《数学分析》10第三章-函数极限

《数学分析》10第三章-函数极限
《数学分析》10第三章-函数极限

《数学分析》10第三章-函数极限

第三章 函数极限

引言

在《数学分析》中,所讨论的极限基本上分两

部分,第一部分是“数列的极限”,第二部分是“函数的极限”。二者的关系到是“特殊”与“一般”的关系;数列极限是函数极限的特例。

通过数列极限的学习。应有一种基本的观念:“极

限是研究变量的变化趋势的”或说:“极限是研究变量的变化过程,并通过变化的过程来把握变化的结果”。例如,数列{}n a 这种变量即是研究当n →+∞时,{}n a 的变化趋势。

我们知道,从函数角度看,数列{}n

a 可视为一种特殊的函数f ,其定义域为N +,值域是{}n

a ,即 :()

n f N R n a +→→; 或 (),n f n a n N +=∈或()n f n a =.

研究数列{}n a 的极限,即是研究当自变量n →+∞时,

函数()f n 变化趋势。

此处函数()f n 的自变量n 只能取正整数!因此自变

量的可能变化趋势只有一种,即n →+∞。但是,如果代之正整数变量n 而考虑一般的变量为x R ∈,那么情况又如何呢?具体地说,此时自变量x 可能的变化趋势是否了仅限于x →+∞一种呢?

为此,考虑下列函数:

1,0;()0,0.x f x x ≠?=?=?

类似于数列,可考虑自变量x →+∞时,()f x 的变化趋

势;除此而外,也可考虑自变量x →-∞时,()f x 的变化趋势;还可考虑自变量x →∞时,()f x 的变化趋势;还可考虑自变量x a →时,()f x 的变化趋势, L

由此可见,函数的极限较之数列的极限要复杂得

多,其根源在于自变量性质的变化。但同时我们将看到,这种复杂仅仅表现在极限定义的叙述有所不同。而在各类极限的性质、运算、证明方法上都类似于数列的极限。

下面,我们就依次讨论这些极限。

§1 函数极限的概念

一、x →+∞时函数的极限

1. 引言

设函数定义在[,)a +∞上,类似于数列情形,我们研

究当自变量x →+∞时,对应的函数值能否无限地接近于某个定数A。这种情形能否出现呢?回答是可能出现,但不是对所有的函数都具此性质。

例如 1(),f x x x =无限增大时,()f x 无限地接近于

0;(),g x arctgx x =无限增大时,()f x 无限地接近于2

π;(),h x x x =无限增大时,()f x 与任何数都不能无限地接近。正因为如此,所以才有必要考虑x →+∞时,()f x 的变化趋势。

我们把象()f x ,()g x 这样当x →+∞时,对应函数值无限地接近于某个定数A的函数称为“当x →+∞时有极限A”。

[问题]如何给出它的精确定义呢? 类似于数列,当x →+∞时函

数极限的精确定义如下.

2. x →+∞时函数极限的定义

定义1 设f 为定义在[,)a +∞上的函数,A为实数。

若对任给的0ε>,存在正数M()a ≥,使得当x M >时有 |()|f x A ε-<, 则称函数f 当x →+∞时以A为极限。记作

lim ()x f x A →+∞

=或()()f x A x →→+∞. 3. 几点注记

(1) 定义1中作用ε与数列极限中ε作用相同,衡量

()f x 与A的接近程度,正数M的作用与数列极限定义中N相类似,表明x 充分大的程度;但这里所考虑的是比M大的所有实数x ,而不仅仅是正整数n 。

(2) lim ()x f x A →+∞

=的邻域描述:,(),U ε??+∞当()x U ∈+∞时,

()(;).f x U A ε∈ (3) lim ()x f x A →+∞=的几何意义:对ε?,就有y A ε=+和y A ε=-两

条直线,形成以A为中心线,以2ε为宽的带形区域。“当x M >时有|()|f x A ε-<”表示:在直线x M =的右方,曲线()y f x =全部落在这个带形区域内。

如果ε给得小一点,即带形区域更窄一点,那么直线x M =一

般往右移;但无论带形区域如何窄,总存在正数M,

使得曲线()y f x =在x M =的右边的全部落在这个更窄的带形区域内。

(4) 现记f 为定义在()U -∞或()U ∞上的函数,当x →-∞或

x →∞时,若函数值()f x 能无限地接近于常数A,则称f 当

x →-∞

或x →∞时时以A为极限,分别记作,

lim ()x f x A →-∞=或()()f x A x →→-∞, lim ()x f x A →∞=或()()f x A x →→∞。

这两种函数极限的精确定义与定义1相仿,简写如下:

lim ()x f x A →-∞

=0,0,M ε??>?>当x M <-时,|()|f x A ε-<, lim ()x f x A →∞=0,0,M ε??>?>当||x M >时,|()|f x A ε-<。

(5)推论:设()f x 为定义在()U ∞上的函数,则

lim ()x f x A →∞=?lim ()lim ()x x f x f x A →+∞→-∞

==。 4.利用lim ()x f x →+∞

=A的定义验证极限等式举例 例1 证明 1lim 0x x →∞=.

例2 证明 1)lim 2x arctgx π→-∞=-;2)lim 2

x arctgx π→+∞=. 二、0x x →时函数的极限

1.引言

上节讨论的函数f 当x →+∞时的极限,是假定f 为

定义在[,)a +∞上的函数,这事实上是()U +∞,即f 为定义在()U +∞上,考虑x →+∞时()f x 是否趋于某个定数A。

本节假定f 为定义在点0x 的某个空心邻域()00U x 内

的函数,。现在讨论当00()x x x x →≠时,对应的函数值能

否趋于某个定数A数列。

先看下面几个例子:

例1

()1(0)f x x =≠.(()f x 是定义在0(0)U 上的函数,当0x →时,()1f x →) 例2 24()2x f x x -=-.(()f x 是定义在0(2)U 上的函数,当2

x →时,()4f x →)

例3 1

()f x x =.(()f x 是定义在0(0)U 上的函数,当0x →时,

()?f x →)

由上述例子可见,对有些函数,当00()x x

x x →≠时,对应的函数值()f x 能趋于某个定数A;但对有些函数却无此性质。所以有必要来研究当00()x x

x x →≠时,()f x 的

变化趋势。 我们称上述的第一类函数()f x 为当0

x x →时以A为极限,记作0

lim ()x x f x A →=。 和数列极限的描述性说法一样,这是一种描述性的说法。不是严格的数学定义。那么如何给出这类函数极限的精确定义呢?

作如下分析:

“当自变量x 越来越接近于0

x 时,函数值()f x 越来越接近于一个定数A”→只要x 充分接近0

x ,函数值()f x 和A的相差就会相当小→欲使|()|f x A -相当小,只要x 充分接近0x 就可以了。即对0,0εδ?>?>,当00||x x δ<-<时,都

有|()|f x A ε-<。此即0

lim ()x x f x A →=。 2.00()x x

x x →≠时函数极限的εδ-定义 定义2 设函数

()f x 在点0x 的某个空心邻域()00;U x δ'内有定义,A为定数,若对任给的0,()0εδδ'?>?<>,使得当00||x x δ<-<时有|()|f x A ε-<,则称函数f 当 x 趋于0x

时以A为极限(或称A为0x x →时()f x 的极限),记作

0lim ()x x f x A →=或(0

()()f x A x x →→. 3. 说明如何用εδ-定义来验证这种类型的函数极限 4. 函数极限的εδ-定义的几点说明:

(1)|()|f x A ε-<是结论,00||x x δ<-<是条件,即由00||x x δ

<-<推出。

(2)ε是表示函数()f x 与A的接近程度的。为了说

明函数()f x 在0

x x →的过程中,能够任意地接近于A,ε必须是任意的。这即ε的第一个特性——任意性,即ε是变量;但ε一经给定之后,暂时就把ε看作是不变的了。以便通过ε寻找δ,使得当00||x x δ<-<时|()|f x A ε-<成立。这即ε的第二特

性——暂时固定性。即在寻找δ的过程中ε是常量;另外,若

ε是任意正数,则2,2εεL

均为任意正数,均可扮演ε的角色。也即ε的第三个特性——多值性;(|()|f x A ε-<|()|f x A ε?-≤)

(3) δ是表示x 与0

x 的接近程度,它相当于数列极限的N ε-定义中的N。它的第一个特性是相应性。

即对给定的0ε>,都有一个δ与之对应,所以δ是依赖于ε而适当选取的,为此记之为0

(;)x δε;一般说来,ε越小,δ越小。但是,定义中是要求由00||x x δ<-<推出|()|f x A ε-<即可,故若δ满足此要求,则,23

δδ等等比δ还小的正数均可满足要求,因此δ不是唯一的。这即δ的第二个特性——多值性。

(4)在定义中,只要求函数f 在0

x 的某空心邻域内有定义,而一般不要求f 在0

x 处的函数值是否存在,或者取什么样的值。这是因为,对于函数极限我们所研究的是当x 趋于0

x 的过程中函数的变化趋势,与函数在该处的函数值无关。所以可以不考虑f 在点a 的函数值是否存在,或取何值,因而限定“0

0||x x <-”。 (5)定义中的不等式

00||x x δ<-<00(,)x U x δ?∈;|()|()(;)

f x A f x U A εε-?>,当00(,)x U x δ∈时,都有

()(;)f x U A ε∈?0,0εδ?>?>,使得()00(,)(;)

f U x U A δε?。 (6)εδ-定义的几何意义。

例1. 设24()2x f x x -=-,证明2

lim ()4x f x →=. 例2. 设()1(0)f x x =≠,讨论0x →时()f x 的极限。

例3. 证明 1)00lim sin sin x x x x →=;2)00

lim cos cos x x x x →=.

例4. 证明

22112lim 213x x x x →-=--. 例5. 证明

0lim x x →=0(||1)x <.

例6. 证明 000lim ,lim x x x x C C x x →→==. 练习:1)证明

311lim 31x x x →-=-; 2)证明

65lim 6x x x →+∞+=. 三、单侧极限 1.引言

有些函数在其定义域上某些点左侧与右侧的

解析式不同,如

21,0(),0x x f x x x ?≥=?

或函数在某些点仅在其一侧有定义,如

2()0f x x =≥。

这时,如何讨论这类函数在上述各点处的极限呢?此时,不能再用前面的定义(讨论方法),而要从这些点的某一侧来讨论。如讨论1

()f x 在0x →时的极限。要在0x =的左右两侧分别讨论。即当0x >而趋于0时,应按2

1

()f x x =来考察函数值的变化趋势;当0x <而趋于0时,应按1

()f x x =来考察函数值的变化趋势;而对2

()f x ,只能在点0x =的右侧,即0x >而趋于0时来考察。为此,引进“单侧极限”的概念。

2.单侧极限的定义

定义3 设函数f 在0

0(;)U x δ+'内有定义,A为定数。

若对任给的0,()0εδδ'?>?<>,使得当00x x x δ<<+时有

|()|f x A ε-<, 则称数A为函数f 当x 趋于0

x 时的右极限,记作

0lim ()x x f x A +→=或0

()()f x A x x +→→或0(0)f x A +=。 类似可给出左极限定义(0

0(;)U

x δ-,00x x x δ-<<,0lim ()x x f x A -→=或0()()f x A x x -

→→或0(0)f x A -=).

注:右极限与左极限统称为单侧极限。

3.例子

例1 讨论函数1

()f x 在0x =的左、右极限。 例2 讨论sgn x 在0x =的左、右极限。

例3

1±处的单侧极限。 4。函数极限0lim ()x x f x →与00lim

(),lim ()x x x x f x f x +-→→的关系。 定理3.1 000lim ()lim ()lim ()x x x x x x f x A f x f x A +-→→→=?==.

注:1)利用此可验证函数极限的存在,如由定理3.1知:1

0lim ()0x f x →=。还可说明某些函数极限不存在,如由例2知0limsgn x x →不存在。2)0(0)f x +,0(0)f x -,0()f x 可能毫无关系,如例2。

函数与数列的极限的强化练习题答案(含详细分析)

第一讲:函数与数列的极限的强化练习题答案 一、单项选择题 1.下面函数与y x =为同一函数的是() 2 .A y= .B y= ln .x C y e =.ln x D y e = 解:ln ln x y e x e x === Q,且定义域 () , -∞+∞,∴选D 2.已知?是f的反函数,则() 2 f x的反函 数是() () 1 . 2 A y x ? =() .2 B y x ? = () 1 .2 2 C y x ? =() .22 D y x ? = 解:令() 2, y f x =反解出x:() 1 , 2 x y =?互 换x,y位置得反函数() 1 2 y x =?,选A 3.设() f x在() , -∞+∞有定义,则下列函数 为奇函数的是() ()() .A y f x f x =+- ()() .B y x f x f x =-- ?? ?? () 32 .C y x f x = ()() .D y f x f x =-? 解:() 32 y x f x = Q的定义域() , -∞+∞且 ()()()()() 3232 y x x f x x f x y x -=-=-=- ∴选C 4.下列函数在() , -∞+∞内无界的是() 2 1 . 1 A y x = + .arctan B y x = .sin cos C y x x =+.sin D y x x = 解: 排除法:A 2 1 122 x x x x ≤= + 有界, B arctan 2 x π <有界, C sin cos x x +≤ 故选D 5.数列{}n x有界是lim n n x →∞ 存在的() A 必要条件 B 充分条件 C 充分必要条件 D 无关条件 解:Q{}n x收敛时,数列n x有界(即 n x M ≤),反之不成立,(如() {}11n--有界, 但不收敛, 选A 6.当n→∞时,2 1 sin n 与 1 k n 为等价无穷小, 则k= () A 1 2 B 1 C 2 D -2 解:Q 2 2 11 sin lim lim1 11 n n k k n n n n →∞→∞ ==,2 k=选C 二、填空题(每小题4分,共24分) 7.设() 1 1 f x x = + ,则() f f x ?? ??的定义域 为

高等数学函数极限与连续习题及答案

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴()12 ++=x x x f 与()11 3--=x x x g 函数关系相同,但定义域不同,所以()x f 与 ()x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1)1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点. 11、函数()x f x 1 =必在闭区间[]b a ,内取得最大值、最小值.

《数学分析》10第三章-函数极限

《数学分析》10第三章-函数极限

第三章 函数极限 引言 在《数学分析》中,所讨论的极限基本上分两 部分,第一部分是“数列的极限”,第二部分是“函数的极限”。二者的关系到是“特殊”与“一般”的关系;数列极限是函数极限的特例。 通过数列极限的学习。应有一种基本的观念:“极 限是研究变量的变化趋势的”或说:“极限是研究变量的变化过程,并通过变化的过程来把握变化的结果”。例如,数列{}n a 这种变量即是研究当n →+∞时,{}n a 的变化趋势。 我们知道,从函数角度看,数列{}n a 可视为一种特殊的函数f ,其定义域为N +,值域是{}n a ,即 :() n f N R n a +→→; 或 (),n f n a n N +=∈或()n f n a =. 研究数列{}n a 的极限,即是研究当自变量n →+∞时, 函数()f n 变化趋势。 此处函数()f n 的自变量n 只能取正整数!因此自变 量的可能变化趋势只有一种,即n →+∞。但是,如果代之正整数变量n 而考虑一般的变量为x R ∈,那么情况又如何呢?具体地说,此时自变量x 可能的变化趋势是否了仅限于x →+∞一种呢? 为此,考虑下列函数:

1,0;()0,0.x f x x ≠?=?=? 类似于数列,可考虑自变量x →+∞时,()f x 的变化趋 势;除此而外,也可考虑自变量x →-∞时,()f x 的变化趋势;还可考虑自变量x →∞时,()f x 的变化趋势;还可考虑自变量x a →时,()f x 的变化趋势, L 由此可见,函数的极限较之数列的极限要复杂得 多,其根源在于自变量性质的变化。但同时我们将看到,这种复杂仅仅表现在极限定义的叙述有所不同。而在各类极限的性质、运算、证明方法上都类似于数列的极限。 下面,我们就依次讨论这些极限。 §1 函数极限的概念 一、x →+∞时函数的极限 1. 引言 设函数定义在[,)a +∞上,类似于数列情形,我们研 究当自变量x →+∞时,对应的函数值能否无限地接近于某个定数A。这种情形能否出现呢?回答是可能出现,但不是对所有的函数都具此性质。 例如 1(),f x x x =无限增大时,()f x 无限地接近于 0;(),g x arctgx x =无限增大时,()f x 无限地接近于2 π;(),h x x x =无限增大时,()f x 与任何数都不能无限地接近。正因为如此,所以才有必要考虑x →+∞时,()f x 的变化趋势。

关于大学高等数学函数极限和连续

关于大学高等数学函数极 限和连续 Last revision on 21 December 2020

第一章 函数、极限和连续 § 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ? ? ?∈∈=21)()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1(y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1)=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2),

则称f(x)在D内严格单调增加( ); 若f(x1)>f(x2), 则称f(x)在D内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x∈(-∞,+∞) 周期:T——最小的正数 4.函数的有界性: |f(x)|≤M , x∈(a,b) ㈢基本初等函数 1.常数函数: y=c , (c为常数) 2.幂函数: y=x n , (n为实数) 3.指数函数: y=a x , (a>0、a≠1) 4.对数函数: y=log x ,(a>0、a≠1) a 5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣复合函数和初等函数 1.复合函数: y=f(u) , u=φ(x) y=f[φ(x)] , x∈X 2.初等函数:

函数与极限练习题

题型 一.求下列函数的极限 二.求下列函数的定义域、值域 三.判断函数的连续性,以及求它的间断点的类型 内容 一.函数 1.函数的概念 2.函数的性质——有界性、单调性、周期性、奇偶性 3.复合函数 4.基本初等函数与初等函数 5.分段函数 二.极限 (一)数列的极限 1.数列极限的定义 2.收敛数列的基本性质 3.数列收敛的准则 (二)函数的极限 1.函数在无穷大处的极限 2.函数在有限点处的极限 3.函数极限的性质 4.极限的运算法则 (三)无穷小量与无穷大量 1.无穷小量 2.无穷大量 3.无穷小量的性质 4.无穷小量的比较 5.等价无穷小的替换原理 三.函数的连续性 x处连续的定义 1.函数在点0 2.函数的间断点 3.间断点的分类 4.连续函数的运算 5.闭区间上连续函数的性质 例题详解 题型I函数的概念与性质 题型II求函数的极限(重点讨论未定式的极限) 题型III求数列的极限 题型IV已知极限,求待定参数、函数、函数值 题型V无穷小的比较 题型VI判断函数的连续性与间断点类型 题型VII与闭区间上连续函数有关的命题证明

自测题一 一. 填空题 二. 选择题 三. 解答题 3月18日函数与极限练习题 一.填空题 1.若函数121)x (f x -??? ??=,则______)x (f lim x =+∞ → 2.若函数1 x 1 x )x (f 2--=,则______)x (f lim _1x =→ 3. 设23,,tan ,u y u v v x === 则复合函数为 ()y f x = = _________ 4. 设 cos 0()0 x x f x x x ≤??=? >?? ,则 (0)f = __________ 5.已知函数 2 ()1 ax b x f x x x +

《实变函数》第三章_测度论

第三章 测 度 论(总授课时数 14学时) 教学目的 引进外测度定义,研究其性质,由此过渡到可测集 本章要点 要引导学生注意外测度与测度之间的重要差别 ,测度概念抽象,要与具体点集 诸如面积体积等概念进行比较. §1、外测度 教学目的1、掌握外测度的定义及其基本性质. 2、理解区间及有理点集的外测度及其证明方法. 本节要点 外测度的定义及其基本性质. 本节难点 外测度的定义. 授课时数 4学时 —————————————————————————————— 一、引言 (1) Riemann 积分回顾(分割定义域) ||||0 1 ()()lim ()n b i i a T i R f x dx f x ξ→==?∑?,1i i i x x x -?=-,1i i i x x ξ-≤≤ 积分与分割、介点集的取法无关。 几何意义(非负函数):函数图象下方图形的面积。 (2)新的积分(Lebesgue 积分,从分割值域入手) 记1{:()}i i i E x y f x y -=≤<,1i i i y y ξ-≤<,则 [,] 1 ()()lim n i i a b i L f x dx mE δξ→==∑? 问题:如何把长度,面积,体积概念推广? 达布上和与下和 上积分(外包)(达布上和的极限) ||||0 1 ()lim n b i i a T i f x dx M x →==?∑? 下积分(内填)达布下和的极限 ||||0 1 ()lim n b i i a T i f x dx m x →==?∑? 二、Lebesgue 外测度(外包) 1.定义:设 n E R ?,称非负广义实数*({})R R ?±∞=

高等数学函数极限练习题

设 f ( x ) 2 x , 求 f ( x ) 的 定 义 域 及 值 域 。 1 x 设 f ( x) 对一切实数 x 1, x 2 成立 f ( x 1 x 2 ) f ( x 1 ) f ( x 2 ),且 f (0 ) 0, f (1) a , 求 f (0 )及 f ( n).(n 为正整数 ) 定 义 函 数 I ( x) 表 示 不 超 过 x 的 最 大 整 数 叫 做 x 的 取 整 函 数 ,若 f ( x) 表 示 将 x 之 值 保 留 二 位小数,小数第 3 位起以后所有数全部舍去,试用 表 示 f ( x) 。 I ( x) 定 义 函 数 I ( x) 表 示 不 超 过 x 的 最 大 整 数 叫 做 x 的 取 整 函 数 ,若 g ( x) 表 示 将 x 依 4 舍 5 入 法 则 保 留 2 位 小 数 , 试 用 I ( x) 表 示 g ( x) 。 在某零售报摊上每份报纸的进价为 0.25 元,而零售价为 0.40 元,并且如果报纸当天未售 出 不 能 退 给 报 社 ,只 好 亏 本 。若 每 天 进 报 纸 t 份 ,而 销 售 量 为 x 份 ,试 将 报 摊 的 利 润 y 表 示 为 x 的函数。 定义函数 I ( x)表示不超过 x 的最大整数叫做 x 的取整函数,试判定 ( x) x I ( x )的周期性。 判定函数 x x ln( 1 x x )的奇偶性。 f ( x ) ( e 1) 设 f ( x ) e x sin x , 问 在 0 , 上 f ( x ) 是 否 有 界 ? 函 数 y f ( x ) 的 图 形 是 图 中 所 示 的 折 线 O BA , 写 出 y f ( x) 的 表 达 式 。 x 2 , 0 x ; x , x ; 设 f ( x) 2 ( x) 0 4 求 f ( x ) 及f ( x ) . x x 4 x x , . , . 2 2 2 4 6 设 f ( x ) 1, x 0 ; ( x ) 2 x 1, 求 f ( x ) 及 f ( x) . 1 , x 0 . e x , x ; 0 , x 0 ; 设 f ( x ) 求 f ( x )的反函数 g ( x ) 及 f ( x ) . x x ( x) x 2, x 0 , . . 1 x ) , ( x ) x , x 0 ; 求 f ( x ) . 设 f ( x )( x x 2 , x 2 0 . 2 x , x 0 ; 求 f f ( x ) 设 f ( x ) x 0. . 2 , 0 , x ; x , x ; ( x ) 求 f ( x) ( x ). 设 f ( x ) x , x 0 . x , x . 1

函数与极限测试题及答案(一)

函数与极限测试题(一) 一、 填空题 1、若1ln 1 1ln x f x x +??= ?-??,则()f x =_____。 2、函数()f x 的定义域为[],a b ,则()21f x -的定义域为_____。 3、若0x →时,无穷小2 21ln 1x x -+与2sin a 等价,则常数a =_____。 4、设()()2 1lim 1 n n x f x nx →∞ -=+,则()f x 的间断点为x =_____。 二、 单选题 1、当0x →时,变量 2 11 sin x x 是( ) A 、无穷小 B 、无穷大 C 、有界的,但不是无穷小 D 、无界的,也不是无穷大 2、设函数()bx x f x a e =+在(),-∞+∞上连续,且()lim 0x f x →-∞=,则常数,a b 满足( ) A 、0,0a b << B 、0,0a b >> C 、0,0a b ≥< D 、0,0a b ≤> 3、设()232x x f x =+-,则当0x →时( ) A 、()f x 与x 是等价无穷小 B 、()f x 与x 是同阶但非等价无穷小 C 、()f x 是x 的高阶无穷小 D 、()f x 是x 的低阶无穷小 4、设对任意的x ,总有()()()x f x g x ?≤≤,且()()lim 0x g x x ?→∞ -=????, 则()lim x f x →∞ 为( ) A 、存在且等于零 B 、存在但不一定等于零 C 、一定不存在 D 、不一定存在

例:()()()11 ,,22 1 x x f x x g x x x x ?==+ =+ ++ 三、 求下列极限 1 、 lim x 2、()2 21212lim 1x x x x x -→?? ?+?? 四、 确定,a b 的值,使() 32 2ln 10 011ln 0 1ax x f x b x x x x x x x ?+<==??-+?>++?? 在(),-∞+∞内连续。 五、 指出函数()1 11x x x e e f x e e --= -的间断点及其类型。 六、 设1234,,,a a a a 为正常数,证明方程 31240123 a a a a x x x x +++=---有且仅有三个实根。 七、 设函数()(),f x g x 在[],a b 上连续,且满足()()()(),f a g a f b g b ≤≥,证明: 在[],a b 内至少存在一点ξ,使得()()f g ξξ=。 函数与极限测试题答案(一) 一、1、 11x x e -+; 2、 11, 2 2a b ++?? ???? ; 3、 4-; 4、0 ; 二、1—4、DCBD 三、1 、解:原式lim 3x ==;

高等数学(同济五版)第一章 函数与极限知识点

第一章函数与极限 一、对于函数概念要注意以下几点: (1) 函数概念的本质特征是确定函数的两个要素:定义域和对应法则。定义域是自变量和因变量能相互联系构成函数关系的条件,无此条件,函数就没意义。对应法则是正确理解函数概念的关键。函数关系不同于一般的依赖关系,“y是x的函数”并不意味着y随x的变化而变化。函数关系也不同于因果关系。例如一昼夜的气温变化与时间变化是函数关系,但时间变化并不是气温变化的实际原因。y=f(x)中的“f”表示从x到y的对应法则,“f”是一个记号,不是一个数,不能把f(x)看作f乘以x。如果函数是用公式给出的,则“f”表示公式里的全部运算。 (2) 函数与函数表达式不同。函数表达式是表示函数的一种形式,表示函数还可以用其他的形式,不要以为函数就是式子。 (3) f(x)与f(a)是有区别的。f(x)是函数的记号,f(a)是函数值的记号,是f(x)当x=a时的函数值。 (4)两个函数,当其定义域相同,对应法则一样时,此二函数才是相同的。 二、函数的有界性、单调性、周期性和奇偶性: 对函数的有界性、单调性、周期性和奇偶性的学习应注意以下几点: (1) 并不是函数都具有这些特性,而是在研究函数时,常要研究函数是否具有这些特性。 (2) 函数是否“有界”或“单调”,与所论区间有关系。 (3) 具有奇、偶性的函数,其定义域是关于原点对称的。如果f(x)是奇函数,则f(0)=0。存在着既是奇函数,又是偶函数的函数,例f(x)=0。f(x)+f(-x)=0是判别f(x)是否为奇函数的有效方法。 (4) 周期函数的周期通常是指其最小正周期,但不是任何周期函数都有最小周期。

高等数学1.3-函数的极限

第三节 函数的极限(一) 教学目的:(1)理解函数极限和左、右极限的概念; (2)理解无穷小概念,掌握其性质 教学重点:函数极限的概念,无穷小概念 教学难点:函数极限的概念的理解与应用 教学方法:讲授法 教学时数:2课时 本节我们将数列极限的概念推广到一元实值函数,然后研究函数极限的性质及其运算法则. 一、函数极限的概念 1.自变量x 趋于无穷大时函数的极限 1)+∞→x 时的极限: +∞→x 读作“x 趋于正无穷大”,表示x 无限增加,0x > . 例:对于x x f 1)(= ,当自变量+∞→x 时,x x f 1 )(=与常数0无限接近 . 复习数列极限的定义:数列{}n x 以a 为极限即a x n n =∞ →lim ? 0>?ε,N ?,N n >时,ε<-a x n . 令()n f x n =,则()?=∞ →a n f n lim 0>?ε,N ?,当N n >时,()ε<-a n f .将n 换成连续变量x ,将a 改记为A ,就可以得到x →+∞时,()A x f →的极限的定义及其数学上的精确描述 . 定义3.1:设函数)(x f 在),(+∞a 内有定义,,A ∈若0>?ε,0X ?>,当x X >时,有()ε<-A x f ,则称数A 为函数()x f 当x →+∞时的极限,记作()lim x f x A →+∞ =, 或()A x f →,(x →+∞) . 几何意义:对任意给定的0ε>,在轴上存在一点X ,使得函数的图象 {(,)|(),(,)}x y y f x x a =∈+∞在X 右边的部分位于平面带形),(),(εε+-?+∞A A X 内 . 2)x →-∞时的极限: x →-∞读作“x 趋于负无穷大”,表示x 无限增加,0x < . 定义:设函数)(x f 在),(a -∞内有定义,,A ∈若0>?ε,0X ?>,当x X <-时,有()ε<-A x f ,则称数A 为函数()x f 当x →-∞时的极限,记作()lim x f x A →-∞ =

函数与极限习题与答案

第一章 函数与极限 (A ) 一、填空题 1、设x x x f lg lg 2)(+-= ,其定义域为 。 2、设)1ln()(+=x x f ,其定义域为 。 3、设)3arcsin()(-=x x f ,其定义域为 。 4、设)(x f 的定义域是[0,1],则)(sin x f 的定义域为 。 5、设)(x f y =的定义域是[0,2] ,则)(2x f y =的定义域为 。 6、43 2lim 23=-+-→x k x x x ,则k= 。 7、函数x x y sin = 有间断点 ,其中 为其可去间断点。 8、若当0≠x 时 ,x x x f 2sin )(= ,且0)(=x x f 在处连续 ,则=)0(f 。 9、=++++++∞→)21(lim 222 n n n n n n n n 。 10、函数)(x f 在0x 处连续是)(x f 在0x 连续的 条件。 11、=++++∞→352352) 23)(1(lim x x x x x x 。 12、3) 2 1(lim -∞ →=+e n kn n ,则k= 。 13、函数2 31 22+--=x x x y 的间断点是 。 14、当+∞→x 时, x 1 是比3-+x 15、当0→x 时,无穷小x --11与x 相比较是 无穷小。 16、函数x e y 1=在x=0处是第 类间断点。 17、设1 1 3 --= x x y ,则x=1为y 的 间断点。 18、已知33=?? ? ??πf ,则当a 为 时,函数x x a x f 3sin 31sin )(+=在3π=x 处连续。

19、设?? ???>+<=0)1(02sin )(1x ax x x x x f x 若)(lim 0 x f x →存在 ,则a= 。 20、曲线2sin 2 -+=x x x y 水平渐近线方程是 。 21、1 14)(2 2-+ -= x x x f 的连续区间为 。 22、设?? ?>≤+=0 ,cos 0 ,)(x x x a x x f 在0=x 连续 ,则常数 a= 。 二、计算题 1、求下列函数定义域 (1)2 11 x y -= ; (2)x y sin = ; (3)x e y 1= ; 2、函数)(x f 和)(x g 是否相同?为什么? (1)x x g x x f ln 2)(,ln )(2 == ; (2)2)(,)(x x g x x f = = ; (3)x x x g x f 22tan sec )(, 1)(-== ; 3、判定函数的奇偶性 (1))1(2 2 x x y -= ; (2)3 2 3x x y -= ;

最全大学高等数学函数、极限和连续(新)

第一章 函数、极限和连续 §1.1 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ???∈∈=21)()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1 (y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1 )=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2), 则称f(x)在D 内严格单调增加( ); 若f(x 1)>f(x 2), 则称f(x)在D 内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数 4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数 1.常数函数: y=c , (c 为常数) 2.幂函数: y=x n , (n 为实数) 3.指数函数: y=a x , (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con x y=tan x , y=cot x

考研数学高数公式:函数与极限解读

考研数学高数公式:函数与极限 第一章:函数与极限 第一节:函数 函数属于初等数学的预备知识,在高数的学习中起到铺垫作用,直接考察的内容比较少,但是如果这章节有所缺陷对以后的学习都会有所影响。 基础阶段: 1.理解函数的概念,能在实际问题的背景下建立函数关系; 2.掌握并会计算函数的定义域、值域和解析式; 3.了解并会判断函数的有界性、单调性、周期性、奇偶性等性质; 4.理解复合函数和反函数的概念,并会应用它们解决相关的问题; 强化阶段: 1.了解函数的不同表现形式:显式表示,隐式表示,参数式,分段表示; 2.掌握基本初等函数的性质及其图形,了解初等函数的概念。 冲刺阶段: 1.综合应用函数解决相关的问题; 2.掌握特殊形式的函数(含极限的函数,导函数,变上限积分,并会讨论它们的相关性质。 第二节:极限

极限可以说是高等数学的基础,极限的计算也是高等数学中最基本的运算。在考试大纲中明确要求考生熟练掌握的基本技能之一。虽在考试中站的分值不大。但是在其他的试题中得到广泛应用。因此这部分学习直接营销到整个学科的复习结果 基础阶段 1.了解极限的概念及其主要的性质。 2.会计算一些简单的极限。 3.了解无穷大量与无穷小量的关系,了解无穷小量的比较方法,记住常见的等价无穷小量。 强化阶段: 1.理解极限的概念,理解函数左右极限的概念及其与极限的关系(数一数二/了解数列 极限和函数极限的概念(数三; ▲2.掌握计算极限的常用方法及理论(极限的性质,极限的四则运算法则,极限存在的两个准则,两个重要极限,等价无穷小替换,洛必达法则,泰勒公式; 3.会解决与极限的计算相关的问题(确定极限中的参数; 4.理解无穷大量和无穷小量的概念及相互关系,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用(数一数二/理解无穷小量的概念,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用,了解无穷大量的概念及其与无穷小量的关系(数三。 冲刺阶段: 深入理解极限理论在微积分中的中心地位,理解高等数学中其它运算(求导,求积分与极限之间的关系,建立完整的理论体系。

高等数学函数极限练习试题

设x x x f += 12)(,求)(x f 的定义域及值域。 ,,,且成立,对一切实数设a f f x f x f x x f x x x f =≠=+)1(0)0()()()()(212121)()()0(为正整数.及求n n f f 定义函数)(x I 表示不超过x 的最大整数叫做x 的取整函数,若)(x f 表示将x 之值保留二位小数,小数第3位起以后所有数全部舍去,试用)(x I 表示)(x f 。 定义函数)(x I 表示不超过x 的最大整数叫做x 的取整函数,若)(x g 表示将x 依4舍5入法则保留2位小数,试用)(x I 表示)(x g 。 在某零售报摊上每份报纸的进价为0.25元,而零售价为0.40元,并且如果报纸当天未售出不能退给报社,只好亏本。若每天进报纸t 份,而销售量为x 份,试将报摊的利润y 表示为x 的函数。 的取整函数,试判定的最大整数叫做表示不超过定义函数x x x I )(的周期性。)()(x I x x -=? 的奇偶性。 判定函数)1ln()1()(x x e x f x x -+?-=+ [ )设,问在,上是否有界?f x e x f x x ()sin ()=+∞0 函数的图形是图中所示的折线,写出的表达式。y f x OBA y f x ==()() ???≤≤-<≤=????≤≤+<≤=., ; ,.,;, 设64240)(42220)(2 x x x x x x x x x x f [][].及求)()(x f x f ?? [][]设,; ,. ,求及.f x x x x x f x f x ()()()()=-≤>???=-101021??? ???>-≤=????>≤-=. ,; ,., ;,设000)(00)(2 x x x x x x x e x f x [].及的反函数求)()()(x f x g x f ? []设,,;,.求.f x x x x x x x x f x ()()()()=+=<≥???1 2002?? []设,; , .求.f x x x x f f x ()()=+<≥???2020 .求.,; ,.,;,设)()( 111)(000)(x x f x x x x x x x x x f ?+? ??≥<+=????≥<=

函数与极限练习题

第一章 函数与极限 §1 函数 一、是非判断题 1、)(x f 在X 上有界,)(x g 在X 上无界,则)()(x g x f +在X 上无界。 [ ] 2、)(x f 在X 上有界的充分必要条件是存在数A 与B ,使得对任一X x ∈都有 B x f A ≤≤)( [ ] 3、)(),(x g x f 都在区间I 上单调增加,则)(·)(x g x f 也在I 上单调增加。 [ ] 4、定义在(∞+∞-,)上的常函数是周期函数。 [ ] 5、任一周期函数必有最小正周期。 [ ] 6、)(x f 为(∞+∞-,)上的任意函数,则)(3x f 必是奇函数。 [ ] 7、设)(x f 是定义在[]a a ,-上的函数,则)()(x f x f -+必是偶函数。 [ ] 8、f(x)=1+x+ 2 x 是初等函数。 [ ] 二.单项选择题 1、下面四个函数中,与y=|x|不同的是 (A )||ln x e y = (B )2x y = (C )44x y = (D )x x y sgn = 2、下列函数中 既是奇函数,又是单调增加的。 (A )sin 3x (B )x 3+1 (C )x 3+x (D )x 3-x 3、设[])(,2)(,)(22x x f x x f x ??则函数==是 (A )x 2log (B )x 2 (C )22log x (D )2 x 4、若)(x f 为奇函数,则 也为奇函数。 (A));0(,)(≠+c c x f (B) )0(,)(≠+-c c x f (C) );()(x f x f + (D) )].([x f f - 三.下列函数是由那些简单初等函数复合而成。 1、 y=) 1arctan(+x e 2、 y=x x x ++ 3、 y=x ln ln ln

《数学分析》第三章函数极限

第三章 函数极限 (计划课时:1 4 时)P42—68 §1 函数极限概念 ( 4时 ) 一、∞→x 时函数的极限: 1. 以+∞→x 时x x f 1)(=和arctgx x g =)(为例引入. 2. 介绍符号: +∞→x ,+∞→x ,+∞→x 的意义,)(lim x f 的直观意义. 3. 函 数 极 限 的 “ M -ε”定义 (A x f x =+∞→)(lim ,A x f x =-∞→)(lim ,A x f x =∞ →)(lim ). 4. 几何意义: 介绍邻域{}M x x U >=+∞)(,{}M x x U -<=-∞)(, {}M x x U >=∞)(其中M 为充分大的正数.然后用这些邻域语言介绍 几何意义. 5. 函数在∞与∞+,∞-极限的关系: Th1 .)()( )(A f f A f =+∞=-∞?=∞ 例1 验证.01lim =∞ →x x

证明格式:0>?ε(不妨设 <<ε0□)(不妨设>x □或>x □,x □(∞→x )或>x □(+∞→x ),?ε,=?M □0>,当>x M (或>x M ,>…… 6. 的正值性, 任意性与确定性, ε以小为贵. 7. M 的存在性与非唯一性,对M 只要求存在,在乎其大的一

高等数学函数与极限试的题目

高等数学第一章函数与极限试题 一. 选择题 1.设F(x)是连续函数f(x)的一个原函数,""N M ?表示“M 的充分必要条件是N ”,则必有 (A ) F(x)是偶函数?f(x)是奇函数. (B ) F(x)是奇函数?f(x)是偶函数. (C ) F(x)是周期函数?f(x)是周期函数. (D ) F(x)是单调函数?f(x)是单调函数 2.设函数,1 1)(1 -= -x x e x f 则 (A ) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点 (C ) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. (D ) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. 3.设f (x)=x x 1 -,x ≠0,1,则f [)(1 x f ]= ( ) A ) 1-x B ) x -11 C ) X 1 D ) x 4.下列各式正确的是 ( ) A ) lim + →x )x 1 +1(x =1 B ) lim + →x )x 1 +1(x =e C ) lim ∞ →x )x 1 1-(x =-e D ) lim ∞ →x )x 1 +1(x -=e 5.已知9)( lim =-+∞→x x a x a x ,则=a ( )。 A.1; B.∞; C.3ln ; D.3ln 2。 6.极限:=+-∞→x x x x )1 1( lim ( ) A.1; B.∞; C.2 -e ; D.2 e 7.极限:∞ →x lim 3 32x x +=( ) A.1; B.∞; C.0; D.2. 8.极限:x x x 11lim 0-+→=( ) A.0; B.∞; C 2 1; D.2.

函数、极限与连续复习题参考答案Word版

函数、极限与连续 复习题 一.填空题: 1. 函数1 1ln +-=x x y 的奇偶性是奇函数. 2. 设1 2)11(-=-x x x f ,则=)(x f 1 1x -. 3. 函数x e y -=1的复合过程是,1u y e u x ==-. 4. 函数y =sin ,12y u u v x ===+. 5. 设)(x f 的定义域是[0,1] , 则函数y=)(ln x f 的定义域[1,]e 6. =∞→x x x sin lim 0 . 7. =-∞→n n n )1 1(lim 1e - 8. 5 432lim 42-+-∞→n n n n =0 9. 设43 2lim 23=-+-→x k x x x ,则k =___-3_. 10. 设b ax x x x f ++-+= 1 3 4)(2,0)(lim =∞→x f x ,则=a __-4_,=b __-4. 11. 设0→x 时,b ax 与x x sin tan -为等价无穷小,则=a __1 2 __,=b __3__. 12. 函数3 21 2 --=x x y 的间断点有x=-1,x=3 连续区间是(,1),(1,3),(3,)-∞--+∞. 二、选择题 1、ln(1) y x =+ A ) A 、(—1,+∞) B 、]1,1(- C 、(—1,1) D 、(1,+∞) 2、当0→x 时,下列变量为无穷小量的是( D ) A 、x 1sin B 、x 1 cos C 、x e 1 D 、) 1ln(2x +

3、A x f x x =→)(lim 0 (A 为常数),则)(x f 在0x 处( D ) A 、一定有定义 B 、一定无定义 C 、有定义且A x f =)(0 D 、不一定有定义 4、设???≥+<=0,20,)(2x a x x e x f x 当时;当在点0=x 连续,则a 的值等于(D ) A 、0 B 、1 C 、—1 D 、2 1 5、函数)(x f = 3 2 -x ,则x=3是函数)(x f 的(D ) A 、连续点 B 、可去间断点 C 、跳跃间断点 D 、无穷间断点 6、)(x f 在0x 处左、右极限存在是)(x f 在0x 处连续的( B ) A 、充分条件 B 、必要条件 C 、充要条件 D 、以上都不是 三.求下列极限: 1. )1(lim 2x x x x -++∞ → 解:)1(lim 2 x x x x -++∞ → =lim x lim x = lim x =1 2 2. 3 tan sin lim x x x x →- 解:30tan sin lim x x x x →-=32 00 sin (1cos )sin 11cos lim lim()cos cos x x x x x x x x x x x →→--= =20 1cos lim x x x →-=2 202lim x x x →=12 3. x x x x ?? ? ??+-∞→11lim 解:x x x x ??? ??+-∞→11lim =11lim 11x x x x →∞??- ? ? ? +? ?=1e e -=2e - 4. x x x x x 3sin 2sin lim 0-+→

第三章 函数极限练习题

第三章 函数极限 知识脉络 1.函数极限的24个定义,会用定义证明简单函数极限问题; 2. 函数极限的性质,注意与收敛数列性质的区别; 3. 函数极限存在的条件,会判断简单函数的极限是否存在; 4. 总结求函数极限的方法,掌握每种方法适用的极限问题; 5. 会比较无穷小的阶; 6. 会求曲线的渐近线. 一、判断题 1. 若要使0 lim ()x x f x →存在,()f x 在0x 处必须有定义.( ) 2. 若lim ()x f x A →∞ =,则lim ()x f x A →∞ =,当且仅当0A =时反之也成立.( ) 3. 若A x f x x =→)(lim 0 ,则)(x f 可表为))(1()(0x x o A x f →+=. ( ) 4. 若0 lim ()x x f x A →=存在,则()f x 有界.( ) 5. 若在00()U x 内()()f x g x >,0 lim ()x x f x →与0 lim ()x x g x →都存在,则00 lim ()lim ()x x x x f x g x →→>.( ) 6. 若0 lim ()x x f x A →=,0 lim ()x x g x B →=,A B >,则在某00()U x 内()()f x g x >.( ) 7. 若30 lim ()x f x →存在,则3 lim ()lim ()x x f x f x →→=.( ) 8. 若20 lim ()x f x →存在,则2 lim ()lim ()x x f x f x →→=( ) 9.设函数()f x 为定义在00()U x +上的单调有界函数,则0 lim ()x x f x →存在.( ) 10.设函数()f x 为定义在00()U x 上的单调函数,则0 lim ()x x f x + →存在.( ) 11.若()f x 为周期函数,且lim ()0x f x →+∞ =,则()0f x ≡.( ) 12.任意两个无穷小都可以进行阶的比较.( ) 13.无穷小量就是很小很小的数.( ) 16.无穷小量都是有界量,有界量也都是无穷小量.( ) 17.无限个无穷小的和、差仍然是无穷小.( ) 18.若()f x 和()g x 为当0x x →时的同阶无穷小量,则()(())f x O g x =.( ) 19. 若()(())f x O g x =(0x x →),则()f x 和()g x 为同阶无穷小量.( ) 20. 当0→x 时,0)( )()()(>>=++n m x o x o x o n m n m . ( ) 二、填空题

相关文档
最新文档