得到三角形面积,对等式恒等变换,即可解出.【答案详解】(1)因为2222cos a b c bc A =+-,所以2222cos 22cos cos b c a bc Abc A A+-===,解得:1bc =.(2)由正弦定理可得cos cos sin cos sin cos sin cos cos sin cos sin cos sin a B b A b A B B A Ba Bb Ac A B B A C---=-++()()()()()sin sin sin sin 1sin sin sin A B A B B BA B A B A B ---=-==+++,变形可得:()()sin sin sin A B A B B --+=,即2cos sin sin A B B -=,而0sin 1B <≤,所以1cos 2A =-,又0πA <<,所以sin 2A =,故ABC的面积为11sin 122ABC S bc A ==⨯△.3.(2023∙全国乙卷∙高考真题)在ABC 中,已知120BAC ∠=︒,2AB =,1AC =. (1)求sin ABC ∠;(2)若D 为BC 上一点,且90BAD ∠=︒,求ADC △的面积. 【答案】(1)14;【详细分析】(1)首先由余弦定理求得边长BC的值为BCcos 14B =,最后由同角三角函数基本关系可得sin 14B =; (2)由题意可得4ABDACD S S =△△,则15ACD ABC S S =△△,据此即可求得ADC △的面积. 【答案详解】(1)由余弦定理可得:22222cos BC a b c bc A ==+-41221cos1207=+-⨯⨯⨯= ,则BC =222cos 214a c b B ac +-===,sin ABC ∠==(2)由三角形面积公式可得1sin 90241sin 302ABD ACDAB AD S S AC AD ⨯⨯⨯==⨯⨯⨯ △△,则11121sin12055210ACD ABC S S ⎛⎫==⨯⨯⨯⨯=⎪⎝⎭△△. 4.(2022∙浙江∙高考真题)在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c.已知34,cos 5a C ==. (1)求sin A 的值;(2)若11b =,求ABC 的面积. 【答案】;(2)22.【详细分析】(1)先由平方关系求出sin C ,再根据正弦定理即可解出;(2)根据余弦定理的推论222cos 2a b c C ab +-=以及4a =可解出a ,即可由三角形面积公式in 12s S ab C =求出面积.【答案详解】(1)由于3cos 5C =, 0πC <<,则4sin 5C =.因为4a =,由正弦定理知4sin A C =,则sin 45A C ==. (2)因为4a ,由余弦定理,得2222221612111355cos 22225a a aa b c C ab a a +--+-====, 即26550a a +-=,解得5a =,而4sin 5C =,11b =, 所以ABC 的面积114sin 51122225S ab C ==⨯⨯⨯=.5.(2019∙全国∙高考真题)ABC ∆的内角,,A B C 的对边分别为,,a b c ,已知sin sin 2A Ca b A +=. (1)求B ;(2)若ABC ∆为锐角三角形,且1c =,求ABC ∆面积的取值范围. 【答案】(1) 3B π=;(2). 【详细分析】(1)利用正弦定理化简题中等式,得到关于B 的三角方程,最后根据A,B,C 均为三角形内角解得3B π=.(2)根据三角形面积公式1sin 2ABC S ac B =⋅ ,又根据正弦定理和1c =得到ABC S 关于C 的函数,由于ABC 是锐角三角形,所以利用三个内角都小于2π来计算C 的定义域,最后求解()ABC S C 的值域.【答案详解】(1)[方法一]【最优解:利用三角形内角和为π结合正弦定理求角度】 由三角形的内角和定理得222A C Bπ+=-, 此时sinsin 2A C a b A +=就变为sin sin 22B a b A π⎛⎫-= ⎪⎝⎭. 由诱导公式得sin cos 222B B π⎛⎫-= ⎪⎝⎭,所以cos sin 2B a b A =.在ABC 中,由正弦定理知2sin ,2sin a R A b R B ==, 此时就有sin cossin sin 2BA AB =,即cos sin 2B B =,再由二倍角的正弦公式得cos2sin cos 222B B B=,解得3B π=. [方法二]【利用正弦定理解方程求得cos B 的值可得B ∠的值】 由解法1得sin sin 2A CB +=, 两边平方得22sinsin 2A CB +=,即21cos()sin 2A CB -+=. 又180A BC ++=︒,即cos()cos A C B +=-,所以21cos 2sin B B +=, 进一步整理得22cos cos 10B B +-=, 解得1cos 2B =,因此3B π=. [方法三]【利用正弦定理结合三角形内角和为π求得,,A BC 的比例关系】 根据题意sinsin 2A Ca b A +=,由正弦定理得sin sin sin sin 2A C A B A +=, 因为0A π<<,故sin 0A >, 消去sin A 得sin sin 2A CB +=. 0<B π<,02A C π+<<,因为故2A C B +=或者2A CB π++=, 而根据题意A BC π++=,故2A C B π++=不成立,所以2A CB +=, 又因为A BC π++=,代入得3B π=,所以3B π=.(2)[方法一]【最优解:利用锐角三角形求得C 的范围,然后由面积函数求面积的取值范围】 因为ABC 是锐角三角形,又3B π=,所以,6262A C ππππ<<<<, 则1sin 2ABCS ac B ==V 22sin 1sin 3sin 24sin 4sin C a A c B c C Cπ⎛⎫- ⎪⎝⎭⋅⋅=⋅=⋅=22sincos cos sin 333sin 8tan C CC C ππ-=. 因为,62C ππ⎛⎫∈ ⎪⎝⎭,所以tan C ⎫∈+∞⎪⎪⎝⎭,则1tan C ∈,从而ABC S ⎝⎭∈ ,故ABC面积的取值范围是82⎫⎪⎪⎝⎭. [方法二]【由题意求得边a 的取值范围,然后结合面积公式求面积的取值范围】 由题设及(1)知ABC的面积4ABC S a =△. 因为ABC 为锐角三角形,且1,3c B π==,所以22221cos 0,21cos 0,2b a A bb a C ab ⎧+-=>⎪⎪⎨+-⎪=>⎪⎩即22221010.b a b a ⎧+->⎨+->⎩, 又由余弦定理得221b a a =+-,所以220,20,a a a ->⎧⎨->⎩即122a <<,所以82ABC S << ,故ABC面积的取值范围是⎝⎭. [方法三]【数形结合,利用极限的思想求解三角形面积的取值范围】如图,在ABC 中,过点A 作1AC BC ⊥,垂足为1C ,作2AC AB ⊥与BC 交于点2C . 由题设及(1)知ABC的面积ABC S =△,因为ABC 为锐角三角形,且1,3c B π==,所以点C 位于在线段12C C 上且不含端点,从而cos cos cc B a B⋅<<, 即1cos3cos 3a ππ<<,即122a <<,所以82ABC S << , 故ABC面积的取值范围是82⎛⎫⎪ ⎪⎝⎭.【整体点评】(1)方法一:正弦定理是解三角形的核心定理,与三角形内角和相结合是常用的方法; 方法二:方程思想是解题的关键,解三角形的问题可以利用余弦值确定角度值; 方法三:由正弦定理结合角度关系可得内角的比例关系,从而确定角的大小. (2)方法一:由题意结合角度的范围求解面积的范围是常规的做法;方法二:将面积问题转化为边长的问题,然后求解边长的范围可得面积的范围;方法三:极限思想和数形结合体现了思维的灵活性,要求学生对几何有深刻的认识和灵活的应用.6.(2017∙全国∙高考真题)ABC ∆的内角,,A B C 的对边分别为,,,a b c已知sin 0,2A A a b +===.(1)求角A 和边长c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD ∆的面积. 【答案】(1)23π,4;(2【答案详解】试题详细分析:(1)先根据同角的三角函数的关系求出tan A = 从而可得A 的值,再根据余弦定理列方程即可求出边长c 的值;(2)先根据余弦定理求出cos C ,求出CD 的长,可得12CD BC =,从而得到12ABD ABC S S ∆∆=,进而可得结果. 试题解析:(1)sin 0,tan A A A =∴= 20,3A A ππ<<∴=,由余弦定理可得2222cos a b c bc A =+-,即21284222c c ⎛⎫=+-⨯⨯- ⎪⎝⎭,即22240c c +-=,解得6c =-(舍去)或4c =,故4c =. (2)2222cos c b a ab C =+-Q,1628422cos C ∴=+-⨯⨯,2cos 2cos AC C CD C ∴=∴===12CD BC ∴=,1142222ABC S AB AC sin BAC ∆∴=⋅⋅∠=⨯⨯⨯=12ABD ABC S S ∆∆∴==7.(2016∙全国∙高考真题)ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知2cos (cos cos )C a B b A c +=. (1)求角C ;(2)若c =2ABC S ∆=,求ABC ∆的周长. 【答案】(1)3C π=(2)5【答案详解】试题详细分析:(1)根据正弦定理把2cos (cos cos )C a B b A c +=化成2cos (sin cos sin cos )sin C A B B A C +=,利用和角公式可得1cos ,2C =从而求得角C ;(2)根据三角形的面积和角C 的值求得6ab =,由余弦定理求得边a 得到ABC ∆的周长. 试题解析:(1)由已知可得2cos (sin cos sin cos )sin C A B B A C += 12cos sin()sin cos 23π∴+=⇒=⇒=C A B C C C (2)11sin 6222∆=⇒=⇒=ABC S ab C ab ab又2222cos +-= a b ab C c2213a b ∴+=,2()255∴+=⇒+=a b a bABC ∆∴的周长为5考点:正余弦定理解三角形.8.(2015∙浙江∙高考真题)在ABC ∆中,内角A ,B ,C 所对的边分别为,,a b c .已知tan()24A π+=.(1)求2sin 2sin 2cos AA A+的值;(2)若,34B a π==,求ABC ∆的面积. 【答案】(1)25;(2)9 【答案详解】(1)利用两角和与差的正切公式,得到1tan 3A =,利用同角三角函数基本函数关系式得到结论;(2)利用正弦定理得到边b 的值,根据三角形,两边一夹角的面积公式计算得到三角形的面积.试题解析:(1)由tan()24A π+=,得1tan 3A =,所以22sin 22sin cos 2tan 2sin 2cos 2sin cos cos 2tan 15A A A A A A A A A A ===+++.(2)由1tan 3A =可得,sin A A ==3,4a B π==,由正弦定理知:b =又sin sin()sin cos cos sin 5C A B A B A B =+=+=,所以11sin 3922ABC S ab C ∆==⨯⨯=. 考点:1.同角三角函数基本关系式;2.正弦定理;3.三角形面积公式.9.(2015∙全国∙高考真题)已知,,a b c 分别是ABC ∆内角,,A B C 的对边, 2sin 2sin sin B A C =. (1)若a b =,求cos ;B(2)若90B = ,且a =求ABC ∆的面积. 【答案】(1)14;(2)1 【答案详解】试题详细分析:(1)由2sin 2sin sin B A C =,结合正弦定理可得:22b ac =,再利用余弦定理即可得出cos ;B(2)利用(1)及勾股定理可得c ,再利用三角形面积计算公式即可得出 试题解析:(1)由题设及正弦定理可得22b ac = 又a b =,可得2,2b c a c ==由余弦定理可得2221cos 24a c b B ac +-==(2)由(1)知22b ac =因为90B = ,由勾股定理得222a c b += 故222a c ac +=,得c a == 所以的面积为1考点:正弦定理,余弦定理解三角形10.(2015∙山东∙高考真题)设()2sin cos cos 4f x x x x π⎛⎫=-+ ⎪⎝⎭.(Ⅰ)求()f x 的单调区间;(Ⅱ)在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c ,若0,12A f a ⎛⎫== ⎪⎝⎭,求ABC ∆面积的最大值.【答案】(Ⅰ)单调递增区间是(),44k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;单调递减区间是()3,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦(Ⅱ)ABC ∆【答案详解】试题详细分析:(Ⅰ)首先利用二倍角公式化简函数()f x 的解析式,再利用正弦函数的单调性求其单调区间;(Ⅱ)首先由02A f ⎛⎫= ⎪⎝⎭结合(Ⅰ)的结果,确定角A 的值,然后结合余弦定理求出三角形ABC ∆面积的最大值. 试题解析:解:(Ⅰ)由题意知()1cos 2sin 2222x x f x π⎛⎫++ ⎪⎝⎭=-sin 21sin 21sin 2222x x x -=-=- 由222,22k x k k Z ππππ-+≤≤+∈ 可得,44k x k k Z ππππ-+≤≤+∈由3222,22k x k k Z ππππ+≤≤+∈ 可得3,44k x k k Z ππππ+≤≤+∈所以函数()f x 的单调递增区间是(),44k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦;单调递减区间是()3,44k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦ (Ⅱ)由1sin 0,22A f A ⎛⎫=-= ⎪⎝⎭得1sin 2A =由题意知A 为锐角,所以cos 2A =由余弦定理:2222cos a b c bc A =+-可得:2212b c bc =+≥即:2bc ≤ 当且仅当b c =时等号成立.因此1sin 2bc A ≤所以ABC ∆面积的最大值为24考点:1、诱导公式;2、三角函数的二倍角公式;3、余弦定理;4、基本不等式.考点02 求边长、周长的值及范围或最值1.(2024∙全国新Ⅱ卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 2A A =. (1)求A .(2)若2a =sin sin 2C c B =,求ABC 的周长. 【答案】(1)π6A =(2)2+【详细分析】(1)根据辅助角公式对条件sin 2A A =进行化简处理即可求解,常规方法还可利用同角三角函数的关系解方程组,亦可利用导数,向量数量积公式,万能公式解决; (2)先根据正弦定理边角互化算出B ,然后根据正弦定理算出,b c 即可得出周长. 【答案详解】(1)方法一:常规方法(辅助角公式)由sin 2A A =可得1sin 12A A =,即sin()1π3A +=,由于ππ4π(0,π)(,333A A ∈⇒+∈,故ππ32A +=,解得π6A = 方法二:常规方法(同角三角函数的基本关系)由sin 2A A =,又22sin cos 1A A +=,消去sin A 得到:224cos 30(2cos 0A A A -+=⇔=,解得cos A = 又(0,π)A ∈,故π6A =方法三:利用极值点求解设()sin (0π)f x x x x =<<,则π()2sin (0π)3f x x x ⎛⎫=+<< ⎪⎝⎭,显然π6x =时,max ()2f x =,注意到π()sin 22sin(3f A A A A =+==+,max ()()f x f A =,在开区间(0,π)上取到最大值,于是x A =必定是极值点,即()0cos f A A A '==,即tan A = 又(0,π)A ∈,故π6A =方法四:利用向量数量积公式(柯西不等式)设(sin ,cos )a b A A == ,由题意,sin 2a b A A ⋅==,根据向量的数量积公式,cos ,2cos ,a b a b a b a b ⋅==, 则2cos ,2cos ,1a b a b =⇔= ,此时,0a b =,即,a b 同向共线,根据向量共线条件,1cos sin tan 3A A A ⋅=⇔=, 又(0,π)A ∈,故π6A =方法五:利用万能公式求解设tan 2A t =,根据万能公式,22sin 21t A A t ==+整理可得,2222(2(20((2t t t -+==-,解得tan22A t ==22tan 13t A t ==-, 又(0,π)A ∈,故π6A =(2)由题设条件和正弦定理sin sin 2sin 2sin sin cos C c B B C C B B =⇔=,又,(0,π)B C ∈,则sin sin 0B C ≠,进而cos B =π4B =,于是7ππ12C A B =--=,sin sin(π)sin()sin cos sin cos 4C A B A B A B B A =--=+=+=, 由正弦定理可得,sin sin sin a b cA B C ==,即2ππ7πsin sin sin6412b c==,解得b c == 故ABC的周长为2+2.(2024∙全国新Ⅰ卷∙高考真题)记ABC 的内角A 、B 、C 的对边分别为a ,b ,c,已知sin C B =,222a b c +-=(1)求B ;(2)若ABC的面积为3c . 【答案】(1)π3B =(2)【详细分析】(1)由余弦定理、平方关系依次求出cos ,sin C C,最后结合已知sin C B =得cos B 的值即可;(2)首先求出,,A B C ,然后由正弦定理可将,a b 均用含有c 的式子表示,结合三角形面积公式即可列方程求解.【答案详解】(1)由余弦定理有2222cos a b c ab C +-=,对比已知222a b c +-=,可得222cos 222a b c C ab ab +-===, 因为()0,πC ∈,所以sin 0C >,从而sin 2C ===,又因为sin C B =,即1cos 2B =, 注意到()0,πB ∈, 所以π3B =. (2)由(1)可得π3B =,cos 2C =,()0,πC ∈,从而π4C =,ππ5ππ3412A =--=,而5πππ1sin sin sin 124622224A ⎛⎫⎛⎫==+=+= ⎪ ⎪⎝⎭⎝⎭,由正弦定理有5πππsin sin sin 1234a b c==,从而1,4222a cbc +====, 由三角形面积公式可知,ABC 的面积可表示为21113sin 222228ABC S ab C c c ==⋅⋅= , 由已知ABC的面积为323=所以c =3.(2023∙全国新Ⅱ卷∙高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知ABCD 为BC 中点,且1AD =. (1)若π3ADC ∠=,求tan B ; (2)若228b c +=,求,b c . 【答案】(2)2b c ==.【详细分析】(1)方法1,利用三角形面积公式求出a ,再利用余弦定理求解作答;方法2,利用三角形面积公式求出a ,作出BC 边上的高,利用直角三角形求解作答.(2)方法1,利用余弦定理求出a ,再利用三角形面积公式求出ADC ∠即可求解作答;方法2,利用向量运算律建立关系求出a ,再利用三角形面积公式求出ADC ∠即可求解作答. 【答案详解】(1)方法1:在ABC 中,因为D 为BC 中点,π3ADC ∠=,1AD =,则1111sin 12222ADC ABC S AD DC ADC a S =⋅∠=⨯⨯===,解得4a =, 在ABD △中,2π3ADB ∠=,由余弦定理得2222cos c BD AD BD AD ADB =+-⋅∠, 即2141221()72c =+-⨯⨯⨯-=,解得c =cos 14B ==,sin B ===,所以sin tan cos 5B B B ==. 方法2:在ABC 中,因为D 为BC 中点,π3ADC ∠=,1AD =,则1111sin 12222ADC ABC S AD DC ADC a S =⋅∠=⨯⨯===,解得4a =, 在ACD 中,由余弦定理得2222cos b CD AD CD AD ADC =+-⋅∠,即214122132b =+-⨯⨯⨯=,解得b =,有2224AC AD CD +==,则π2CAD ∠=,π6C =,过A 作AE BC ⊥于E,于是3cos ,sin 2CE AC C AE AC C ====,52BE =,所以tan 5AE B BE ==. (2)方法1:在ABD △与ACD 中,由余弦定理得222211121cos(π)4211121cos 42c a a ADC b a a ADC ⎧=+-⨯⨯⨯-∠⎪⎪⎨⎪=+-⨯⨯⨯∠⎪⎩,整理得222122a b c +=+,而228b c +=,则a =,又11sin 22ADC S ADC =⨯∠=,解得sin 1ADC ∠=,而0πADC <∠<,于是π2ADC ∠=,所以2b c ===.方法2:在ABC 中,因为D 为BC 中点,则2AD AB AC =+ ,又CB AB AC =-,于是2222224()()2()16AD CB AB AC AB AC b c +=++-=+= ,即2416a +=,解得a =,又11sin 2ADC S ADC =⨯∠ sin 1ADC ∠=,而0πADC <∠<,于是π2ADC ∠=,所以2b c ===.4.(2022∙全国新Ⅱ卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S,已知123123S S S B -+==. (1)求ABC 的面积; (2)若sin sin 3A C =,求b . 【答案】(2)12【详细分析】(1)先表示出123,,S S S,再由1232S S S -+=求得2222a c b +-=,结合余弦定理及平方关系求得ac ,再由面积公式求解即可;(2)由正弦定理得22sin sin sin b acB AC =,即可求解.【答案详解】(1)由题意得22221231,,22444S a a S b S c =⋅⋅===,则222123S S S -+==, 即2222a c b +-=,由余弦定理得222cos 2a c b B ac +-=,整理得cos 1ac B =,则cos 0B >,又1sin 3B =,则cos 3B ==,1cos 4ac B ==,则1sin 28ABC S ac B == ; (2)由正弦定理得:sin sin sin b a c B A C ==,则229sin sin sin sin sin 43b ac ac B A C A C =⋅==,则3sin 2b B =,31sin 22b B ==. 5.(2022∙全国乙卷∙高考真题)记ABC 的内角,,A B C 的对边分别为,,a b c ,已知sin sin()sin sin()C A B B C A -=-.(1)证明:2222a b c =+; (2)若255,cos 31a A ==,求ABC 的周长. 【答案】(1)见解析 (2)14【详细分析】(1)利用两角差的正弦公式化简,再根据正弦定理和余弦定理化角为边,从而即可得证; (2)根据(1)的结论结合余弦定理求出bc ,从而可求得b c +,即可得解. 【答案详解】(1)证明:因为()()sin sin sin sin C A B B C A -=-, 所以sin sin cos sin sin cos sin sin cos sin sin cos C A B C B A B C A B A C -=-,所以2222222222222a c b b c a a b c ac bc ab ac bc ab +-+-+-⋅-⋅=-⋅, 即()22222222222a cb a bc b c a +-+--+-=-, 所以2222a b c =+;(2)解:因为255,cos 31a A ==, 由(1)得2250bc +=,由余弦定理可得2222cos a b c bc A =+-, 则50502531bc -=, 所以312bc =, 故()2222503181b c b c bc +=++=+=, 所以9b c +=,所以ABC 的周长为14a b c ++=.6.(2022∙北京∙高考真题)在ABC 中,sin 2C C =. (1)求C ∠;(2)若6b =,且ABC 的面积为ABC 的周长. 【答案】(1)6π(2)6+【详细分析】(1)利用二倍角的正弦公式化简可得cos C 的值,结合角C 的取值范围可求得角C 的值; (2)利用三角形的面积公式可求得a 的值,由余弦定理可求得c 的值,即可求得ABC 的周长.【答案详解】(1)解:因为()0,C π∈,则sin 0C >2sin cos C C C =,可得cos 2C =,因此,6C π=.(2)解:由三角形的面积公式可得13sin 22ABC S ab C a === ,解得a =.由余弦定理可得2222cos 48362612c a b ab C =+-=+-⨯=,c ∴=所以,ABC 的周长为6a b c ++=.7.(2022∙全国新Ⅰ卷∙高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ; (2)求222a b c +的最小值.【答案】(1)π6;(2)5.【详细分析】(1)根据二倍角公式以及两角差的余弦公式可将cos sin 21sin 1cos2A BA B=++化成()cos sin A B B +=,再结合π02B <<,即可求出; (2)由(1)知,π2C B =+,π22A B =-,再利用正弦定理以及二倍角公式将222a b c +化成2224cos 5cos B B +-,然后利用基本不等式即可解出. 【答案详解】(1)因为2cos sin 22sin cos sin 1sin 1cos 22cos cos A B B B BA B B B===++,即()1sin cos cos sin sin cos cos 2B A B A B A BC =-=+=-=, 而π02B <<,所以π6B =;(2)由(1)知,sin cos 0B C =->,所以πππ,022C B <<<<, 而πsin cos sin 2B C C ⎛⎫=-=- ⎪⎝⎭,所以π2C B =+,即有π22A B =-,所以30,,,424B C πππ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭所以222222222sin sin cos 21cos sin cos a b A B B Bc C B +++-==()2222222cos 11cos 24cos 555cos cos B BB BB-+-==+-≥=.当且仅当2cos B =222a b c +的最小值为5. 8.(2020∙全国∙高考真题)ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知B =150°.(1)若a,b ,求ABC 的面积;(2)若sin AC =2,求C . 【答案】(1(2)15︒.【详细分析】(1)已知角B 和b 边,结合,a c 关系,由余弦定理建立c 的方程,求解得出,a c ,利用面积公式,即可得出结论;(2)方法一 :将30A C =︒-代入已知等式,由两角差的正弦和辅助角公式,化简得出有关C 角的三角函数值,结合C 的范围,即可求解.【答案详解】(1)由余弦定理可得2222282cos1507b a c ac c ==+-⋅︒=,2,c a ABC ∴==∴△的面积1sin 2S ac B == (2)[方法一]:多角换一角 30A C +=︒ ,sin sin(30)A C C C ∴=︒-1cos sin(30)22C C C ==+︒=, 030,303060C C ︒<<︒∴︒<+︒<︒ ,3045,15C C ∴+︒=︒∴=︒. [方法二]:正弦角化边由正弦定理及150B =︒得22sin sin sin ====a c bR b A C B.故sin ,sin 22==a c A C b b .由sin 2A C =,得a +=.又由余弦定理得22222cos =+-⋅=+b a c ac B a 2+c ,所以()222()2=++a a c ,解得a c =.所以15=︒C .【整体点评】本题考查余弦定理、三角恒等变换解三角形,熟记公式是解题的关键,考查计算求解能力,属于基础题.其中第二问法一主要考查三角恒等变换解三角形,法二则是通过余弦定理找到三边的关系,进而求角.9.(2020∙全国∙高考真题)ABC 中,sin 2A -sin 2B -sin 2C =sin B sin .C(1)求A ;(2)若BC =3,求ABC 周长的最大值.【答案】(1)23π;(2)3+【详细分析】(1)利用正弦定理角化边,配凑出cos A 的形式,进而求得A ;(2)方法一:利用余弦定理可得到()29AC AB AC AB +-⋅=,利用基本不等式可求得AC AB +的最大值,进而得到结果.【答案详解】(1)由正弦定理可得:222BC AC AB AC AB --=⋅,2221cos 22AC AB BC A AC AB +-∴==-⋅,()0,A π∈ ,23A π∴=. (2)[方法一]【最优解】:余弦+不等式由余弦定理得:2222cos BC AC AB AC AB A =+-⋅229AC AB AC AB =++⋅=, 即()29AC AB AC AB +-⋅=.22AC AB AC AB +⎛⎫⋅≤ ⎪⎝⎭(当且仅当AC AB =时取等号), ()()()22223924AC AB AC AB AC AB AC AB AC AB +⎛⎫∴=+-⋅≥+-=+ ⎪⎝⎭,解得:AC AB +≤AC AB =时取等号),ABC ∴周长3L AC AB BC =++≤+ABC ∴周长的最大值为3+[方法二]:正弦化角(通性通法)设,66ππαα=+=-B C ,则66ππα-<<,根据正弦定理可知sin sin sin a b cA B C===,所以sin )b c B C +=+sin sin 66ππαα⎤⎛⎫⎛⎫=++- ⎪ ⎪⎥⎝⎭⎝⎭⎦α=≤,当且仅当0α=,即6B C π==时,等号成立.此时ABC周长的最大值为3+ [方法三]:余弦与三角换元结合在ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .由余弦定理得229b c bc =++,即2213924⎛⎫++= ⎪⎝⎭b c c .令13sin ,20,2b c c θπθθ⎧+=⎪⎛⎫∈⎨ ⎪⎝⎭⎪=⎩,得3sin b c θθ+=6πθ⎛⎫+≤ ⎪⎝⎭,易知当6C π=时,max ()b c +=所以ABC周长的最大值为3+【整体点评】本题考查解三角形的相关知识,涉及到正弦定理角化边的应用、余弦定理的应用、三角形周长最大值的求解问题;方法一:求解周长最大值的关键是能够在余弦定理构造的等式中,结合基本不等式构造不等关系求得最值. 方法二采用正弦定理边化角,利用三角函数的范围进行求解最值,如果三角形是锐角三角形或有限制条件的,则采用此法解决.方法三巧妙利用三角换元,实现边化角,进而转化为正弦函数求最值问题.10.(2018∙全国∙高考真题)在平面四边形ABCD 中,90ADC ∠= ,45A ∠= ,2AB =,5BD =.(1)求cos ADB ∠; (2)若DC =,求BC . 【答案】(1)5;(2)5. 【详细分析】(1)方法一:根据正弦定理得到sin sin BD AB A ADB =∠∠,求得sin 5ADB ∠=,结合角的范围,利用同角三角函数关系式,求得cos 5ADB ∠==;(2)方法一:根据第一问的结论可以求得cos sin 5BDC ADB ∠=∠=,在BCD △中,根据余弦定理即可求出.【答案详解】(1)[方法1]:正弦定理+平方关系在ABD △中,由正弦定理得sin sin BD AB A ADB =∠∠,代入数值并解得sin 5ADB ∠=.又因为BD AB >,所以A ADB ∠>∠,即ADB ∠为锐角,所以cos 5ADB ∠=. [方法2]:余弦定理在ABD △中,2222cos 45BD AB AD AB AD =+-⋅ ,即2254222AD AD =+-⨯⨯⨯,解得:AD =所以,2254cos5ADB +-∠==. [方法3]:【最优解】利用平面几何知识如图,过B 点作BE AD ⊥,垂足为E ,BF CD ⊥,垂足为F .在Rt AEB 中,因为45A ∠=︒,=2AB ,所以AE BE ==.在Rt BED △中,因为5BD =,则DE ===.所以cos ADB ∠=[方法4]:坐标法以D 为坐标原点,DC 为x 轴,DA为y 轴正方向,建立平面直角坐标系(图略).设BDC α∠=,则(5cos ,5sin )B αα.因为45A ∠=︒,所以(0,5sin A α.从而2AB ==,又α是锐角,所以cos 5α=,cos sin ADB α∠===(2)[方法1]:【通性通法】余弦定理在BCD △,由(1)得,cos 5ADB ∠=,()2222cos 90BC BD DC BD DC ADB︒=+-⋅-∠2252525ADB =+-⨯⨯∠=,所以=5BC .[方法2]:【最优解】利用平面几何知识作BF DC ⊥,垂足为F ,易求,BF =FC =,由勾股定理得=5BC .【整体点评】(1)方法一:根据题目条件已知两边和一边对角,利用正弦定理和平方关系解三角形,属于通性通法;方法二:根据题目条件已知两边和一边对角,利用余弦定理解三角形,也属于通性通法; 方法三:根据题意利用几何知识,解直角三角形,简单易算.方法四:建立坐标系,通过两点间的距离公式,将几何问题转化为代数问题,这是解析思想的体现. (2)方法一:已知两边及夹角,利用余弦定理解三角形,是通性通法. 方法二:利用几何知识,解直角三角形,简单易算.11.(2017∙全国∙高考真题)△ABC 的内角、、A B C 的对边分别为a b c 、、,已知△ABC 的面积为23sin a A(1)求sin sin B C ;(2)若6cos cos 1,3,B C a ==求△ABC 的周长.【答案】(1)2sin sin 3B C =(2) 3【答案详解】试题详细分析:(1)由三角形面积公式建立等式21sin 23sin a ac B A=,再利用正弦定理将边化成角,从而得出sin sin B C 的值;(2)由1cos cos 6B C =和2sin sin 3B C =计算出1cos()2B C +=-,从而求出角A ,根据题设和余弦定理可以求出bc 和b c +的值,从而求出ABC 的周长为3+试题解析:(1)由题设得21sin 23sin a ac B A=,即1sin 23sin a c B A =.由正弦定理得1sin sin sin 23sin A C B A =. 故2sin sin 3B C =. (2)由题设及(1)得1cos cos sin sin ,2B C B C -=-,即()1cos 2B C +=-.所以23B C π+=,故3A π=. 由题设得21sin 23sin a bc A A=,即8bc =.由余弦定理得229b c bc +-=,即()239b c bc +-=,得b c +故ABC 的周长为3+点睛:在处理解三角形问题时,要注意抓住题目所给的条件,当题设中给定三角形的面积,可以使用面积公式建立等式,再将所有边的关系转化为角的关系,有时需将角的关系转化为边的关系;解三角形问题常见的一种考题是“已知一条边的长度和它所对的角,求面积或周长的取值范围”或者“已知一条边的长度和它所对的角,再有另外一个条件,求面积或周长的值”,这类问题的通法思路是:全部转化为角的关系,建立函数关系式,如sin()y A x b ωϕ=++,从而求出范围,或利用余弦定理以及基本不等式求范围;求具体的值直接利用余弦定理和给定条件即可.12.(2017∙山东∙高考真题)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知b =3,6AB AC ⋅=-,S △ABC =3,求A 和a .【答案】34A π=,a =【答案详解】试题详细分析:先由数量积公式及三角形面积公式得3cos 613sin 32c A c A =-⎧⎪⎨⨯=⎪⎩,由此求A ,再利用余弦定理求a .试题解析:因为6AB AC ⋅=-, 所以cos 6bc A =-, 又3ABC S =△, 所以sin 6bc A =,因此tan 1A =-,又0πA <<, 所以3π4A =, 又3b =,所以c =由余弦定理2222cos a b c bc A =+-,得29823(a =+-⨯⨯,所以a = 【考点】解三角形【名师点评】正、余弦定理是应用极为广泛的两个定理,它将三角形的边和角有机地联系起来,从而使三角与几何产生联系,为求与三角形有关的量(如面积、外接圆、内切圆半径和面积等)提供了理论依据,也是判断三角形形状、证明三角形中有关等式的重要依据.其主要方法有:化角法,化边法,面积法,运用初等几何法.注意体会其中蕴涵的函数与方程思想、等价转化思想及分类讨论思想.13.(2017∙全国∙高考真题)△ABC 的内角,,A B C 的对边分别为,,a b c ,已知2sin()8sin2B AC +=.(1)求cos B ;(2)若6a c +=,△ABC 的面积为2,求b . 【答案】(1)1517;(2)2. 【答案详解】试题详细分析:(1)利用三角形的内角和定理可知A C B π+=-,再利用诱导公式化简()sin A C +,利用降幂公式化简28sin 2B,结合22sin cos 1B B +=,求出cos B ;(2)由(1)可知8sin 17B =,利用三角形面积公式求出ac ,再利用余弦定理即可求出b . 试题解析:(1)()2sin 8sin2BA C +=,∴()sin 41cosB B =-,∵22sin cos 1B B +=, ∴()22161cos cos 1B B -+=,∴()()17cos 15cos 10B B --=,∴15cos 17B =; (2)由(1)可知8sin 17B =, ∵1sin 22ABC S ac B =⋅=,∴172ac =, ∴()2222222217152cos 2152153617154217b ac ac B a c a c a c ac =+-=+-⨯⨯=+-=+--=--=, ∴2b =.14.(2016∙全国∙高考真题)ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知2cos (cos cos )C a B b A c +=.(1)求角C ;(2)若c =ABC S ∆=ABC ∆的周长.【答案】(1)3C π=(2)5【答案详解】试题详细分析:(1)根据正弦定理把2cos (cos cos )C a B b A c +=化成2cos (sin cos sin cos )sin C A B B A C +=,利用和角公式可得1cos ,2C =从而求得角C ;(2)根据三角形的面积和角C 的值求得6ab =,由余弦定理求得边a 得到ABC ∆的周长. 试题解析:(1)由已知可得2cos (sin cos sin cos )sin C A B B A C += 12cos sin()sin cos 23π∴+=⇒=⇒=C A B C C C(2)11sin 622∆=⇒=⇒=ABC S ab C ab ab 又2222cos +-= a b ab C c2213a b ∴+=,2()255∴+=⇒+=a b a bABC ∆∴的周长为5考点:正余弦定理解三角形.15.(2015∙浙江∙高考真题)在ABC ∆中,内角 A ,B , C 所对的边分别为a , b ,c ,已知 4A π=,22b a -=122c .(1)求tan C 的值;(2)若ABC ∆的面积为3,求 b 的值. 【答案】(1)2;(2)3b =.【答案详解】(1)根据正弦定理可将条件中的边之间的关系转化为角之间满足的关系,再将式 子作三角恒等变形即可求解;(2)根据条件首先求得sin B 的值,再结合正弦定理以及三角 形面积的计算公式即可求解.试题解析:(1)由22212b a c -=及正弦定理得2211sin sin 22B C -=, ∴2cos 2sin B C -=,又由4A π=,即34B C π+=,得cos 2sin 22sin cos B C C C -==,解得tan 2C =;(2)由tan 2C =,(0,)C π∈得sin 5C =,cos 5C =,又∵sin sin()sin()4B A C C π=+=+,∴sin B =3c b =,又∵4A π=,1sin 32bc A =,∴bc =3b =. 考点:1.三角恒等变形;2.正弦定理.16.(2015∙山东∙高考真题)ABC 中,角A B C ,,所对的边分别为,,a b c .已知cos ()39B A B ac =+==求sin A 和c 的值.【答案】,1.3【详细分析】由条件先求得sin sin C A ,,再由正弦定理即可求解.【答案详解】在ABC 中,由cos 3B =,得sin 3B =.因为A B C π++=,所以sin sin()9C A B =+=,因为sin sin C B <,所以C B <,C 为锐角,cos 9C =,因此sin sin()sin cos cos sin A B C B C B C =+=+39393=⨯+⨯=.由sin sin a c A C =,可得sin sin 9cc A a C ===,又ac =1c =.考点03 求角和三角函数的值及范围或最值1.(2024∙天津∙高考真题)在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知92cos 5163a Bbc ===,,. (1)求a ; (2)求sin A ;(3)求()cos 2B A -的值.【答案】(1)4(2)4 (3)5764【详细分析】(1)2,3a t c t ==,利用余弦定理即可得到方程,解出即可;(2)法一:求出sin B ,再利用正弦定理即可;法二:利用余弦定理求出cos A ,则得到sin A ;(3)法一:根据大边对大角确定A 为锐角,则得到cos A ,再利用二倍角公式和两角差的余弦公式即可;法二:直接利用二倍角公式和两角差的余弦公式即可.【答案详解】(1)设2,3a t c t ==,0t >,则根据余弦定理得2222cos b a c ac B =+-,即229254922316t t t t =+-⨯⨯⨯,解得2t =(负舍); 则4,6a c ==.(2)法一:因为B为三角形内角,所以sin B ===再根据正弦定理得sin sin a b A B =,即4sin A =sin A =法二:由余弦定理得2222225643cos 22564b c a A bc +-+-===⨯⨯,因为()0,πA ∈,则sin A ==(3)法一:因为9cos 016B =>,且()0,πB ∈,所以π0,2B ⎛⎫∈ ⎪⎝⎭, 由(2)法一知sin 16B =,。
新高考2021年高三数学高考三模试题卷三附答案解析
新高考2021年高三数学高考三模试题卷三第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合,,则( )A .B .C .D .2.已知复数z 满足,则z 的虚部是( ) A .B .1C .D .i3.“”是“函数在上为增函数”的( ) A .充分而不必要条件 B .必要而不充分条件C .充分必要条件 D .既不充分也不必要条件4.函数的最大值是( ) A .B .C .D .5.垃圾分类,一般是指按一定规定或标准将垃圾分类储存、分类投放和分类搬运,从而转变成公共资源的一系列活动的总称.分类的目的是提高垃圾的资源价值和经济价值,力争物尽其用.进行垃圾分类收集可以减少垃圾处理量和处理设备,降低处理成本,减少土地资源的消耗,具有社会、经济、生态等几方面的效益.已知某种垃圾的分解率与时间(月)满足函数关系式(其中,为非零常数).若经过12个月,这种垃圾的分解率为,经过24个月,这种垃圾的分解率为,那么这种垃圾完全分解(分解率为)至少需要经过( )(参考数据) A .120个月B .64个月C .52个月D .48个月6.如图,是的直径,点、是半圆弧上的两个三等分点,,,则等于( )A .B .C .D .7.已知函数,且)的图象恒过定点,若点在椭圆上,则的最小值为( ) A .12B .10C .8D .98.,,,,五个人站成一排,则和分别站在的两边(可以相邻也可以不相邻)的概率为( ){}ln 1A x x =>{B x y ==()A B =R {}21x x -≤≤{}2x x e -≤≤{}21x x -<≤{}2x x e -<≤2i z z -=1-i -0m ≤()ln f x x mx =-(]0,122sin 2cos 3y x x =+-1-112-5-v t t v a b =⋅a b 10%20%100%lg 20.3≈AB O C D AB AB =a AC =bAD 12-a b 12-a b 12+a b 12+a b 2(0xy aa -=>1a ≠A A 221x y m n+=m n +A B C D E A C BA .B .C .D .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.设等比数列的公比为q ,其前n 项和为,前n 项积为,并满足条件,,,下列结论正确的是( )A .B .C .是数列中的最大值D .数列无最大值10.在中,如下判断正确的是( ) A .若,则为等腰三角形 B .若,则C .若为锐角三角形,则D .若,则11.在平面直角坐标系中,动点与两个定点和连线的斜率之积等于,记点的轨迹为曲线,直线与交于,两点,则( )A .的方程为B .C .的渐近线与圆相切D .满足的直线有2条12.已知函数,若函数有6个不同零点,则实数的可能取值是( ) A .0 B . C .D .第Ⅱ卷三、填空题:本大题共4小题,每小题5分. 13.给出下列说法:①回归直线恒过样本点的中心; ②两个变量相关性越强,则相关系数就越接近1;③某7个数的平均数为4,方差为2,现加入一个新数据4,此时这8个数的方差不变;④在回归直线方程中,当变量x 增加一个单位时,平均减少个单位. 161331035{}n a n S n T 11a >201920201a a >20192020101a a -<-20192020S S <2019202110a a -<2020T {}n T {}n T ABC △sin 2sin 2A B =ABC △A B >sin sin A B >ABC △sin cos A B >sin sin A B >A B >xOy P ()1F )2F 13P E ():2l y k x =-E A B E 2213x y -=E E 2221x y AB =l ln ,0()1,x x f x x x ⎧>=⎨+≤⎩(())y f f x a =+a 12-1-13-ˆˆˆybx a =+(),x y r ˆ20.5yx =-ˆy 0.5其中说法正确的是__________. 14.若,则被4除得的余数为__________. 15.有以下四个条件:①的定义域是,且其图象是一条连续不断的曲线; ②是偶函数;③在上不是单调函数; ④恰有两个零点.若函数同时满足条件②④,请写出它的一个解析式_____________;若函数同时满足条件①②③④,请写出它的一个解析式_____________.16.设函数的定义域为,若对任意,存在,使得, 则称函数具有性质,给出下列四个结论: ①函数不具有性质;②函数具有性质;③若函数,具有性质,则; ④若函数具有性质,则. 其中,正确结论的序号是________.四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.(10分)在①,;②,,两个条件中选择一个,补充在下面的问题中,并解答该问题.已知数列为等差数列,数列为等比数列,数列前项和为,数列前项和为,,,______.(1)求,的通项公式;(2)求数列的前项和.注:如果选择多个条件分别解答,按第一个解答计分.()20222202201220222x a a x a x a x +=++++0242022a a a a +++()f x R ()f x ()f x ()0,∞+()f x ()f x =()g x =()y f x =D 1x D ∈2x D ∈12()()1f x f x ⋅=()f x M 3y x x =-M 2x x e e y -+=M 8log (2)y x =+[0,]x t ∈M 510t =3sin 4x ay +=M 5a =226a b +=3311+=a b 312S =531T ={}n a {}n b {}n a n n S {}n b n n T 11a =11b ={}n a {}n b n n a b ⎧⎫⎨⎬⎩⎭n18.(12分)的内角,,的对边分别是,,. (1)求角的大小;(2)若,为边上一点,,且___________,求的面积.(从①为的平分线,②为的中点,这两个条件中任选一个补充在上面的横线上并作答)19.(12分)在年的新冠肺炎疫情影响下,国内国际经济形势呈现出前所未有的格局.某企业统计了年前个月份企业的利润,如下表所示:(1)根据所给的数据建立该企业所获得的利润(万元)关于月份的回归直线方程,并预测年月份该企业所获得的利润;(2)企业产品的质量是企业的生命,该企业为了生产优质的产品投放市场,对于生产的每一件产品必须要经过四个环节的质量检查,若每个环节中出现不合格产品立即进行修复,且每个环节是相互独立的,前三个环节中生产的产品合格的概率为,每个环节中不合格产品所需要的修复费用均为元,第四个环节中产品合格的概率为,不合格产品需要的修复费用为元,设每件产品修复的费用为元,写出的分布列,并求出每件产品需要修复的平均费用.参考公式:回归直线方程中斜率和截距的最小二乘估计公式分别为,,,为样本数据的平均值.20.(12分)图1是由正方形,,组成的一个等腰梯形,其中,将、分别沿折起使得E 与F 重合,如图2. (1)设平面平面,证明:;(2)若二面角的余弦值为,求长.ABC △A B C a b c sin cos c B C -=B 3b =D AC 2BD =ABC △BD B D AC 202020205ˆˆˆybx a =+202012121003450ξξˆˆˆybx a =+1221ˆni ii nii x y nxyb xnx==-=-∑∑ˆˆay bx =-x y ABCD ABE Rt △CDF Rt △2AB =ABE △CDF △,AB CD ABECDE l =//l CD A BE D --5AE21.(12分)已知函数,其中实数. (1)讨论的单调性;(2)当时,不等式恒成立,求的取值范围.22.(12分)已知椭圆的左焦点为F ,过F 的直线与椭圆在第一象限交于M 点,O 为坐标原点,三角形. (1)求椭圆的方程;(2)若的三个顶点A ,B ,C 都在椭圆上,且O 为的重心,判断的面积是否为定值,并说明理由. 答 案第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】B【解析】依题意,,所以,因为,故,故选B .2.【答案】A【解析】设,因为,可得, 则,可得,所以复数的虚部是,故选A . 3.【答案】A【解析】由可得, 若在上为增函数,则在恒成立, 即在恒成立,则, ()axf x e ex =-0a ≠()f x 0x ≥()()21f x x ≥-a 22221(0)x y a b a b+=>>0x -=MFO ABC △ABC △ABC △{}{}ln 1A x x x x e =>=>{|}A x x e =≤R{{}2B x y x x ===≥-(){}2A B x x e =-≤≤R ()i ,z a b a b =+∈R 2i z z -=()i i 2i 2i z z a b a b b -=--+=-=22b -=1b =-z 1-()ln f x x mx =-1()f x m x'=-()ln f x x mx =-(]0,1()0f x '≥(]0,11m x≤(]0,11m,则可得“”是“函数在上为增函数”的充分而不必要条件,故选A . 4.【答案】C【解析】,因为,所以当时等号成立, 所以函数的最大值是,故选C . 5.【答案】C【解析】依题设有,解得,, 故.令,得,故,故选C . 6.【答案】D【解析】连接、、,如图.由于点、是半圆弧上的两个三等分点,则,,则、均为等边三角形,,,,同理可知,(](],0,1-∞-∞0m ≤()ln f x x mx =-(]0,1()222sin 2cos 321cos 2cos 3y x x x x =+-=-+-22112cos 2cos 12(cos )22x x x =-+-=---1cos 1x ≤≤-1cos 2x =22sin 2cos 3y x x =+-12-()()1224120.1240.2v ab v ab ⎧==⎪⎨==⎪⎩1122b =0.05a =()1120.052tv t ⎛⎫=⨯ ⎪⎝⎭()1v t =112220t⎛⎫= ⎪⎝⎭()11212121210.3lg 201lg 2log205210.3lg 2lg 212t ⨯++===≈=CD ODOC C D AB 60BOD COD AOC ∠=∠=∠=︒OA OC OD ==AOC △COD △60OAC OCD ∴∠=∠=︒OAC BOD ∴∠=∠//OD AC ∴//CD AB所以,四边形为平行四边形,所以,, 故选D . 7.【答案】D【解析】由于函数,且)向右平移两个单位得,且),即为函数,且),所以定点,由于点在椭圆,所以,且,, 所以, 当且仅当,即,时取等号,故选D . 8.【答案】B【解析】和分别站在的两边,则只能在中间3个位置,分类说明: (1)若站在左2位置,从,选一个排在左侧,剩余的3个人排在右侧, 故有种排法;(2)若站在3位置,从,选一个,从,选一个排在左侧,并排列,剩余的2个人排在右侧,故有种排法;(3)若站在右2位置,排法与(1)相同,即有12种排法; 所以和分别站在的两边的排法总共有种排法;,,,,五个人站成一排有种排法,故和分别站在的两边的概率,故选B .二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分. 9.【答案】AB【解析】当时,,不成立; 当时,,,不成立;故,且,,故,A 正确;AODC 12AD AO AC =+=+a b 1(0x y a a ⎛⎫=> ⎪⎝⎭1a ≠21(0x y a a -⎛⎫=> ⎪⎝⎭1a ≠2(0xy aa -=>1a ≠()2,1A A 221x y m n +=411m n +=0m >0n >()414559n m m n m n m n m n ⎛⎫+=++=++≥+= ⎪⎝⎭4n mm n=6m =3n =A C B B B A C B B 1323C A 232112=⨯⨯⨯=B A C D E B B 11222222C C A A 222216=⨯⨯⨯=B A C B 12161240++=A B C D E 55A 54321120n ==⨯⨯⨯⨯=A C B 4011203P ==0q <22019202020190a a a q =<1q ≥20191a ≥20201a >20192020101a a -<-01q <<20191a >202001a <<20202019S S >,故B 正确;是数列中的最大值,C 、D 错误,故选AB . 10.【答案】BCD【解析】选项A .在中,若,则或, 所以或,所以为等腰或直角三角形,故A 不正确; 选项B .在中,若,则,由正弦定理可得,即,故B 正确; 选项C .若为锐角三角形,则, 所以,所以,故C 正确; 选项D .在中,若,由正弦定理可得, 即,所以,故D 正确, 故选BCD . 11.【答案】CD【解析】令,即得,∴A 错误;又,,即,故B 错误, 由E 的渐近线为,而圆心为,半径为1,∴到距离为,故的渐近线与圆相切,故C 正确;联立曲线E 与直线的方程,整理得,,∴,,而代入整理2201920212020110a a a -=-<2019T {}n T ABC △sin 2sin 2A B =22A B =22πA B +=A B =2πA B +=ABC △ABC △A B >a b >2sin 2sin R A R B >sin sin A B >ABC △π2A B +>ππ022A B >>->πsin sin cos 2A B B ⎛⎫>-= ⎪⎝⎭ABC △sin sin A B >22a bR R>a b >A B >(,)P x y 13=221,3x y x -=≠a =2c =3e =y x =2221x y (2,0)(2,0)y =1d ==E 2221xy l 2222(13)123(41)0k x k x k -+-+=210Δk =+>21221231k x x k +=-21223(41)31k x x k +=-12|AB x x =-=22)|||31|k AB k +==-即有或(由与),故,∴D 正确, 故选CD . 12.【答案】BD【解析】画出函数的图象:函数有零点,即方程有根的问题. 对于A :当时,,故,,故,,,, 故方程有4个不等实根; 对于B :当时,,故,当时,由图象可知,有1个根, 当时,由图象可知,有2个根, 当3个根, 故方程有6个不等实根; 对于C :当时,, 故,,, 当时,由图象可知,有2个根, 当时,由图象可知,有2个根,21k =20k =0y =221,3xy x -=≠1k =±ln ,0()1,0x x f x x x ⎧>=⎨+≤⎩(())y f f x a =+(())0f f x a +=0a =(())0f f x =()1f x =-()1f x =0x =2x =-1=x ex e =(())0f f x a +=12a =-1(())2f f x =1()2f x =-()f x =()f x =1()2f x =-()f x =()f x =(())0f f x a +=1a =-(())1f f x =()0f x =()f x e =1()f x e=()0f x =()f x e =当时,由图象可知,有3个根, 故方程有7个不等实根; 对于D :当时,, 故,当时,由图象可知,有1个根, 当时,由图象可知,有2个根, 当3个根, 故方程有6个不等实根, 故选BD .第Ⅱ卷三、填空题:本大题共4小题,每小题5分. 13.【答案】①②④【解析】对于①中,回归直线恒过样本点的中心,所以正确; 对于②中,根据相关系数的意义,可得两个变量相关性越强,则相关系数就越接近1, 所以是正确的;对于③中,根据平均数的计算公式可得,根据方差的计算公式,所以是不正确的; 对于④中,根据回归系数的含义,可得在回归直线方程中,当解释变量增加一个单位时,预报变量平均减少个单位,所以是正确的, 故答案为①②④. 14.【答案】1【解析】由题知,时,①,时,②,由①+②,得, 1()f x e=(())0f f x a +=13a =-1(())3f f x =2()3f x =-()f x =()f x =2()3f x =-()f x =()f x =(())0f f x a +=ˆˆˆybx a =+(,)x y ||r 744471x ⨯+==+()2217244 1.7528s ⎡⎤=⨯+-=<⎣⎦ˆ20.5yx =-x ˆy0.51x =-0123202120221a a a a a a -+-+-+=1x =2022012320223a a a a a +++++=()2022024********a a a a ++++=+故, 所以被4除得的余数是1,故答案为1.15.【答案】(答案不唯一),(答案不唯一)【解析】根据条件②④可得(答案不唯一),根据函数同时满足条件①②③④,可得(答案不唯一).故答案为(答案不唯一),(答案不唯一).16.【答案】①③【解析】依题意,函数的定义域为,若对任意,存在,使得,则称函数具有性质.①函数,定义域是R ,当时,显然不存在,使得,故不具备性质,故①正确;②是单调增函数,定义域是R ,, 当且仅当时等号成立,即值域为.对任意的,,要使得,则需,而不存在,使,故不具备性质,故②错误;③函数在上是单调增函数,定义域是,其值域为. 要使得其具有性质,则对任意的,,总存在,, 即,即,即,202210110242022111()(31)(91)488a a a a ++++=+=+()()101101011110101010110111011101110111011C 118118C 8C 8C 188⎡⎤=++=+++++⎣⎦()010*******10101101110111011118C 8884C C =++++()22f x x =-+()22g x x x =-++()22f x x =-+()22g x x x =-++()22f x x =-+()22g x x x =-++()y f x =D 1x D ∈2x D ∈12()()1f x f x ⋅=()f x M 3y x x =-10x =∈R 2x ∈R ()()121f x f x =M 2x x e e y -+=12x xe e y -+=≥=0x =[)1,+∞1>0x ()11f x >()()121f x f x ⋅=()21f x <2x ∈R ()21f x <2x xe e y -+=M ()8log 2y x =+[]0,t []0,t ()88log 2,log 2t ⎡⎤+⎣⎦M []10,x t ∈()()188log 2,log 2f x t ⎡⎤∈+⎣⎦[]20,x t ∈()()()()288188111,log 2,log 2log 2log 2f x t f x t ⎡⎤⎡⎤=∈⊆+⎢⎥⎣⎦+⎢⎥⎣⎦88881log 2log (2)1log (2)log 2t t ⎧≥⎪+⎪⎨⎪≤+⎪⎩8888log 2log (2)1log 2log (2)1t t ⨯+≤⎧⎨⨯+≥⎩()88log 2log 21t ⨯+=故,即,故,故③正确; ④若函数具有性质,定义域是R ,使得, 一方面函数值不可能为零,也即对任意的恒成立,而, 故或,在此条件下, 另一方面,的值域是值域的子集.的值域为;的值域为, 要满足题意,只需,, 时,,即; 时,,即, 故,即, 即,即,故.故④错误, 故答案为①③.四、解答题:本大题共6个大题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.【答案】(1),;(2).【解析】选择①:(1)设等差数列的公差为,等比数列的公比为, 由,,,,得,解得, 所以,.(2)记;(1) 又,(2)()8821log 2log log 328t +===328t +=510t =3sin 4x ay +=M []sin 1,1x ∈-3sin 0x a +≠x []3sin 3,3x ∈-3a >3a <-43sin y x a =+3sin 4x ay +=3sin 4x a y +=33,44a a -+⎡⎤⎢⎥⎣⎦43sin y x a =+44,33a a ⎡⎤⎢⎥+-⎣⎦3434a a -≥+3434a a +≤-3a <-441,1334334a a a a ⋅≤⋅≥+-+-44133a a ⋅=+-3a >441,1334334a a a a ⋅≥⋅≤+-+-44133a a ⋅=+-44133a a ⋅=+-()()3316a a -+=2916a -=225a =5a =±32n a n =-12n nb -=()8682nn --+{}n a d {}n b ()0q q ≠11a =11b =226a b +=3311+=a b 2161211d q d q ++=⎧⎨++=⎩32d q =⎧⎨=⎩32n a n =-12n n b -=()121312123114272322n n n na a a a A nb b b b ---+=+++⋅⋅⋅+=⨯+⨯+⨯+⋅⋅⋅+-⨯()()112312124272352322n n n A n n -----+-=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯(1)(2),得, 所以, 所以,所以.选择②:(1)设等差数列的公差为,等比数列的公比为,且. 由,,,,得,解得, 所以,.(2)记;(1) 又,(2)(1)(2),得, 所以, 所以,所以.18.【答案】(1);(2)选择①:;选择②:. 【解析】(1,,,,则有, 又因为,所以. -()()12111322 (23222)n n n A n ---+-=++++--⋅()()121+12622 (2)322n n n A n ---+-=++++--⋅()()()1+11+111122263222612322112n n n n n A n n ---+-⎛⎫- ⎪⎝⎭=+--⋅=+---⋅-()8682nn A n -=-+{}n a d {}n b ()0q q ≠1q ≠11a =11b =312S =531T =()533121311d q q +=⎧⎨-=-⎩32d q =⎧⎨=⎩32n a n =-12n n b -=()121312123114272322n n n na a a a A nb b b b ---+=+++⋅⋅⋅+=⨯+⨯+⨯+⋅⋅⋅+-⨯()()112312124272352322n n n A n n -----+-=⨯+⨯+⨯+⋅⋅⋅+-⨯+-⨯-()()12111322 (23222)n n n A n ---+-=++++--⋅()()121+12622 (2)322n n n A n ---+-=++++--⋅()()()1+11+111122263222612322112n n n n n A n n ---+-⎛⎫- ⎪⎝⎭=+--⋅=+---⋅-()8682nn A n -=-+π3B =2ABC S =△8ABC S =△sin cos c B C -()sin sin cos B C C B B C +-=sin sin sin B C C B =sin 0C ≠tan B =()0,πB ∈π3B =(2)选择条件①为的平分线,因为为的平分线,所以, 又因为, 所以, 又根据余弦定理得,即, 则有,即,解得或(舍), 所以. 选择②为的中点,则,,, 则有,可得, 又根据余弦定理得,解得, 则. 19.【答案】(1),万元;(2)分布列见解析,修复的平均费用为元. 【解析】(1)由表格数据知,,, 由回归直线经过样本点的中心可知:,,则回归直线方程为, BD B BDB π6ABD DBC ∠=∠=ABC ABD BDC S S S =+△△△1π1π1πsin 2sin 2sin 232626ac a c =⨯+⨯()2a c =+2222cos b a c ac B =+-()293a c ac =+-()23934ac ac =-()24120ac ac --=6ac =2ac =-1sin 2ABCSac B ==D AC 32AD DC ==πBDA BDC ∠=-∠cos cos BDA BDC ∠=-∠22222233222233222222c a ⎛⎫⎛⎫+-+- ⎪ ⎪⎝⎭⎝⎭=-⨯⨯⨯⨯22252a c +=229a c ac +-=72ac =1sin 28ABC S ac B ==△9173ˆ22yx =+140.532521234535x ++++==90951051001101005y ++++==()()515222222221519029531054100511053100ˆ12345535i ii ii x y xy b x x==-⨯+⨯+⨯+⨯+⨯-⨯⨯∴==++++-⨯-∑∑459102==(),x y 9ˆ10032a =⨯+173ˆ2a ∴=9173ˆ22yx =+预测年月份该企业所获得的利润为(万元).(2)根据题意知所有可能取值为,,,,,,,,;;;;;;;,的分布列为:,即每件产品需要修复的平均费用为元.20.【答案】(1)证明见解析;(2.【解析】(1)因为,平面,平面,所以平面,又平面,平面平面,所以.(2)因为,,所以,又,,平面,平面,所以平面,因为平面,所以平面平面,过E作于点O,则O是的中点,因为平面平面,平面,所以平面,以O为原点,与平行的直线为x轴,所在直线为y轴,所在直线为z轴,建立空间直角坐标系,202012917312140.522⨯+=ξ050100150200250300350 ()31332432Pξ⎛⎫∴==⨯=⎪⎝⎭()3111502432Pξ⎛⎫==⨯=⎪⎝⎭()2231139100C22432Pξ⎛⎫==⨯⨯=⎪⎝⎭()2231113150C22432Pξ⎛⎫==⨯⨯=⎪⎝⎭()2131139200C22432Pξ⎛⎫==⨯⨯=⎪⎝⎭()2131113250C22432Pξ⎛⎫==⨯⨯=⎪⎝⎭()31333002432Pξ⎛⎫==⨯=⎪⎝⎭()31113502432Pξ⎛⎫==⨯=⎪⎝⎭ξ∴()05010015020025030032323232323232Eξ∴=⨯+⨯+⨯+⨯+⨯+⨯+⨯+135032⨯3252=3252//CD AB AB ABE CD⊂/ABE//CD ABECD⊂ECD ABE ECD l=//l CD//AB CD CD DE⊥AB DE⊥AB AE⊥AE DE E=AE⊂ADE DE⊂ADEAB⊥ADEAB ABCD ABCD⊥AED⊥EO AD ADABCD AED AD=EO⊂ADEEO⊥ABCDAB OD OEO xyz-设,则,,,,,,,,设平面的法向量为,则,即,取,则,所以平面的一个法向量;,,设平面的法向量为,则,即,取,则,同理可求得平面的一个法向量为, 所以,解得,当时,,二面角的平面角为钝角,舍去, 所以,此时,所以.21.【答案】(1)见解析;(2). 【解析】(1),当时,,故在上单调递减;EO h =(0,1,0)A -(0,1,0)D (2,1,0)B -(0,0,)E h (2,0,0)AB =(0,1,)AE h =(0,1,)ED h =-(2,2,0)BD =-ABE 1(,,)x y z =n 1100AB AE ⎧⋅=⎪⎨⋅=⎪⎩n n 200x y hz =⎧⎨+=⎩0,x y h ==1z =-ABE 1(0,,1)h =-n (0,1,)ED h =-(2,2,0)BD =-BDE 2222(,,)x y z =n 220ED BD ⎧⋅=⎪⎨⋅=⎪⎩n n 22220220y hz x y -=⎧⎨-+=⎩2x h =22,1y h z ==BDE 2(,,1)h h =n 121212cos ,⋅===⋅n n n n n n 2h =3h =21212122cos ,0-⋅====<⋅n n n n n n A BE D --2h =(0,1,2)AE =5AE =AE [)1,+∞()axf x ae e '=-0a <()0f x '<()f x (),-∞+∞当时,令,解得. 即在区间上单调递减,在区间上单调递增. (2)当时,,则.下证:当时,不等式在上恒成立即可.当时,要证,即,又因为,即只需证.令,, 令,则,解得.故在区间上单调递减,在区间上单调递增,,,故.因此存在,使得.故在区间上单调递增,在区间上单调递减,在区间上单调递增.,,故成立.综上,的取值范围为.22.【答案】(1);(2,理由见解析.【解析】(1)直线过左焦点F,则有, 所以且右焦点, 又,得, 代入直线方程有,所以.∴为直角三角形且,由椭圆定义,知,即, ∴椭圆的方程为. (2)当直线的斜率不存在时,设直线的方程为,0a >()0f x '=1ln e x aa=()f x 1,ln e a a ⎛⎫-∞ ⎪⎝⎭1ln ,e a a ⎛⎫+∞ ⎪⎝⎭1x =0a e e -≥1a ≥1a ≥()2(1)f x x ≥-[)0,+∞1a ≥()()21f x x ≥-2(1)0axe x ex ---≥ax x e e ≥2(1)0x e x ex ---≥2()(1)(0)xg x e x ex x =---≥()22xg x e x e '=-+-()22xh x e x e =-+-()20xh x e '=-=ln 2x =()g x '()0,ln 2()ln 2,+∞(0)30g e '=->(1)0g '=()ln 20g <()00,ln 2x ∈()00g x '=()g x ()00,x ()0,1x ()1,+∞(0)0g =(1)0g =()0g x ≥a [)1,+∞2214x y +=0x -=(F c =F '124OMF M S y ==△12My =M x =12M ⎫⎪⎭FMF '△90MF F '∠=︒12||||42a MF MF '=+==2a =2214x y +=BC BC 1x x =若,则,∵O 为的重心,可知,代入椭圆方程,得,, 即有A 到BC 的距离为, ∴; 当直线的斜率存在时,设直线的方程为, 设,,由,得,显然, ∴,, 则,∵O 为的重心,可知, 由A 在椭圆上,得,化简得,∴,由重心的性质知:A 到直线的距离d 等于O 到直线距离的3倍,即,∴, 综上得,.()11,B x y ()11,C x y -ABC △()12,0A x -211x =2134y =1||2||BC y ==3d =11||322ABC S BC d =⋅==△BC BC y kx m =+()11,B x y ()22,C x y 2214x y y kx m ⎧+=⎪⎨⎪=+⎩()222148440k x kmx m +++-=0Δ>122841km x x k -+=+21224441m x x k -=+()121222241my y k x x m k +=++=+ABC △2282,4141km m A k k -⎛⎫⎪++⎝⎭2222182144141km m k k -⎛⎫⎛⎫+= ⎪ ⎪++⎝⎭⎝⎭22441m k =+1222||||414BC x x k m =-===+BC BC d =1||2ABC S BC d =⋅=△ABC △。
历年(2020-2022)全国高考数学真题分类专项(文科版立体几何解答题)汇编(附答案)
历年(2020-2022)全国高考数学真题分类专项(文科版立体几何解答题)汇编1.【2022年全国甲卷】小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD 是边长为8(单位:cm )的正方形,△EAB,△FBC,△GCD,△HDA 均为正三角形,且它们所在的平面都与平面ABCD 垂直.(1)证明:EF//平面ABCD ;(2)求该包装盒的容积(不计包装盒材料的厚度).2.【2022年全国乙卷】如图,四面体ABCD 中,AD ⊥CD,AD CD,∠ADB ∠BDC ,E 为AC 的中点.(1)证明:平面BED ⊥平面ACD ;(2)设AB BD 2,∠ACB 60°,点F 在BD 上,当△AFC 的面积最小时,求三棱锥F ABC 的体积.3.【2021年甲卷文科】已知直三棱柱111ABC A B C -中,侧面11AA B B 为正方形,2AB BC ==,E ,F 分别为AC 和1CC 的中点,11BF A B ⊥.(1)求三棱锥F EBC -的体积;(2)已知D 为棱11A B 上的点,证明:BF DE ⊥.4.【2021年乙卷文科】如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ;(2)若1PD DC ==,求四棱锥P ABCD -的体积.5.【2020年新课标1卷文科】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,ABC 是底面的内接正三角形,P 为DO 上一点,∠APC =90°.(1)证明:平面P AB ⊥平面P AC ;(2)设DO ,求三棱锥P −ABC 的体积.6.【2020年新课标2卷文科】如图,已知三棱柱ABC –A 1B 1C 1的底面是正三角形,侧面BB 1C 1C 是矩形,M ,N 分别为BC ,B 1C 1的中点,P 为AM 上一点.过B 1C 1和P 的平面交AB 于E ,交AC 于F .(1)证明:AA 1//MN ,且平面A 1AMN ⊥平面EB 1C 1F ;(2)设O 为△A 1B 1C 1的中心,若AO =AB =6,AO //平面EB 1C 1F ,且∠MPN =π3,求四棱锥B –EB 1C 1F 的体积. 7.【2020年新课标3卷文科】如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥; (2)点1C 在平面AEF 内.。
2022年普通高等学校招生全国统一考试数学试题理(全国卷3-参考解析)
word 格式-可编辑-感谢下载支持2022年普通高等学校招生全国统一考试(全国)理科数学一、选择题:(本题共12小题,每小题5分,共60分)1.已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为()A.3 B.2 C.1 D.0【答案】B【解析】A 表示圆221x y +=上所有点的集合,B 表示直线y x =上所有点的集合,故A B 表示两直线与圆的交点,由图可知交点的个数为2,即A B 元素的个数为2,故选B.2.设复数z 满足(1i)2i z +=,则z =() A.12B.22C.2D.2【答案】C【解析】由题,()()()2i 1i 2i 2i 2i 11i 1i 1i 2z -+====+++-,则22112z =+=,故选C.3.某城市为了解游客人数的变化规律,提高旅游服务质量,采集并整理了2022年1月至2022年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.2022年 2022年 2022年根据该折线图,下列结论错误的是() A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳 【答案】A【解析】由题图可知,2022年8月到9月的月接待游客量在减少,则A选项错误,故选A.4.5()(2)x y x y +-的展开式中33x y 的系数为()A.-80 B.-40 C.40 D.80 【答案】C【解析】由二项式定理可得,原式展开中含33x y 的项为()()()()2332233355C 2C 240x x y y x y x y ⋅-+⋅-=,则33x y 的系数为40,故选C.5.已知双曲线22221x y C a b -=:(0a >,0b >)的一条渐近线方程为52y x =,且与椭圆221123x y +=有公共焦点.则C 的方程为()A.221810x y -= B.22145x y -= C.22154x y -= D.22143x y -= 【答案】B【解析】∵双曲线的一条渐近线方程为52y x =,则52b a =① 又∵椭圆221123x y +=与双曲线有公共焦点,易知3c =,则2229a b c +==② 由①②解得2,5a b ==,则双曲线C 的方程为22145x y -=,故选B.6.设函数π()cos()3f x x =+,则下列结论错误的是()A.()f x 的一个周期为2π- B.()y f x =的图象关于直线8π3x =对称C.()f x π+的一个零点为π6x = D.()f x 在π(,π)2单调递减【答案】D【解析】函数()πcos 3f x x ⎛⎫=+ ⎪⎝⎭的图象可由cos y x =向左平移π3个单位得到, 如图可知,()f x 在π,π2⎛⎫ ⎪⎝⎭上先递减后递增,D选项错误,故选D.π23π53-π36πx y O7.执行右图的程序框图,为使输出S 的值小于91,则输入的正整数N的最小值为() A.5 B.4 C.3 D.2 【答案】D【解析】程序运行过程如下表所示:S Mt 初始状态 0 100 1第1次循环结束 100 10- 2第2次循环结束 90 1 3此时9091S =<首次满足条件,程序需在3t =时跳出循环,即2N =为满足条件的最小值,故选D.8.已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.π B.3π4 C.π2D.π4【答案】B【解析】由题可知球心在圆柱体中心,圆柱体上下底面圆半径2213122r ⎛⎫=-= ⎪⎝⎭,则圆柱体体积23ππ4V r h ==,故选B.9.等差数列{}n a 的首项为1,公差不为0.若2a ,3a ,6a 成等比数列,则{}n a 前6项的和为()A.24- B.3- C.3 D.8 【答案】A【解析】∵{}n a 为等差数列,且236,,a a a 成等比数列,设公差为d . 则2326a a a =⋅,即()()()211125a d a d a d +=++又∵11a =,代入上式可得220d d +=又∵0d ≠,则2d =-∴()61656561622422S a d ⨯⨯=+=⨯+⨯-=-,故选A.10.已知椭圆2222:1x y C a b +=(0a b >>)的左、右顶点分别为1A ,2A ,且以线段1A 2A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为()A.63 B.33 C.23D.13【答案】A【解析】∵以12A A 为直径为圆与直线20bx ay ab -+=相切,∴圆心到直线距离d 等于半径,∴222abd a a b ==+ 又∵0,0a b >>,则上式可化简为223a b =∵222b a c =-,可得()2223a a c =-,即2223c a = ∴63c e a ==,故选A11.已知函数211()2(e e )x x f x x x a --+=-++有惟一零点,则a =()A.1-2B.13 C.12D.1【答案】C【解析】由条件,211()2(e e )x x f x x x a --+=-++,得:221(2)1211211(2)(2)2(2)(e e )4442(e e )2(e e )x x x x x x f x x x a x x x a x x a ----+----+-=---++=-+-+++=-++∴(2)()f x f x -=,即1x =为()f x 的对称轴, 由题意,()f x 有惟一零点, ∴()f x 的零点只能为1x =, 即21111(1)121(e e )0f a --+=-⋅++=,解得12a =.12.在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为() A.3 B.22 C.5D.2【答案】A【解析】由题意,画出右图.设BD 与C 切于点E ,连接CE . 以A 为原点,AD 为x 轴正半轴, AB 为y 轴正半轴建立直角坐标系, 则C 点坐标为(2,1). ∵||1CD =,||2BC =.∴22125BD =+=. ∵BD 切C 于点E . ∴CE ⊥BD . ∴CE 是Rt BCD △中斜边BD 上的高.12||||2222||5||||55BCD BC CD S EC BD BD ⋅⋅⋅====△即C 的半径为255. ∵P 在C 上.∴P 点的轨迹方程为224(2)(1)5x y -+-=. 设P 点坐标00(,)x y ,可以设出P 点坐标满足的参数方程如下:00225cos 5215sin 5x y θθ⎧=+⎪⎪⎨⎪=+⎪⎩而0(,)AP x y =,(0,1)AB =,(2,0)AD =.∵(0,1)(2,0)(2,)AP AB AD λμλμμλ=+=+= ∴0151cos 25x μθ==+,0215sin 5y λθ==+. 两式相加得:()A O DxyBPCE222515sin 1cos 552552()()sin()552sin()3λμθθθϕθϕ+=+++=+++=++≤(其中5sin 5ϕ=,25cos 5ϕ=) 当且仅当π2π2k θϕ=+-,k ∈Z 时,λμ+取得最大值3.二、填空题:(本题共4小题,每小题5分,共20分)13.若x ,y 满足约束条件0,20,0,-⎧⎪+-⎨⎪⎩x y x y y ≥≤≥则34z x y =-的最小值为________.【答案】1-【解析】由题,画出可行域如图:目标函数为34z x y =-,则直线344zy x =-纵截距越大,z 值越小. 由图可知:z 在()1,1A 处取最小值,故min31411z =⨯-⨯=-.A B (1,1)(2,0)x y -=20x y +-=yx14.设等比数列{}n a 满足121a a +=-,133a a -=-,则4a =________.【答案】8-【解析】{}n a 为等比数列,设公比为q .121313a a a a +=-⎧⎨-=-⎩,即1121113a a q a a q +=-⎧⎪⎨-=-⎪⎩①②, 显然1q ≠,10a ≠,②①得13q -=,即2q =-,代入①式可得11a =,()3341128a a q ∴==⨯-=-.15.设函数1,0,()2,0,+⎧=⎨>⎩x x x f x x ≤则满足1()()12f x f x +->的x 的取值范围是________.【答案】1,4⎛⎫-+∞ ⎪⎝⎭【解析】()1,02 ,0+⎧=⎨>⎩x x x f x x ≤,()112f x f x ⎛⎫+-> ⎪⎝⎭,即()112f x f x ⎛⎫->- ⎪⎝⎭由图象变换可画出12y f x ⎛⎫=- ⎪⎝⎭与()1y f x =-的图象如下:12-1211(,)44-1()2y f x =-1()y f x =-yx由图可知,满足()112f x f x ⎛⎫->- ⎪⎝⎭的解为1,4⎛⎫-+∞ ⎪⎝⎭.16.a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论: ①当直线AB 与a 成60︒角时,AB 与b 成30︒角; ②当直线AB 与a 成60︒角时,AB 与b 成60︒角; ③直线AB 与a 所成角的最小值为45︒; ④直线AB 与a 所成角的最大值为60︒.其中正确的是________(填写所有正确结论的编号) 【答案】②③【解析】由题意知,a b AC 、、三条直线两两相互垂直,画出图形如图.不妨设图中所示正方体边长为1, 故||1AC =,2AB =,斜边AB 以直线AC 为旋转轴旋转,则A 点保持不变, B 点的运动轨迹是以C 为圆心,1为半径的圆.以C 为坐标原点,以CD 为x 轴正方向,CB 为y 轴正方向, CA 为z 轴正方向建立空间直角坐标系. 则(1,0,0)D ,(0,0,1)A ,直线a 的方向单位向量(0,1,0)a =,||1a =. B 点起始坐标为(0,1,0),直线b 的方向单位向量(1,0,0)b =,||1b =. 设B 点在运动过程中的坐标(cos ,sin ,0)B θθ', 其中θ为B C '与CD 的夹角,[0,2π)θ∈.那末'AB 在运动过程中的向量(cos ,sin ,1)AB θθ'=--,||2AB '=.设AB '与a 所成夹角为π[0,]2α∈, 则(cos ,sin ,1)(0,1,0)22cos |sin |[0,]22a AB θθαθ--⋅==∈'. 故ππ[,]42α∈,所以③正确,④错误.设AB '与b 所成夹角为π[0,]2β∈,cos (cos ,sin ,1)(1,0,0)2|cos |2AB b b AB b AB βθθθ'⋅='-⋅='=. 当AB '与a 夹角为60︒时,即π3α=,12sin 2cos 2cos 2322πθα====. ∵22cos sin 1θθ+=,∴2|cos |2θ=. ∴21cos |cos |22βθ==.∵π[0,]2β∈.∴π=3β,此时AB '与b 夹角为60︒. ∴②正确,①错误.三、解答题:(共70分.第17-20题为必考题,每一个试题考生都必须作答.第22,23题为选考题,考生根据要求作答) (一)必考题:共60分. 17.(12分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin 3cos 0A A +=,27a =,2b =. (1)求c ;(2)设D 为BC 边上一点,且AD AC ⊥,求ABD △的面积.【解析】(1)由sin 3cos 0A A +=得π2sin 03A ⎛⎫+= ⎪⎝⎭,即()ππ3A k k +=∈Z ,又()0,πA ∈,∴ππ3A +=,得2π3A =.由余弦定理2222cos a b c bc A =+-⋅.又∵127,2,cos 2a b A ===-代入并整理得()2125c +=,故4c =.(2)∵2,27,4AC BC AB ===, 由余弦定理22227cos 27a b c C ab +-==. ∵AC AD ⊥,即ACD △为直角三角形, 则cos AC CD C =⋅,得7CD =.由勾股定理223AD CD AC =-=.又2π3A =,则2πππ326DAB ∠=-=, 1πsin 326ABD S AD AB =⋅⋅=△.18.(12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[)2025,,需求量为300瓶;如果最高气温低于20,需求量为200瓶,为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温 [)1015, [)1520, [)2025, [)2530, [)3035, [)3540, 天数 2 16 36 25 7 4以最高气温位于各区间的频率代替最高气温位于该区间的概率. (1)求六月份这种酸奶一天的需求量X (单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y (单位:元).当六月份这种酸奶一天的进货量n (单位:瓶)为多少时,Y 的数学期望达到最大值? 【解析】⑴易知需求量x 可取200,300,500()21612003035P X +===⨯()3623003035P X ===⨯()257425003035P X ++===⨯. 则分布列为:X 200 300 500P1525 25 ⑵①当200n ≤时:()642Y n n =-=,此时max400Y =,当200n =时取到.②当200300n <≤时:()()4122002200255Y n n =⋅+⨯+-⋅-⎡⎤⎣⎦ 880026800555n n n -+=+= 此时max520Y =,当300n =时取到.③当300500n <≤时,()()()()12220022002300230022555Y n n n =⨯+-⋅-+⨯+-⋅-+⋅⋅⎡⎤⎡⎤⎣⎦⎣⎦ 320025n -=此时520Y <.④当500n ≥时,易知Y 一定小于③的情况.综上所述:当300n =时,Y 取到最大值为520.19.(12分)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形.ABDCBD ,AB BD .(1)证明:平面ACD 平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分.求二面角D AE C 的余弦值.【解析】⑴取AC 中点为O ,连接BO ,DO ; ABC ∆为等边三角形DAB C EDABC EO∴BO AC ⊥ ∴AB BC = AB BC BD BDABD DBC =⎧⎪=⎨⎪∠=∠⎩ABD CBD ∴∆≅∆. ∴AD CD =,即ACD ∆为等腰直角三角形,ADC ∠ 为直角又O 为底边AC 中点 ∴DO AC ⊥令AB a =,则AB AC BC BD a ==== 易得:22OD a =,32OB a = ∴222OD OB BD +=由勾股定理的逆定理可得2DOB π∠=即OD OB ⊥ OD AC OD OB AC OB O AC ABC OB ABC⊥⎧⎪⊥⎪⎪=⎨⎪⊂⎪⊂⎪⎩平面平面OD ABC ∴⊥平面 又∵OD ADC ⊂平面由面面垂直的判定定理可得ADC ABC ⊥平面平面⑵由题意可知V V D ACE B ACE--= 即B ,D 到平面ACE 的距离相等 即E 为BD 中点以O 为原点,OA 为x 轴正方向,OB 为y 轴正方向,OD 为z 轴正方向,设AC a =,建立空间直角坐标系,则()0,0,0O ,,0,02a A ⎛⎫ ⎪⎝⎭,0,0,2a D ⎛⎫⎪⎝⎭,30,,02B a ⎛⎫ ⎪ ⎪⎝⎭,30,,44a E a ⎛⎫ ⎪ ⎪⎝⎭易得:3,,244a a AE a ⎛⎫=- ⎪ ⎪⎝⎭,,0,22a a AD ⎛⎫=- ⎪⎝⎭,,0,02a OA ⎛⎫= ⎪⎝⎭ 设平面AED 的法向量为1n ,平面AEC 的法向量为2n ,则1100AE n AD n ⎧⋅=⎪⎨⋅=⎪⎩,解得()13,1,3n =220AE n OA n ⎧⋅=⎪⎨⋅=⎪⎩,解得()20,1,3n =- 若二面角D AE C --为θ,易知θ为锐角,则12127cos 7n nn nθ⋅==⋅20.(12分)已知抛物线2:2C y x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,2),求直线l 与圆M 的方程.DABC EyxOz【解析】⑴显然,当直线斜率为0时,直线与抛物线交于一点,不符合题意.设:2l x my =+,11(,)A x y ,22(,)B x y ,联立:222y xx my ⎧=⎨=+⎩得2240y my --=,2416m ∆=+恒大于0,122y y m +=,124y y =-.1212OA OB x x y y ⋅=+12(2)(2)my my =++21212(1)2()4m y y m y y =++++24(1)2(2)4m m m =-+++0=∴OA OB ⊥,即O 在圆M 上. ⑵若圆M 过点P ,则0AP BP ⋅= 1212(4)(4)(2)(2)0x x y y --+++= 1212(2)(2)(2)(2)0my my y y --+++=21212(1)(22)()80m y y m y y +--++=化简得2210m m --=解得12m =-或者1①当12m =-时,:240l x y +-=圆心为00(,)Q x y ,120122y y y +==-,0019224x y =-+=, 半径2291||42r OQ ⎛⎫⎛⎫==+- ⎪ ⎪⎝⎭⎝⎭则圆229185:()()4216M x y -++=②当1m =时,:20l x y --=圆心为00(,)Q x y ,12012y yy +==,0023x y =+=, 半径22||31r OQ ==+ 则圆22:(3)(1)10M x y -+-=21.(12分)已知函数()1ln f x x a x =--.(1)若()0f x ≥,求a 的值;(2)设m 为整数,且对于任意正整数n ,2111(1)(1)(1)222nm ,求m 的最小值.【解析】⑴ ()1ln f x x a x =--,0x >则()1a x af x x x-'=-=,且(1)0f =当0a ≤时,()0f x '>,()f x 在()0+∞,上单调增,所以01x <<时,()0f x <,不满足题意;当0a >时,当0x a <<时,()0f x '<,则()f x 在(0,)a 上单调递减; 当x a >时,()0f x '>,则()f x 在(,)a +∞上单调递增.①若1a <,()f x 在(,1)a 上单调递增∴当(,1)x a ∈时()(1)0f x f <=矛盾 ②若1a >,()f x 在(1,)a 上单调递减∴当(1,)x a ∈时()(1)0f x f <=矛盾③若1a =,()f x 在(0,1)上单调递减,在(1,)+∞上单调递增∴()(1)0f x f =≥满足题意 综上所述1a =.⑵ 当1a =时()1ln 0f x x x =--≥即ln 1x x -≤则有ln(1)x x +≤当且仅当0x =时等号成立word 格式-可编辑-感谢下载支持∴11ln(1)22k k+<,*k ∈N 一方面:221111111ln(1)ln(1)...ln(1)...112222222n n n++++++<+++=-<, 即2111(1)(1)...(1)e 222n+++<. 另一方面:223111111135(1)(1)...(1)(1)(1)(1)222222264n +++>+++=> 当3n ≥时,2111(1)(1)...(1)(2,e)222n+++∈ ∵*m ∈N ,2111(1)(1)...(1)222nm +++<, ∴m 的最小值为3.22.[选修4-4:坐标系与参数方程](10分)在直角坐标系xOy 中,直线l 1的参数方程为,,x t y kt =2+⎧⎨=⎩(t 为参数),直线l 2的参数方程为,,x m m y k =-2+⎧⎪⎨=⎪⎩(m 为参数),设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程:(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设:(cos sin )l ρθθ3+-2=0,M 为l 3与C 的交点,求M 的极径.【解析】⑴将参数方程转化为普通方程()1:2l y k x =- ……① ()21:2l y x k=+ ……② ①⨯②消k 可得:224x y -=即P 的轨迹方程为224x y -=; ⑵将参数方程转化为普通方程 3:20l x y +-= ……③ 联立曲线C 和3l 22204x y x y ⎧+-=⎪⎨-=⎪⎩ 解得32222x y ⎧=⎪⎪⎨⎪=-⎪⎩ 由cos sinx y ρθρθ=⎧⎨=⎩解得5ρ= 即M 的极半径是5.23.[选修4-5:不等式选讲](10分)已知函数()||||f x x x =+1--2.(1)求不等式()f x ≥1的解集;(2)若不等式()f x x x m 2≥-+的解集非空,求m 的取值范围.【解析】⑴()|1||2|f x x x =+--可等价为()3,121,123,2--⎧⎪=--<<⎨⎪⎩x f x x x x ≤≥.由()1f x ≥可得: ①当1-x ≤时显然不满足题意;word 格式-可编辑-感谢下载支持②当12x -<<时,211-x ≥,解得1x ≥;③当2x ≥时,()31=f x ≥恒成立.综上,()1f x ≥的解集为{}|1x x ≥. ⑵不等式()2-+f x x x m ≥等价为()2-+f x x x m ≥, 令()()2g x f x x x =-+,则()g x m ≥解集非空只需要()max ⎡⎤⎣⎦g x m ≥. 而()2223,131,123,2⎧-+--⎪=-+--<<⎨⎪-++⎩x x x g x x x x x x x ≤≥.①当1-x ≤时,()()max13115g x g =-=---=-⎡⎤⎣⎦;②当12x -<<时,()2max 3335312224g x g ⎛⎫⎛⎫==-+⋅-=⎡⎤ ⎪ ⎪⎣⎦⎝⎭⎝⎭;③当2x ≥时,()()2max22231g x g ==-++=⎡⎤⎣⎦.综上,()max 54g x =⎡⎤⎣⎦,故54m ≤.。
2020年普通高等学校招生全国统一考试 理科数学 (全国卷III) word版试题及答案解析
2020年普通高等学校招生全国统一考试(III 卷) 理科数学一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A=(){}*,,,x y x y N y x ∈≥,B=(){},8x y x y +=,则A B 中元素个数为 A. 2 B. 3 C. 4 D. 6 2.复数113i-的虚部是 A. 310-B. 110-C. 110D. 3103.在一组样本数据中,1,2,3,4出现的频率分别为1p ,2p ,3p ,4p ,且411i i p ==∑,则下面四种情形中,对应样本的标准差最大的一组是 A. 14230.1,0.4p p p p ==== B .14230.4,0.1p p p p ==== C .14230.2,0.3p p p p ==== D .14230.3,0.2p p p p ====4. Logistic 模型是常用数学模型之一,可应用于流行病学领域,有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数()t I (t 的单位:天)的Logistic 模型:()()0.23531t K I t e--=+,其中K 为的最大确诊病例数.当()0.95I t K *=时,标志着已初步遏制疫情,则t *约为(ln19≈3) A.60 B.63 C.66 D.695. 设O 为坐标原点,直线2x =与抛物线2:2(0)C y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为A. (14,0)B. (12,0)C. (1,0)D. (2,0)6. 已知向量a,b 满足5a =,6b =,·6a b =-,则cos(,)a a b +=A. 3135- B. 1935-C. 1735D. 19357. 在△ABC 中,2cos =3C ,4AC =,3BC =,则cos B =A. 19B. 13C. 12D. 238. 右图为某几何体的三视图,则该几何体的表面积是 A. 6+42 B. 442+ C. 623+ D. 423+9.已知2tan tan()74πθθ-+=,则tan θ=A. -2B. -1C. 1D. 210.若直线l 与曲线y x =和圆2215x y +=都相切,则l 的方程为 A. 21y x =+ B. 122y x =+ C. 112y x =+ D. 1122y x =+11. 设双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F , 2F ,离心率为5. P 是C 上一点,且12F P F P ⊥.若△12PF F 的面积为4,则a=A .1B .2C .4D .812. 已知5458<,45138<,设5a log 3=,8b=log 5,13c log 8=,则 A. a b c << B. b a c << C. b c a << D. c a b <<二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学真题分类_等差数列的求和一、选择题(本大题共5小题,共25.0分)⩽1.记b1=S2,b n+1=S n+2−S2n,n∈N∗,1.已知等差数列{a n}的前n项和S n,公差d≠0,a1d下列等式不可能成立的是()A. 2a4=a2+a6B. 2b4=b2+b6C. a42=a2a8D. b42=b2b82.执行下面的程序框图,则输出的n=()A. 17B. 19C. 21D. 233.记S n为等差数列{a n}的前n项和.已知S4=0,a5=5,则()n2−2nA. a n=2n−5B. a n=3n−10C. S n=2n2−8nD. S n=124.记S n为等差数列{a n}的前n项和.若3S3=S2+S4,a1=2,则a5=()A. −12B. −10C. 10D. 125.等差数列{a n}(n∈N∗)的公差为d,前n项和为S n,若a1>0,d<0,S3=S9,则当S n取得最大值时,n=()A. 4B. 5C. 6D. 7二、填空题(本大题共8小题,共40.0分)6.(5分)将数列{2n−1}与{3n−2}的公共项从小到大排列得到数列{a n},则{a n}的前n项和为=.7.已知数列{a n}是公差不为零的等差数列,且a1+a10=a9,则a1+a2+⋯+a9a108.记S n为等差数列{a n}的前n项和,若a1=−2,a2+a6=2,则S10=________.9.已知数列{a n}(n∈N∗)是等差数列,S n是其前n项和.若a2a5+a8=0,S9=27,则S8的值是____.10. 记等差数列{a n }的前n 项和为S n ,若a 3=0,a 6+a 7=14,则S 7=______.11. 设等差数列{a n }的前n 项和为S n ,若a 2=−3,S 5=−10,则a 5=______,S n 的最小值为______. 12. 记S n 为等差数列{a n }的前n 项和,若a 3=5,a 7=13,则S 10=___________.13. 记S n 为等差数列{a n }的前n 项和.若a 1≠0,a 2=3a 1,则S10S 5=______. 三、解答题(本大题共7小题,共84.0分)14. 记S n 为等差数列{a n }的前n 项和,已知S 9=−a 5.(1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围.15. 设{a n }是等差数列,a 1=−10,且a 2+10,a 3+8,a 4+6成等比数列.(Ⅰ)求{a n }的通项公式;(Ⅱ)记{a n }的前n 项和为S n ,求S n 的最小值.16. 设{a n }是等差数列,{b n }是等比数列.已知a 1=4,b 1=6,b 2=2a 2−2,b 3=2a 3+4.(Ⅰ)求{a n }和{b n }的通项公式;(Ⅱ)设数列{c n }满足c 1=1,c n ={1,2k <n <2k+1,b k ,n =2k ,其中k ∈N ∗. (i)求数列{a2n (c 2n −1)}的通项公式; (ii)求∑a i 2n i=1c i (n ∈N ∗).17.记S n为等差数列{a n}的前n项和,已知a1=−7,S3=−15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.18.设{a n}是等差数列,其前n项和为S n(n∈N∗);{b n}是等比数列,公比大于0,其前n项和为T n(n∈N∗).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6.(Ⅰ)求S n和T n;(Ⅱ)若S n+(T1+T2+⋯…+T n)=a n+4b n,求正整数n的值.19.已知数列{a n},a1=3,前n项和为S n.(1)若{a n}为等差数列,且a4=15,求S n;S n<12,求公比q的取值范围.(2)若{a n}为等比数列,且limn→+∞20.已知{a n}是各项均为正数的等比数列,a1=2,a3=2a2+16.(1)求{a n}的通项公式;(2)设b n=log2a n,求数列{b n}的前n项和.-------- 答案与解析 --------1.答案:B解析:解:在等差数列{a n}中,a n=a1+(n−1)d,S n+2=(n+2)a1+(n+2)(n+1)2d,S2n=2na1+2n(2n−1)2d,b1=S2=2a1+d,b n+1=S n+2−S2n=(2−n)a1−3n2−5n−22d.∴b2=a1+2d,b4=−a1−5d,b6=−3a1−24d,b8=−5a1−55d.A.2a4=2(a1+3d)=2a1+6d,a2+a6=a1+d+a1+5d=2a1+6d,故A正确;B.2b4=−2a1−10d,b2+b6=a1+2d−3a1−24d=−2a1−22d,若2b4=b2+b6,则−2a1−10d=−2a1−22d,即d=0不合题意,故B错误;C.若a42=a2a8,则(a1+3d)2=(a1+d)(a1+7d),即a12+6a1d+9d2=a12+8a1d+7d2,得a1d=d2,∵d≠0,∴a1=d,符合a1d⩽1,故C正确;D.若b42=b2b8,则(−a1−5d)2=(a1+2d)(−5a1−55d),即2(a1d )2+25a1d+45=0,则a1d有两不等负根,满足a1d⩽1,故D正确.∴等式不可能成立的是B.故选:B.由已知利用等差数列的通项公式判断A与C;由数列递推式分别求得b2,b4,b6,b8,分析B,D成立时是否满足公差d≠0,a1d⩽1判断B与D.本题考查数列递推式,等差数列的通项公式与前n项和,考查转化思想和计算能力,是中档题.2.答案:C解析:本题以程序框图为载体,考查了等差数列求和,属于中档题.解:输入n=1,S=0,则S=S+n=1,S⩽100,n=n+2=3,S=S+n=1+3=4,S⩽100,n=n+2=5,S =S +n =1+3+5=9,S ⩽100,n =n +2=7,S =S +n =1+3+5+7=16,S ⩽100,n =n +2=9, 根据等差数列求和可得,S =1+3+5+⋯+19=100⩽100,n =19+2=21, 输出n =21.故选C .3.答案:A解析:本题考查等差数列的通项公式以及前n 项和公式,属于基础题.根据题意,设等差数列{a n }的公差为d ,则有{4a 1+6d =0a 1+4d =5,求出首项和公差,然后求出通项公式和前n 项和即可.解:设等差数列{a n }的公差为d ,由S 4=0,a 5=5,得{4a 1+6d =0a 1+4d =5, ∴{a 1=−3d =2, ∴a n =2n −5,S n =n (−3+2n−5)2=n 2−4n ,故选:A . 4.答案:B解析:本题考查等差数列的求和公式,考查运算求解能力,是基础题. 根据题意,可得d =−3,即可得解.解:∵S n 为等差数列{a n }的前n 项和,3S 3=S 2+S 4,a 1=2,∴3×(3a1+3×22d)=a1+a1+d+4a1+4×32d,可得d=−3,∴a5=2+4×(−3)=−10.故选:B.5.答案:C解析:本题考查等差数列的前n项和的性质,注意S3=S9的变形应用,属于中档题.根据题意,由等差数列前n项和公式结合等差数列的性质可得a4+a9=a5+a8=a6+a7=0,据此分析可得答案.解:根据题意,等差数列{a n}中,S3=S9,则S9−S3=a4+a5+a6+a7+a8+a9=0,又{a n}为等差数列,则a4+a9=a5+a8=a6+a7=0,又由a1>0,d<0,则a6>0,a7<0,则当n=6时,S n取得最大值;故选C.6.答案:3n2−2n解析:本题主要考查等差数列的性质以及求和公式,属于基础题.首先判断{a n}是以1为首项、以6为公差的等差数列,再利用求和公式,得出结论.解:将数列{2n−1}与{3n−2}的公共项从小到大排列得到数列{a n},则{a n}是以1为首项、以6为公差的等差数列,故它的前n项和为n×1+n(n−1)2×6=3n2−2n,故答案为:3n2−2n.7.答案:278解析:本题考查等差数列的前n项和与等差数列通项公式的应用,注意分析a1与d的关系,属于基础题.根据等差数列的通项公式可由a1+a10=a9,得a1=−d,在利用等差数列前n项和公式化简a1+a2+⋯+a9a10即可得出结论.解:根据题意,等差数列{a n}满足a1+a10=a9,即a1+a1+9d=a1+8d,变形可得a1=−d,所以a1+a2+⋯+a9a10=9a1+9×8d2a1+9d=9a1+36da1+9d=−9d+36d−d+9d=278.故答案为:278.8.答案:25解析:本题考查了等差数列的通项公式与前n项和,属于基础题.解:∵数列{a n}为等差数列,设公差为d,∵a1=−2,a2+a6=2,∴−2+d+(−2)+5d=2,解得d=1,∵S n为{a n}的前n项和,故S10=10a1+10×92d=10×(−2)+45=25.故答案为:25.。