高考数学压轴数列的最值题型分类专题
压轴题01 数列压轴题(解析版)--2023年高考数学压轴题专项训练(全国通用)

压轴题01数列压轴题题型/考向一:等差数列、等比数列性质的综合题型/考向二:以古文化、实际生活等情境综合题型/考向三:数列综合应用一、等差数列、等比数列的基本公式1.等差数列的通项公式:a n =a 1+(n -1)d ;2.等比数列的通项公式:a n =a 1·q n -1.3.等差数列的求和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d ;4.等比数列的求和公式:S na 1-a n q1-q ,q ≠1,二、等差数列、等比数列的性质1.通项性质:若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则对于等差数列,有a m +a n =a p +a q =2a k ,对于等比数列,有a m a n =a p a q =a 2k .2.前n 项和的性质(m ,n ∈N *):对于等差数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等差数列;对于等比数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等比数列(q =-1且m 为偶数情况除外).三、数列求和的常用方法热点一分组求和与并项求和1.若数列{c n }的通项公式为c n =a n ±b n ,或c nn ,n 为奇数,n ,n 为偶数,且{a n },{b n }为等差或等比数列,可采用分组求和法求数列{c n }的前n 项和.2.若数列的通项公式中有(-1)n 等特征,根据正负号分组求和.热点二裂项相消法求和裂项常见形式:(1)分母两项的差等于常数1(2n -1)(2n +1)=1n (n +k )=(2)分母两项的差与分子存在一定关系2n (2n -1)(2n +1-1)=12n -1-12n +1-1;n +1n 2(n +2)2=141n 2-1(n +2)2.(3)分母含无理式1n +n +1=n +1-n .热点三错位相减法求和如果数列{a n }是等差数列,{b n }是等比数列,那么求数列{a n ·b n }的前n 项和S n 时,可采用错位相减法.用其法求和时,应注意:(1)等比数列的公比为负数的情形;(2)在写“S n ”和“qS n ”的表达式时应特别注意将两式“错项对齐”,以便准确写出“S n -qS n ”的表达式.○热○点○题○型一等差数列、等比数列性质的综合1.已知等比数列{}n a 满足123434562,4a a a a a a a a +++=+++=,则11121314a a a a +++=()A .32B .64C .96D .128【答案】B【详解】设{}n a 的公比为q ,则()234561234a a a a q a a a a +++=+++,得22q =,所以()()1051112131412341234264a a a a a a a a q a a a a +++=+++⨯=+++⨯=.故选:B2.已知等比数列{}n a 的公比0q >且1q ≠,前n 项积为n T ,若106T T =,则下列结论正确的是()A .671a a =B .781a a =C .891a a =D .9101a a =【答案】C3.已知等差数列n 满足15,36,数列n 满足12n n n n ++=⋅⋅.记数列{}n b 的前n 项和为n S ,则使0n S <的n 的最小值为()A .8B .9C .10D .11【答案】C【分析】设等差数列{}n a 的公差为d ,则由1536446a a a a =⎧⎨=+⎩得:111141624206a a da d a d =+⎧⎨+=++⎩,解得:1163a d =⎧⎨=-⎩,()1631319n a n n ∴=--=-+,则当6n ≤时,0n a >;当7n ≥时,0n a <;∴当4n ≤时,0n b >;当5n =时,0n b <;当6n =时,0n b >;当7n ≥时,0n b <;11613102080b =⨯⨯= ,213107910b =⨯⨯=,31074280b =⨯⨯=,474128b =⨯⨯=,()54128b =⨯⨯-=-,()()612510b =⨯-⨯-=,()()()725880b =-⨯-⨯-=-,()()()85811440b =-⨯-⨯-=-,()()()9811141232b =-⨯-⨯-=-,()()()101114172618b =-⨯-⨯-=-,532900S ∴=>,915480S =>,1010700S =-<,100S < ,当10n ≥时,0n b <,∴当10n ≥时,0n S <,则使得0n S <的n 的最小值为10.()()()()()()102120232022k k k k k k k T f a f a f a f a f a f a =-+-++- ,1,2k =,则1T ,2T 的大小关系是()A .12T >TB .12T T <C .12T T =D .1T ,2T 的大小无法确定()()101322022...a f a +-)()22023f a -1=125.数列n 满足12,21n n n ++=+∈N ,现求得n 的通项公式为n nn F A B ⎛=⋅+⋅ ⎝⎭⎝⎭,,A B ∈R ,若[]x 表示不超过x 的最大整数,则812⎡⎤⎛⎢⎥ ⎢⎥⎝⎭⎣⎦的值为()A .43B .44C .45D .46○热○点○题○型二以古文化、实际生活等情境综合6.小李年初向银行贷款M 万元用于购房,购房贷款的年利率为P ,按复利计算,并从借款后次年年初开始归还,分10次等额还清,每年1次,问每年应还()万元.A .10MB .()()1010111MP P P ++-C .()10110M P +D .()()99111MP P P ++-7.传说国际象棋发明于古印度,为了奖赏发明者,古印度国王让发明者自己提出要求,发明者希望国王让人在他发明的国际象棋棋盘上放些麦粒,规则为:第一个格子放一粒,第二个格子放两粒,第三个格子放四粒,第四个格子放八粒……依此规律,放满棋盘的64个格子所需小麦的总重量大约为()吨.(1kg麦子大约20000粒,lg2=0.3)A.105B.107C.1012D.1015次日脚痛减一半,六朝才得到其关,要见末日行里数,请公仔细算相还.”其意思为:有一个人一共走了441里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了6天后到达目的地,请问最后一天走的路程是()A.7里B.8里C.9里D.10里【答案】A【详解】设第六天走的路程为1a,第五天走的路程为2a……第一天走的路程记为6a,9.2022年10月16日上午10时,中国共产党第二十次全国代表大会在北京人民大会堂隆重开幕.某单位组织全体党员在报告厅集体收看党的二十大开幕式,认真聆听习近平总书记向大会所作的报告.已知该报告厅共有10排座位,共有180个座位数,并且从第二排起,每排比前一排多2个座位数,则最后一排的座位数为()A .23B .25C .27D .2910次差成等差数列的高阶等差数列.现有一个高阶等差数列的前6项分别为4,7,11,16,22,29,则该数列的第18项为()A .172B .183C .191D .211【答案】C【详解】设该数列为{}n a ,则11,(2)n n a a n n --=+≥,○热○点○题○型三数列综合应用11.在数列{}n a 中,11a =,11n n a a n +=++,则122022111a a a +++= ()A .20211011B .40442023C .20212022D .2022202312.已知正项数列{}n a 的前n 项和为n S ,且12a =,()()1133n nn n n n S S S S ++-=+,则2023S =()A .202331-B .202331+C .2022312+D .2023312+13.已知一族曲线n .从点向曲线n 引斜率为(0)n n k k >的切线n l ,切点为(),n n n P x y .则下列结论错误的是()A .数列{}n x 的通项为1n nx n =+B .数列{}n y 的通项为n yC .当3n >时,1352111nn nx x x x x x--⋅⋅⋅>+ Dnnxy <故D 正确.故选:B.14.在数列{}n a 中给定1a ,且函数()()311sin 213n n f x x a x a x +=-+++的导函数有唯一零点,函数()()()112πcos π2g x x x x =-且()()()12918g a g a g a +++= ,则5a =().A .14B .13C .16D .1915.已知函数()()*ln N f x nx x n =+∈的图象在点,fn n ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭处的切线的斜率为n a ,则数列11n n a a +⎧⎫⎨⎩⎭的前n 项和n S 为()A .11n +B .()()235212n nn n +++C .()41nn +D .()()235812n nn n +++。
2023高考数学逆袭系列之微专题11 数列中的最值、范围及奇偶项问题

=-24-(3n-12)×2n+1,
故Tn=(3n-12)×2n+1+24(n∈N*).设cn=(3n-12)×2n+1, 显然当n≥4时,cn≥0,Tn≥24且单调递增. 而c1=-36,c2=-48,c3=-48,故Tn的最小值为T2=T3=-24.
///////
核心归纳
此类问题以数列为载体,一般涉及数列的求和,考查不等式的恒成立问题,可 转化为函数的最值问题.
索引
例 4 (2021·浙江卷)已知数列{an}的前 n 项和为 Sn,a1=-94,且 4Sn+1=3Sn- 9(n∈N*). (1)求数列{an}的通项公式; 解 因为4Sn+1=3Sn-9, 所以当n≥2时,4Sn=3Sn-1-9, 两式相减可得 4an+1=3an,即aan+n 1=34. 当 n=1 时,4S2=4-94+a2=-247-9, 解得 a2=-2176,所以aa21=43.
上篇 板块二 数列
微专题11 数列中的最值、范围及奇偶项问题
题型聚焦 分类突破 高分训练 对接高考
1.数列中的最值、范围问题的常见类型有:(1)求数列和式的最值、范围;(2)满 足数列的特定条件的n的最值与范围;(3)求数列不等式中参数的取值范围.
2.数列中的奇、偶项问题的常见题型 (1)数列中连续两项和或积的问题(an+an+1=f(n)或an·an+1=f(n)); (2)含有(-1)n的类型; (3)含有{a2n},{a2n-1}的类型; (4)已知条件明确奇偶项问题.
索引
训练 1 (2022·全国甲卷)记 Sn 为数列{an}的前 n 项和.已知2nSn+n=2an+1. (1)证明:{an}是等差数列; 证明 由2nSn+n=2an+1, 得2Sn+n2=2ann+n,① 所以2Sn+1+(n+1)2=2an+1(n+1)+(n+1),② ②-①,得2an+1+2n+1=2an+1(n+1)-2ann+1, 化简得an+1-an=1, 所以数列{an}是公差为1的等差数列.
高考数学压轴专题最新备战高考《数列》分类汇编及答案

【高中数学】《数列》知识点汇总一、选择题1.设等差数列{}n a 的前n 项和为n S ,若150S >,160S <,则n S 取最大值时n 的值为( ) A .6 B .7C .8D .13【答案】C 【解析】 【分析】根据题意推导出数列{}n a 为单调递减数列,且当8n ≤时,0n a >,当9n ≥时,0n a <,由此可得出结果. 【详解】()115158151502a a S a +==>Q ,()()116168916802a a S a a +==+<,80a ∴>,90a <,所以,等差数列{}n a 的公差980d a a =-<,则数列{}n a 为单调递减数列. 当8n ≤时,0n a >,当9n ≥时,0n a <, 因此,当8n =时,n S 取最大值. 故选:C. 【点睛】本题考查利用等差数列前n 项和的最值求对应的n 的值,主要分析出数列的单调性,考查分析问题和解决问题的能力,属于中等题.2.等差数列{}n a 中,1510a a +=,47a =,则数列{}n a 前6项和6S 为()A .18B .24C .36D .72【答案】C 【解析】 【分析】由等差数列的性质可得35a =,根据等差数列的前n 项和公式163466622a a a aS ++=⨯=⨯可得结果. 【详解】∵等差数列{}n a 中,1510a a +=,∴3210a =,即35a =,∴163465766636222a a a a S +++=⨯=⨯=⨯=, 故选C. 【点睛】本题主要考查了等差数列的性质以及等差数列的前n 项和公式的应用,属于基础题.3.已知等差数列{}n a 的前n 项和为n S ,若34322128,6a a S ⋅==,则数列{}(1)nn a -的前40项和为( ) A .0 B .20 C .40 D .80【答案】B 【解析】 【分析】先由题意求出34a +a =7,然后利用等差数列的前n 项和公式表示出134a a +=,前后两式作差,求出公差,进而代入求出首项,最后即得n a n =,代入题目中{}(1)nn a -,两两组合可求新数列前40项的和. 【详解】 依题意,()133362a a S +== ,∴134a a +=,①∵3422128a a ⋅=,即342128a a +=, ∴34a +a =7,② ②-①得33d =, ∴1d =, ∴11,n a a n ==, ∴(1)(1)n n n a n -=-,∴{}(1)nn a -的前40项和40(12)(34)(3940)20S -++-++⋅⋅⋅+-+==,故选:B . 【点睛】本题考查了指数运算:同底数幂相乘,底数不变,指数相加;主要考查等差数列的前n 和公式,等差中项的性质等等,以及常见的摆动数列的有限项求和,可以采用的方法为:分组求和法,两两合并的方法等等,对学生的运算能力稍有要求,为中等难度题4.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,且满足6a ,43a ,5a -成等差数列,则42S S ( ) A .3 B .9 C .10 D .13【答案】C 【解析】 【分析】设{}n a 的公比为0q >,由645,3,a a a -成等差数列,可得260,0q q q --=>,解得q ,再利用求和公式即可得结果. 【详解】设各项均为正数的等比数列{}n a 的公比为0q >,Q 满足645,3,a a a -成等差数列,()2465446,6,0a a a a a q q q ∴=-∴=->, 260,0q q q ∴--=>,解得3q =,则()()4124221313131103131a S S a --==+=--,故选C. 【点睛】本题主要考查等比数列的通项公式与求和公式,属于中档题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.5.已知公比为q 的等比数列{}n a 的首项10a >,则“1q >”是“53a a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】根据等比数列的性质可得530,0a a >>,若53a a >,可得21q >,然后再根据充分条件和必要条件的判断方法即可得到结果. 【详解】由于公比为q 的等比数列{}n a 的首项10a >, 所以530,0a a >>,若53a a >,则233a q a >,所以21q >,即1q >或1q <-,所以公比为q 的等比数列{}n a 的首项10a >, 则“1q >”是“53a a >”的充分不必要条件, 故选:A. 【点睛】本题主要考查了等比数列的相关性质和充分必要条件的判断方法,熟练掌握等比数列的性质是解题的关键.6.若{}n a 为等差数列,n S 是其前n 项和,且11223S π=,则6tan()a 的值为( )A B .C .3 D .3-【答案】B 【解析】 【分析】由11162a a a +=,即可求出6a 进而求出答案. 【详解】∵()11111611221123a a S a π+=== ,∴623a π=,()62tan tan 3a π⎛⎫== ⎪⎝⎭故选B. 【点睛】本题主要考查等差数列的性质,熟记等差数列的性质以及等差数列前n 项和性质即可,属于基础题型.7.等差数列{}n a 的前n 项和为n S ,已知2611203a a a a --+=,则21S 的值为( ) A .63 B .21C .63-D .21【答案】C 【解析】 【分析】根据等差数列性质,原式可变为()220616113()a a a a a +-+-=,即可求得21112163S a ==-.【详解】∵261116203a a a a a ---+=, ∴()220616113()a a a a a +-+-=, ∴113a =-,∴21112163S a ==-, 故选:C . 【点睛】此题考查等差数列性质和求和公式,需要熟练掌握等差数列基本性质,根据性质求和.8.已知数列{}n a 中,732,1a a ==,又数列11n a ⎧⎫⎨⎬+⎩⎭是等差数列,则11a 等于( ) A .0 B .12C .23D .1-【答案】B 【解析】先根据条件得等差数列11n a ⎧⎫⎨⎬+⎩⎭公差以及通项公式,代入解得11a .【详解】设等差数列11n a ⎧⎫⎨⎬+⎩⎭公差为d ,则731111144,112324d d d a a =-∴=-=++, 从而31115(3)11242424n n n a a =+-⋅=+++ 11111115211242432a a =+=∴=+,选B. 【点睛】本题考查等差数列通项公式,考查基本求解能力,属基本题.9.已知等比数列{}n a 满足13a =,13521a a a ++=,则357a a a ++=( ) A .21 B .42 C .63 D .84【答案】B 【解析】由a 1+a 3+a 5=21得242421(1)21172a q q q q q ++=∴++=∴=∴ a 3+a 5+a 7=2135()22142q a a a ++=⨯=,选B.10.已知{}n a 是等差数列,1010a =,其前10项和1070S =,则其公差为( ) A .23B .32C .23-D .32-【答案】A 【解析】 【分析】根据等差数列的通项公式和前n 项和公式,列方程组求解即得. 【详解】设等差数列{}n a 的公差为d .101010,70a S ==Q ,1191010910702a d a d +=⎧⎪∴⎨⨯+=⎪⎩解得23d =. 故选:A .本题考查等差数列的通项公式和前n 项和公式,属于基础题.11.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( ).(取lg30.4771≈,lg 20.3010≈)A .16B .17C .24D .25【答案】D 【解析】 【分析】由折线长度变化规律可知“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,由此得到410003n⎛⎫≥ ⎪⎝⎭,利用运算法则可知32lg 2lg 3n ≥⨯-,由此计算得到结果.【详解】记初始线段长度为a ,则“一次构造”后的折线长度为43a ,“二次构造”后的折线长度为243a ⎛⎫ ⎪⎝⎭,以此类推,“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭, 若得到的折线长度为初始线段长度的1000倍,则410003na a ⎛⎫≥ ⎪⎝⎭,即410003n⎛⎫≥ ⎪⎝⎭,()()44lg lg lg 4lg32lg 2lg3lg1000333nn n n ⎛⎫∴==-=-≥= ⎪⎝⎭,即324.0220.30100.4771n ≥≈⨯-,∴至少需要25次构造.故选:D . 【点睛】本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.12.已知{}n a 是单调递增的等比数列,满足352616,17a a a a ⋅=+=,则数列{}n a 的前n 项和n S = A .122n+ B .122n- C .1122n -+D .1122n -- 【答案】D 【解析】 【分析】由等比数列的性质和韦达定理可得26a a , 为方程217160x x -+= 的实根,解方程可得q和a 1,代入求和公式计算可得. 【详解】∵352616,17a a a a ⋅=+=,∴由等比数列的性质可得26261617a a a a ⋅=+=, ,26a a , 为方程217160x x -+= 的实根解方程可得2626116161a a a a ====,,或, , ∵等比数列{a n }单调递增,∴26116a a ==,,∴1122q a ,== ,∴()1112122122nn n S ----== 故选D . 【点睛】本题考查等比数列的求和公式,涉及等比数列的性质和一元二次方程的解法,属中档题.13.已知数列{}n a 的奇数项依次成等差数列,偶数项依次成等比数列,且11a =,22a =,347a a +=,5613a a +=,则78a a +=( )A.4B .19 C .20 D .23【答案】D 【解析】 【分析】本题首先可以设出奇数项的公差以及偶数项的公比,然后对347a a +=、5613a a +=进行化简,得出公差和公比的数值,然后对78a a +进行化简即可得出结果. 【详解】设奇数项的公差为d ,偶数项的公比为q ,由347a a +=,5613a a +=,得127d q ++=,212213d q ++=,解得2d =,2q =,所以37813271623a a d q +=++=+=,故选D .【点睛】本题主要考查等差数列、等比数列的通项公式及性质等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想等,体现基础性与综合性,提升学生的逻辑推理、数学运算等核心素养,是中档题.14.等差数列{}n a 中,n S 为它的前n 项和,若10a >,200S >,210S <,则当n =( )时,n S 最大. A .8 B .9C .10D .11【答案】C 【解析】 【分析】根据等差数列的前n 项和公式与项的性质,得出100a >且110a <,由此求出数列{}n a 的前n 项和n S 最大时n 的值. 【详解】等差数列{}n a 中,前n 项和为n S ,且200S >,210S <, 即()()120201*********a a S a a +==+>,10110a a ∴+>,()1212111212102a a S a +==<,所以,110a <,则100a >,因此,当10n =时,n S 最大. 故选:C. 【点睛】本题考查了等差数列的性质和前n 项和最值问题,考查等差数列基本性质的应用,是中等题.15.已知{}n a 是公差d 不为零的等差数列,其前n 项和为n S ,若348,,a a a 成等比数列,则A .140,0a d dS >>B .140,0a d dS <<C .140,0a d dS ><D .140,0a d dS <>【答案】B 【解析】 ∵等差数列,,,成等比数列,∴,∴,∴,,故选B.考点:1.等差数列的通项公式及其前项和;2.等比数列的概念16.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-, 现有下面四个结论①数列{}n S n +为等比数列; ②数列{}n a 的通项公式为121n n a -=-;③数列{}1n a +为等比数列;④数列{}2n S 的前n 项和为2224n n n +---. 其中结论正确的个数是( ) A .1 B .2 C .3 D .4【答案】B 【解析】 【分析】根据递推关系可得1+12()n n S n S n ++=+,可得①正确,利用等比数列求出2nn S n =-,根据前n 项和求n a ,可判断②③,计算2n S ,并分组求和可判断④. 【详解】因为121n n S S n +=+-,所以11222n n n n S n S nS n S n++++==++, 又112S +=.所以数列{}n S n +为首项是2,公比是2的等比数列,所以2nn S n +=, 则2nn S n =-.当2n ≥时,1121n n n n a S S --=-=-,但11121a -≠-,所以①正确,②③错误,因为1222n n S n +=-,所以{}2n S 的前n 项和为2224n n n +---, 所以④正确. 故选:B【点睛】本题主要考查了数列的递推关系式,等比数列的证明,由n S 求数列的通项公式,属于中档题.17.在递减等差数列{}n a 中,21324a a a =-.若113a =,则数列11{}n n a a +的前n 项和的最大值为 ( ) A .24143B .1143C .2413D .613【答案】D 【解析】设公差为,0d d < ,所以由21324a a a =-,113a =,得213(132)(13)42d d d +=+-⇒=- (正舍),即132(1)152n a n n =--=- , 因为111111()(152)(132)2215213n n a a n n n n +==----- ,所以数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和等于1111116()()213213213261313n --≤--=-⨯- ,选D. 点睛:裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如1(1)(3)n n ++或1(2)n n +.18.在各项都为正数的等比数列{}n a 中,若12a =,且1564a a ⋅=,则数列1(1)(1)n n n a a a +⎧⎫⎨⎬--⎩⎭的前n 项和是( ) A .11121n +--B .1121n -+ C .1121n-+ D .1121n-- 【答案】A 【解析】由等比数列的性质可得:2153364,8a a a a ==∴=,则数列的公比:2q ===, 数列的通项公式:112n nn a a q -==,故:()()()()1112111121212121n n n n n n n n a a a +++==-------, 则数列()()111n n n a a a +⎧⎫⎪⎪⎨⎬--⎪⎪⎩⎭的前n 项和是: 1223111111111121212121212121n n n ++⎛⎫⎛⎫⎛⎫-+-++-=- ⎪ ⎪ ⎪-------⎝⎭⎝⎭⎝⎭L . 本题选择A 选项.点睛:使用裂项法求和时,要注意正负项相消时消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点,实质上造成正负相消是此法的根源与目的.19.根据下面的程序框图,输出的S 的值为( )A .1007B .1009C .0D .-1【答案】A【解析】【分析】 按照程序框图模拟运行即可得解.【详解】1i =,1112x ==--,0(1)1S =+-=-;2i =,111(1)2x ==--, 11122S =-+=-;3i =,12112x ==-, 13222S =-+=;4i =,1112x ==--, 31(1)22S =+-=,…,由此可知,运行程序过程中,x 呈周期性变化,且周期为3, 所以输出112672110072S ⎛⎫=-++⨯-= ⎪⎝⎭. 故选A【点睛】本题主要考查程序框图和数列的周期性,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.已知数列11n a ⎧⎫-⎨⎬⎩⎭是公比为13的等比数列,且10a >,若数列{}n a 是递增数列,则1a 的取值范围为( ) A .(1,2)B .(0,3)C .(0,2)D .(0,1) 【答案】D【解析】【分析】先根据已知条件求解出{}n a 的通项公式,然后根据{}n a 的单调性以及10a >得到1a 满足的不等关系,由此求解出1a 的取值范围.【详解】 由已知得11111113n n a a -⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,则11111113n n a a -=⎛⎫⎛⎫-+ ⎪⎪⎝⎭⎝⎭.因为10a >,数列{}n a 是单调递增数列,所以10n n a a +>>,则111111*********n n a a ->⎛⎫⎛⎫⎛⎫⎛⎫-+-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 化简得111110113a a ⎛⎫<-<-⎪⎝⎭,所以101a <<. 故选:D.【点睛】本题考查数列通项公式求解以及根据数列单调性求解参数范围,难度一般.已知数列单调性,可根据1,n n a a +之间的大小关系分析问题.。
高考压轴题数学题型

高考压轴题数学题型在高考数学考试中,压轴题往往是最具挑战性和分值最高的题目。
这些题目通常涵盖了多个知识点,并需要考生具备较高的思维能力和解题技巧。
本文将对高考数学压轴题的常见题型进行深度解析,并提供一些应对策略,以帮助考生更好地应对这类题目。
一、数列与函数综合题数列与函数综合题是高考数学压轴题中的一类常见题型。
这类题目通常要求考生结合数列和函数的性质和图像,解决一些复杂的问题。
为了应对这类题目,考生需要熟练掌握数列和函数的性质,了解一些常见的数列和函数的图像和变化趋势。
同时,考生还需要具备较强的逻辑思维能力和分析问题的能力。
二、解析几何题解析几何题也是高考数学压轴题中的一类常见题型。
这类题目通常涉及到直线、圆、椭圆等几何图形的性质和变化。
为了应对这类题目,考生需要熟练掌握解析几何的基本概念和性质,了解一些常见的几何图形的图像和性质。
同时,考生还需要具备较强的空间想象能力和代数运算能力。
三、排列组合与概率题排列组合与概率题是高考数学压轴题中的另一类常见题型。
这类题目通常涉及到组合数学和概率的基本概念和应用。
为了应对这类题目,考生需要熟练掌握排列组合和概率的基本概念和公式,了解一些常见的组合数学问题和概率模型。
同时,考生还需要具备较强的逻辑思维能力和分析问题的能力。
针对以上三种压轴题题型,考生可以采取以下策略来提高解题效率:首先,考生需要熟练掌握基础知识,这是解决任何数学问题的前提。
对于压轴题来说,考生需要掌握的知识点更为深入和广泛,因此更需要考生在日常学习中多加积累。
其次,考生需要提高自己的解题技巧和分析问题的能力。
在解题过程中,考生需要善于观察和发现问题的本质,并能够将问题分解为更小的部分,逐一解决。
同时,考生还需要注意解题的规范性和准确性,避免因为粗心或格式不规范而失分。
最后,考生可以通过模拟考试来提高自己的解题能力和应试能力。
在模拟考试中,考生可以尝试不同类型的压轴题,找出自己的薄弱环节,并有针对性地进行复习和提高。
高中数学求数列最值的12种题型(含答案)

求数列最值的12种题型题型一:递推问题1、已知数列{a n }中,a 1>0,且a n +1=3+a n2.(1)试求a 1的值,使得数列{a n }是一个常数数列;(2)试求a 1的取值范围,使得a n +1>a n 对任何自然数n 都成立;(3)若a 1=4,设b n =|a n +1-a n |(n =1,2,3…),并以S n 表示数列{b n }的前n 项和,试证明:S n <52.解:(Ⅰ)欲使数列{a n }是一个常数数列,则a n +1=3+a n2=a n ,又依a 1>0,可以得a n >0并解出:a n =32.a n =-1(舍)即a 1=32(Ⅱ)研究a n +1-a n =3+a n 2-3+a n-12=a n -a n-12(3+a n 2+3+a n-12)(n ≥2)注意到:2(3+a n 2+3+a n-12)>0因此,a n +1-a n ,a n -a n -1,…,a 2-a 1有相同的符号.要使a n +1>a n 对任意自然数都成立,只须a 2-a 1>0即可.由3+a 12-a 1>0,解得:0<a 1<32.(Ⅲ)用与(Ⅱ)中相同的方法,可得当a 1>32时,a n +1<a n 对任何自然数n 都成立.因此当a 1=4时,a n +1-a n <0∴S n =b 1+b 2+…+b n .=|a 2-a 1|+|a 3-a 2|+…+|a n +1-a n |=a 1-a 2+a 2-a 3+…+a n -a n +1=a 1-a n +1=4-a n +1又:a n +2<a n +1即3+a n+12<a n+1,可得a n +1>32,故S n <4-32=52.题型二:最值问题2、已知数列{a n }满足:a 1=1,a n +1=a n2a n +1(*n N ∈),数列{b n }的前n 项和S n =12-12(23)n (*n N ∈).(1)求数列{a n }和{b n }的通项公式;(2)设nn nb C a =,是否存在*m N ∈,使9m C ≥成立?并说明理由.解答:(1)由1111221n n n n na a a a a ++=⇒=++,∴112(1)21n n n a =+-=-,*1()21n a n N n =∈-.由21212()3n n S =-⋅及1121212()(2)3n n S n --=-⋅≥,可得124()(2)3n n n n b S S n -=-=⋅≥,令1n =,则11121212()43b S ==-⋅=也满足上式,∴124()(*)3n n b n N -=⋅∈.1122(2)(21)4()4(21)(33n n n n n b C n n a --==-⋅=-,设m C 为数列{}n C 中的最大项,则12111224(21)()4(23)()33224(21)()4(21)()3327(21)23322521(21)32m m m m m mm m m m C C C C m m m m m m m m ----+⎧-≥-⎪≥⎧⎪⇒⎨⎨≥⎩⎪-≥+⎪⎩⎧⎧-⋅≥-≤⎪⎪⎪⎪⇒⇒⎨⎨⎪⎪-≥+⋅≥⎪⎪⎩⎩,∴3m =.即3C 为{}n C 中的最大项.∵2328020(939C ==<,∴不存在*m N ∈,使9m C ≥成立.题型三:公共项问题3、设A n 为数列{a n }的前n 项的和,A n =32(a n -1),数列{b n }的通项公式为b n =4n +3。
新高考数学高考数学压轴题 数列的概念选择题专项训练分类精编含解析

新高考数学高考数学压轴题 数列的概念选择题专项训练分类精编含解析一、数列的概念选择题1.已知数列{}n a 满足12n n a a n +=+,且133a =,则na n的最小值为( ) A .21B .10C .212 D .172答案:C解析:C 【分析】由累加法求出233n a n n =+-,所以331n a n n n,设33()1f n n n=+-,由此能导出5n =或6时()f n 有最小值,借此能得到na n的最小值. 【详解】解:()()()112211n n n n n a a a a a a a a ---=-+-+⋯+-+22[12(1)]3333n n n =++⋯+-+=+-所以331n a n nn设33()1f n n n=+-,由对勾函数的性质可知, ()f n 在(上单调递减,在)+∞上单调递减,又因为n ∈+N ,所以当5n =或6时()f n 可能取到最小值. 又因为56536321,55662a a ===, 所以n a n的最小值为62162a =.故选:C. 【点睛】本题考查了递推数列的通项公式的求解以及对勾函数的单调性,考查了同学们综合运用知识解决问题的能力.2.在数列{}n a 中,11a =,()*122,21n n a n n N a -=≥∈-,则3a =( )A .6B .2C .23 D .211答案:C解析:C 【分析】利用数列的递推公式逐项计算可得3a 的值. 【详解】()*122,21n n a n n N a -=≥∈-,11a =,212221a a ∴==-,3222213a a ==-.故选:C. 【点睛】本题考查利用数列的递推公式写出数列中的项,考查计算能力,属于基础题.3.公元13世纪意大利数学家斐波那契在自己的著作《算盘书》中记载着这样一个数列:1,1,2,3,5,8,13,21,34,…满足21(1),n n n a a a n ++=+≥那么24620201a a a a +++++=( )A .2021aB .2022aC .2023aD .2024a答案:A解析:A 【分析】根据数列的递推关系式即可求解. 【详解】由21(1),n n n a a a n ++=+≥ 则2462020246210201a a a a a a a a a +++++++++=+3462020562020201920202021a a a a a a a a a a =+++=+++=+=.故选:A4.在数列{}n a 中,11(1)1,2(2)nn n a a n a --==+≥,则3a =( ) A .0B .53C .73D .3答案:B解析:B 【分析】由数列的递推关系式以及11a =求出2a ,进而得出3a . 【详解】11a =,21123a a ∴=+=,321523a a -=+= 故选:B5.已知数列{}n a 满足2122111,16,2n n n a a a a a ++===则数列{}n a 的最大项为( ) A .92B .102C .8182D .112答案:B解析:B 【分析】本题先根据递推公式进行转化得到21112n n n n a a a a +++=.然后令1n n na b a +=,可得出数列{}n b 是等比数列.即11322nn n a a +⎛⎫= ⎪⎝⎭.然后用累乘法可求出数列{}n a 的通项公式,根据通项公式及二次函数的知识可得数列{}n a 的最大项. 【详解】解:由题意,可知: 21112n n n na a a a +++=. 令1n n n ab a +=,则112n n b b +=. 21116a b a ==, ∴数列{}n b 是以16为首项,12为公比的等比数列. 111163222n nn b -⎛⎫⎛⎫∴== ⎪⎪⎝⎭⎝⎭.∴11322nn n a a +⎛⎫= ⎪⎝⎭. ∴1211322a a ⎛⎫= ⎪⎝⎭,2321322a a ⎛⎫= ⎪⎝⎭,111322n n n a a --⎛⎫= ⎪⎝⎭.各项相乘,可得: 12111111(32)222n n n a a --⎛⎫⎛⎫⎛⎫=⋯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.(1)2511()22n n n --⎛⎫= ⎪⎝⎭ 2115(1)221122n n n ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭211552212n n n --+⎛⎫= ⎪⎝⎭21(1110)212n n -+⎛⎫= ⎪⎝⎭.令2()1110f n n n =-+,则,根据二次函数的知识,可知:当5n =或6n =时,()f n 取得最小值.()2551151020f =-⨯+=-,()2661161020f =-⨯+=-,()f n ∴的最小值为20-.∴211(1110)(20)1022101112222n n -+⨯--⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.∴数列{}n a 的最大项为102.故选:B . 【点睛】本题主要考查根据递推公式得出通项公式,构造新数列的方法,累乘法通项公式的应用,以及利用二次函数思想求最值; 6.在数列{}n a 中,21n n a n +=+,则{}n a ( ) A .是常数列B .不是单调数列C .是递增数列D .是递减数列答案:D解析:D 【分析】 由21111n n a n n +==+++,利用反比例函数的性质判断即可. 【详解】在数列{}n a 中,21111n n a n n +==+++, 由反比例函数的性质得:{}n a 是*n N ∈时单调递减数列, 故选:D7.已知数列{}n b 满足12122n n b n λ-⎛⎫=-- ⎪⎝⎭,若数列{}n b 是单调递减数列,则实数λ的取值范围是( )A .101,3B .110,23⎛⎫- ⎪⎝⎭C .(-1,1)D .1,12⎛⎫-⎪⎝⎭答案:A解析:A 【分析】由题1n n b b +>在n *∈N 恒成立,即16212nn λ⎛⎫-<+ ⎪⎝⎭,讨论n 为奇数和偶数时,再利用数列单调性即可求出. 【详解】数列{}n b 是单调递减数列,1n n b b +∴>在n *∈N 恒成立,即()122112+1222nn n n λλ-⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭恒成立,即16212nn λ⎛⎫-<+ ⎪⎝⎭, 当n 为奇数时,则()6212nn λ>-+⋅恒成立,()212n n -+⋅单调递减,1n ∴=时,()212n n -+⋅取得最大值为6-,66λ∴>-,解得1λ>-;当n 为偶数时,则()6212nn λ<+⋅恒成立,()212n n +⋅单调递增,2n ∴=时,()212n n +⋅取得最小值为20,620λ∴<,解得103λ<, 综上,1013λ-<<. 故选:A. 【点睛】关键点睛:本题考查已知数列单调性求参数,解题的关键由数列单调性得出16212nn λ⎛⎫-<+ ⎪⎝⎭恒成立,需要讨论n 为奇数和偶数时的情况,这也是容易出错的地方. 8.设n a 表示421167n n +的个位数字,则数列{}n a 的第38项至第69项之和383969a a a ++⋅⋅⋅+=( )A .180B .160C .150D .140答案:B解析:B 【分析】根据题意可得n a 为421167n n +的个位数为27n n +的个位数,而2n 的个位是以2,4,8,6为周期,7n 的个位数是以7,9,3,1为周期,即可求和. 【详解】由n a 为421167n n +的个位数, 可得n a 为27n n +的个位数, 而2n 的个位是以2,4,8,6为周期,7n 的个位数是以7,9,3,1为周期,所以27n n +的个位数是以9,3,1,7为周期, 即421167n n +的个位数是以9,3,1,7为周期, 第38项至第69项共32项,共8个周期, 所以383969a a a ++⋅⋅⋅+=8(9317)160⨯+++=. 故选:B9.南宋数学家杨辉在《详解九章算法》和《算法通变本末》中,提出了一些新的垛积公式,所讨论的高阶等差数列与一般等差数列不同,前后两项之差并不相等,但是逐项差数之差或者高次差成等差数列,如数列1,3,6,10,前后两项之差得到新数列2,3,4,新数列2,3,4为等差数列,这样的数列称为二阶等差数列.对这类高阶等差数列的研究,在杨辉之后一般称为“垛积术”.现有高阶等差数列,其前7项分别为3,4,6,9,13,18,24,则该数列的第19项为( ) A .184B .174C .188D .160答案:B解析:B 【分析】根据高阶等差数列的知识,结合累加法求得数列的通项公式,由此求得19a . 【详解】3,4,6,9,13,18,24,1,2,3,4,5,6,所以()1112,3n n a a n n a --=-≥=, 所以()()()112211n n n n n a a a a a a a a ---=-+-++-+()()1213n n =-+-+++()()()11113322n n n n -+⋅--=+=+.所以19191831742a ⨯=+=. 故选:B 【点睛】本小题主要考查数列新定义,考查累加法,属于基础题.10.删去正整数1,2,3,4,5,…中的所有完全平方数与立方数(如4,8),得到一个新数列,则这个数列的第2020项是( ) A .2072B .2073C .2074D .2075答案:C解析:C 【分析】由于数列22221,2,3,2,5,6,7,8,3,45⋯共有2025项,其中有45个平方数,12个立方数,有3个既是平方数,又是立方数的数,所以还剩余20254512+31971--=项,所以去掉平方数和立方数后,第2020项是在2025后的第()20201971=49-个数,从而求得结果. 【详解】∵2452025=,2462116=,20202025<,所以从数列22221,2,3,2,5,6,7,8,3,45⋯中去掉45个平方数,因为331217282025132197=<<=,所以从数列22221,2,3,2,5,6,7,8,3,45⋯中去掉12个立方数,又66320254<<,所以在从数列22221,2,3,2,5,6,7,8,3,45⋯中有3个数即是平方数, 又是立方数的数,重复去掉了3个即是平方数,又是立方数的数, 所以从数列22221,2,3,2,5,6,7,8,3,45⋯中去掉平方数和立方数后还有20254512+31971--=项,此时距2020项还差2020197149-=项,所以这个数列的第2020项是2025492074+=, 故选:C. 【点睛】本题考查学生的实践创新能力,解决该题的关键是找出第2020项的大概位置,所以只要弄明白在数列22221,2,3,2,5,6,7,8,3,45⋯去掉哪些项,去掉多少项,问题便迎刃而解,属于中档题.11.在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,36,45,…这些数叫做三角形数.设第n 个三角形数为n a ,则下面结论错误的是( ) A .1(1)n n a a n n --=> B .20210a = C .1024是三角形数D .123111121n n a a a a n +++⋯+=+ 答案:C解析:C 【分析】对每一个选项逐一分析得解. 【详解】∵212a a -=,323a a -=,434a a -=,…,由此可归纳得1(1)n n a a n n --=>,故A 正确;将前面的所有项累加可得1(1)(2)(1)22n n n n n a a -++=+=,∴20210a =,故B 正确; 令(1)10242n n +=,此方程没有正整数解,故C 错误; 1211111111212231n a a a n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦122111n n n ⎛⎫=-= ⎪++⎝⎭,故D 正确. 故选C本题主要考查累加法求通项,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.12.已知数列{}n a 的前n 项和为n S ,且满足1221,1n n a a S a +===-,则下列命题错误的是A .21n n n a a a ++=+B .13599100a a a a a ++++=C .2499a a a a +++=D .12398100100S S S S S ++++=-答案:C解析:C 【分析】21n n S a +=-,则111n n S a -+=-,两式相减得到A 正确;由A 选项得到13599a a a a +++⋯+=1123459798a a a a a a a a ++++++⋯++=981001S a +=进而得到B正确;同理可得到C 错误;由21n n S a +=-得到12398S S S S +++⋯+=123451002111......1a a a a a a +-+-+-+-++-=100100.S -进而D 正确. 【详解】已知21n n S a +=-,则111n n S a -+=-,两式相减得到2121n n n n n n a a a a a a ++++=-⇒=+,故A 正确;根据A 选项得到13599a a a a +++⋯+=1123459798a a a a a a a a ++++++⋯++=981001S a +=,故B 正确;24698a a a a +++⋯+=2234569697a a a a a a a a ++++++⋯++=1234569697a a a a a a a a ++++++⋯++=97991S a =-,故C 不正确;根据2123981n n S a S S S S +=-+++⋯+=,123451002111......1a a a a a a +-+-+-+-++-= 100100.S -故D 正确. 故答案为C. 【点睛】这个题目考查了数列的应用,根据题干中所给的条件进行推广,属于中档题,这类题目不是常规的等差或者等比数列,要善于发现题干中所给的条件,应用选项中正确的结论进行其它条件的推广. 13.若数列的前4项分别是1111,,,2345--,则此数列的一个通项公式为( ) A .1(1)n n --B .(1)n n -C .1(1)1n n +-+D .(1)1n n -+答案:C解析:C根据数列的前几项的规律,可推出一个通项公式. 【详解】设所求数列为{}n a ,可得出()111111a+-=+,()212121a+-=+,()313131a+-=+,()414141a+-=+,因此,该数列的一个通项公式为()111n na n +-=+.故选:C. 【点睛】本题考查利用数列的前几项归纳数列的通项公式,考查推理能力,属于基础题. 14.设数列{}n a 的前n 项和为n S 已知()*123n n a a n n N++=+∈且1300nS=,若23a <,则n 的最大值为( )A .49B .50C .51D .52答案:A解析:A 【分析】对n 分奇偶性分别讨论,当n 为偶数时,可得2+32n n nS =,发现不存在这样的偶数能满足此式,当n 为奇数时,可得21+342n n n S a -=+,再结合23a <可讨论出n 的最大值.【详解】当n 为偶数时,12341()()()n n n S a a a a a a -=++++⋅⋅⋅++(213)(233)[2(1)3]n =⨯++⨯++⋅⋅⋅+-+ 2[13(1)]32n n =⨯++⋅⋅⋅+-+⨯2+32n n=,因为22485048+348503501224,132522S S ⨯+⨯====,所以n 不可能为偶数;当n 为奇数时,123451()()()n n n S a a a a a a a -=+++++⋅⋅⋅++1(223)(243)[2(1)3]a n =+⨯++⨯++⋅⋅⋅+-+21342n n a +-=+因为2491149349412722S a a +⨯-=+=+,2511151351413752S a a +⨯-=+=+,又因为23a <,125a a +=,所以 12a > 所以当1300n S =时,n 的最大值为49 故选:A 【点睛】此题考查的是数列求和问题,利用了并项求和的方法,考查了分类讨论思想,属于较难题. 15.设{}n a 是等差数列,且公差不为零,其前n 项和为n S .则“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件答案:A解析:A 【分析】根据等差数列的前n 项和公式以及充分条件和必要条件的定义进行判断即可. 【详解】{}n a 是等差数列,且公差d 不为零,其前n 项和为n S ,充分性:1n n S S +>,则10n a +>对任意的n *∈N 恒成立,则20a >,0d ≠,若0d <,则数列{}n a 为单调递减数列,则必存在k *∈N ,使得当n k >时,10n a +<,则1n n S S +<,不合乎题意;若0d >,由20a >且数列{}n a 为单调递增数列,则对任意的n *∈N ,10n a +>,合乎题意.所以,“*n N ∀∈,1n n S S +>”⇒“{}n a 为递增数列”;必要性:设10n a n =-,当8n ≤时,190n a n +=-<,此时,1n n S S +<,但数列{}n a 是递增数列.所以,“*n N ∀∈,1n n S S +>”⇐/“{}n a 为递增数列”. 因此,“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的充分而不必要条件. 故选:A. 【点睛】本题主要考查充分条件和必要条件的判断,结合等差数列的前n 项和公式是解决本题的关键,属于中等题.二、数列多选题16.设数列{}n a 满足1102a <<,()1ln 2n n n a a a +=+-对任意的*n N ∈恒成立,则下列说法正确的是( ) A .2112a << B .{}n a 是递增数列C .2020312a <<D .2020314a << 答案:ABD 【分析】构造函数,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】 由, 设, 则,所以当时,,即在上为单调递增函数, 所以函数在为单调递增函数, 即, 即, 所以 ,解析:ABD 【分析】构造函数()()ln 2f x x x =+-,再利用导数判断出函数的单调性,利用单调性即可求解. 【详解】由()1ln 2n n n a a a +=+-,1102a << 设()()ln 2f x x x =+-, 则()11122xf x x x-'=-=--, 所以当01x <<时,0f x,即()f x 在0,1上为单调递增函数,所以函数在10,2⎛⎫⎪⎝⎭为单调递增函数,即()()102f f x f ⎛⎫<< ⎪⎝⎭,即()131ln 2ln 1222f x <<<+<+, 所以()112f x << , 即11(2)2n a n <<≥,所以2112a <<,2020112a <<,故A 正确;C 不正确; 由()f x 在0,1上为单调递增函数,112n a <<,所以{}n a 是递增数列,故B 正确; 2112a <<,所以 23132131113ln(2)ln ln 222234a a a e =+->+>+=+> 因此20202020333144a a a ∴<><>,故D 正确 故选:ABD 【点睛】本题考查了数列性质的综合应用,属于难题. 17.已知数列{}n a 满足112a =-,111n na a +=-,则下列各数是{}n a 的项的有( )A .2-B .23 C .32D .3答案:BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】 因为数列满足,, ; ; ;数列是周期为3的数列,且前3项为,,3; 故选:. 【点睛】 本题主要解析:BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】因为数列{}n a 满足112a =-,111n n a a +=-,212131()2a ∴==--;32131a a ==-; 4131112a a a ==-=-; ∴数列{}n a 是周期为3的数列,且前3项为12-,23,3; 故选:BD . 【点睛】本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题.18.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,若612S S =,则下列结论中正确的有( ) A .1:17:2a d =-B .180S =C .当0d >时,6140a a +>D .当0d <时,614a a >答案:ABC 【分析】因为是等差数列,由可得,利用通项转化为和即可判断选项A ;利用前项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质即可判断选项C ;由可得且,即可判断选项D ,进而得出正确选项解析:ABC 【分析】因为{}n a 是等差数列,由612S S =可得9100a a +=,利用通项转化为1a 和d 即可判断选项A ;利用前n 项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质961014a d a a d a =++=+即可判断选项C ;由0d <可得6140a a d +=<且60a >,140a <即可判断选项D ,进而得出正确选项.【详解】因为{}n a 是等差数列,前n 项和为n S ,由612S S =得:1267891011120S S a a a a a a -=+++++=,即()91030a a +=,即9100a a +=,对于选项A :由9100a a +=得12170a d +=,可得1:17:2a d =-,故选项A 正确; 对于选项B :()()118910181818022a a a a S ++===,故选项B 正确;对于选项C :911691014a a a a a a d d =+=++=+,若0d >,则6140a a d +=>,故选项C 正确;对于选项D :当0d <时,6140a a d +=<,则614a a <-,因为0d <,所以60a >,140a <,所以614a a <,故选项D 不正确, 故选:ABC 【点睛】关键点点睛:本题的关键点是由612S S =得出9100a a +=,熟记等差数列的前n 项和公式和通项公式,灵活运用等差数列的性质即可.19.等差数列{}n a 是递增数列,公差为d ,前n 项和为n S ,满足753a a =,下列选项正确的是( ) A .0d <B .10a <C .当5n =时n S 最小D .0n S >时n 的最小值为8答案:BD 【分析】由题意可知,由已知条件可得出,可判断出AB 选项的正误,求出关于的表达式,利用二次函数的基本性质以及二次不等式可判断出CD 选项的正误. 【详解】由于等差数列是递增数列,则,A 选项错误解析:BD 【分析】由题意可知0d >,由已知条件753a a =可得出13a d =-,可判断出AB 选项的正误,求出n S 关于d 的表达式,利用二次函数的基本性质以及二次不等式可判断出CD 选项的正误. 【详解】由于等差数列{}n a 是递增数列,则0d >,A 选项错误;753a a =,则()11634a d a d +=+,可得130a d =-<,B 选项正确;()()()22171117493222224n n n d n n d n n d S na nd n d -⎡⎤--⎛⎫=+=-+==--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当3n =或4时,n S 最小,C 选项错误; 令0n S >,可得270n n ->,解得0n <或7n >.n N *∈,所以,满足0n S >时n 的最小值为8,D 选项正确.故选:BD.20.已知等差数列{}n a 的公差不为0,其前n 项和为n S ,且12a 、8S 、9S 成等差数列,则下列四个选项中正确的有( ) A .59823a a S +=B .27S S =C .5S 最小D .50a =答案:BD 【分析】设等差数列的公差为,根据条件、、成等差数列可求得与的等量关系,可得出、的表达式,进而可判断各选项的正误. 【详解】设等差数列的公差为,则,, 因为、、成等差数列,则,即, 解得,,解析:BD 【分析】设等差数列{}n a 的公差为d ,根据条件12a 、8S 、9S 成等差数列可求得1a 与d 的等量关系,可得出n a 、n S 的表达式,进而可判断各选项的正误. 【详解】设等差数列{}n a 的公差为d ,则8118788282S a d a d ⨯=+=+,9119899362S a d a d ⨯=+=+, 因为12a 、8S 、9S 成等差数列,则81922S a S =+,即11116562936a d a a d +=++,解得14a d =-,()()115n a a n d n d ∴=+-=-,()()219122n n n d n n d S na --=+=. 对于A 选项,59233412a a d d +=⨯=,()2888942d S d -⨯==-,A 选项错误; 对于B 选项,()2229272d Sd -⨯==-,()2779772d S d -⨯==-,B 选项正确;对于C 选项,()2298192224n d d S n n n ⎡⎤⎛⎫=-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.若0d >,则4S 或5S 最小;若0d <,则4S 或5S 最大.C 选项错误; 对于D 选项,50a =,D 选项正确. 故选:BD. 【点睛】在解有关等差数列的问题时可以考虑化归为a 1和d 等基本量,通过建立方程(组)获得解,另外在求解等差数列前n 项和n S 的最值时,一般利用二次函数的基本性质或者数列的单调性来求解.21.等差数列{}n a 中,n S 为其前n 项和,151115,a S S ==,则以下正确的是( )A .1d =-B .413a a =C .n S 的最大值为8SD .使得0n S >的最大整数15n =答案:BCD 【分析】设等差数列的公差为,由等差数列的通项公式及前n 项和公式可得,再逐项判断即可得解. 【详解】设等差数列的公差为, 由题意,,所以,故A 错误; 所以,所以,故B 正确; 因为, 所以当解析:BCD 【分析】设等差数列{}n a 的公差为d ,由等差数列的通项公式及前n 项和公式可得1215d a =-⎧⎨=⎩,再逐项判断即可得解. 【详解】设等差数列{}n a 的公差为d ,由题意,1115411105112215a d a d a ⨯⨯⎧+=+⎪⎨⎪=⎩,所以1215d a =-⎧⎨=⎩,故A 错误; 所以1131439,129a a d a d a =+==+=-,所以413a a =,故B 正确; 因为()()2211168642n n n a n d n n n S -=+=-+=--+,所以当且仅当8n =时,n S 取最大值,故C 正确; 要使()28640n S n =--+>,则16n <且n N +∈, 所以使得0n S >的最大整数15n =,故D 正确. 故选:BCD.22.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( ) A .a 1=22B .d =-2C .当n =10或n =11时,S n 取得最大值D .当S n >0时,n 的最大值为21答案:BC【分析】分别运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由配方法,结合n 为正整数,可判断C ;由Sn>0解不等式可判断D . 【详解】由公差,可得,即,① 由a7是a解析:BC 【分析】分别运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由配方法,结合n 为正整数,可判断C ;由S n >0解不等式可判断D . 【详解】由公差60,90d S ≠=,可得161590a d +=,即12530a d +=,①由a 7是a 3与a 9的等比中项,可得2739a a a =,即()()()2111628a d a d a d +=++,化简得110a d =-,②由①②解得120,2a d ==-,故A 错,B 对;由()()22121441201221224n S n n n n n n ⎛⎫=+-⨯-=-=--+ ⎪⎝⎭*n N ∈,可得10n =或11时,n S 取最大值110,C 对;由S n >0,解得021n <<,可得n 的最大值为20,D 错; 故选:BC 【点睛】本题考查等差数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于基础题.23.已知数列{}n a 满足:13a =,当2n ≥时,)211n a =-,则关于数列{}n a 说法正确的是( )A .28a =B .数列{}n a 为递增数列C .数列{}n a 为周期数列D .22n a n n =+答案:ABD 【分析】由已知递推式可得数列是首项为,公差为1的等差数列,结合选项可得结果. 【详解】 得, ∴,即数列是首项为,公差为1的等差数列,∴,∴,得,由二次函数的性质得数列为递增数列,解析:ABD【分析】由已知递推式可得数列2=,公差为1的等差数列,结合选项可得结果.【详解】)211na=-得)211na+=,1=,即数列2=,公差为1的等差数列,2(1)11n n=+-⨯=+,∴22na n n=+,得28a=,由二次函数的性质得数列{}n a为递增数列,所以易知ABD正确,故选:ABD.【点睛】本题主要考查了通过递推式得出数列的通项公式,通过通项公式研究数列的函数性质,属于中档题.24.设等差数列{a n}的前n项和为S n,公差为d.已知a3=12,S12>0,a7<0,则()A.a6>0B.2437d-<<-C.S n<0时,n的最小值为13D.数列nnSa⎧⎫⎨⎬⎩⎭中最小项为第7项答案:ABCD【分析】S12>0,a7<0,利用等差数列的求和公式及其性质可得:a6+a7>0,a6>0.再利用a3=a1+2d=12,可得<d<﹣3.a1>0.利用S13=13a7<0.可得Sn<0解析:ABCD【分析】S12>0,a7<0,利用等差数列的求和公式及其性质可得:a6+a7>0,a6>0.再利用a3=a1+2d=12,可得247-<d<﹣3.a1>0.利用S13=13a7<0.可得S n<0时,n的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0.7≤n ≤12时,n n S a <0.n ≥13时,n n S a >0.进而判断出D 是否正确. 【详解】∵S 12>0,a 7<0,∴()67122a a +>0,a 1+6d <0.∴a 6+a 7>0,a 6>0.∴2a 1+11d >0,a 1+5d >0, 又∵a 3=a 1+2d =12,∴247-<d <﹣3.a 1>0. S 13=()113132a a +=13a 7<0.∴S n <0时,n 的最小值为13.数列n n S a ⎧⎫⎨⎬⎩⎭中,n ≤6时,n n S a >0,7≤n ≤12时,n n S a <0,n ≥13时,n n S a >0.对于:7≤n ≤12时,nnS a <0.S n >0,但是随着n 的增大而减小;a n <0,但是随着n 的增大而减小,可得:nnS a <0,但是随着n 的增大而增大. ∴n =7时,nnS a 取得最小值. 综上可得:ABCD 都正确. 故选:ABCD . 【点评】本题考查了等差数列的通项公式与求和公式及其性质,考查了推理能力与计算能力,属于难题.25.已知数列{}n a 是递增的等差数列,5105a a +=,6914a a ⋅=-.12n n n n b a a a ++=⋅⋅,数列{}n b 的前n 项和为n T ,下列结论正确的是( )A .320n a n =-B .325n a n =-+C .当4n =时,n T 取最小值D .当6n =时,n T 取最小值答案:AC 【分析】由已知求出数列的首项与公差,得到通项公式判断与;再求出,由的项分析的最小值. 【详解】解:在递增的等差数列中, 由,得,又,联立解得,, 则,. .故正确,错误;可得数列的解析:AC 【分析】由已知求出数列{}n a 的首项与公差,得到通项公式判断A 与B ;再求出n T ,由{}n b 的项分析n T 的最小值. 【详解】解:在递增的等差数列{}n a 中, 由5105a a +=,得695a a +=,又6914a a =-,联立解得62a =-,97a =, 则967(2)3963a a d ---===-,16525317a a d =-=--⨯=-. 173(1)320n a n n ∴=-+-=-.故A 正确,B 错误;12(320)(317)(314)n n n n b a a a n n n ++==---可得数列{}n b 的前4项为负,第5项为正,第六项为负,第六项以后均为正. 而5610820b b +=-=>.∴当4n =时,n T 取最小值,故C 正确,D 错误.故选:AC . 【点睛】本题考查等差数列的通项公式,考查数列的求和,考查分析问题与解决问题的能力,属于中档题.。
新高考数学高考数学压轴题多选题专项训练分类精编含解析(2)

一、数列多选题1.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,记S n 为数列{a n }的前n 项和,则下列结论正确的是( ) A .a 8=34 B .S 8=54C .S 2020=a 2022-1D .a 1+a 3+a 5+…+a 2021=a 2022答案:BCD 【分析】由题意可得数列满足递推关系,依次判断四个选项,即可得正确答案. 【详解】对于A ,可知数列的前8项为1,1,2,3,5,8,13,21,故A 错误; 对于B ,,故B 正确; 对于C ,可解析:BCD 【分析】由题意可得数列{}na 满足递推关系()12211,1,+3nn n aa a aan --===≥,依次判断四个选项,即可得正确答案.【详解】对于A ,可知数列的前8项为1,1,2,3,5,8,13,21,故A 错误; 对于B ,81+1+2+3+5+8+13+2154S ==,故B 正确;对于C ,可得()112nn n a aan +-=-≥,则()()()()1234131425311++++++++++nn n a a a a aa a a aa a a aa+-=----即212++1nnn n S a a aa++=-=-,∴202020221Sa=-,故C 正确;对于D ,由()112n n n a aan +-=-≥可得,()()()135202124264202220202022++++++++a a a a a a a a a aaa=---=,故D 正确.故选:BCD. 【点睛】本题以“斐波那契数列”为背景,考查数列的递推关系及性质,解题的关键是得出数列的递推关系,()12211,1,+3nn n a a a aan --===≥,能根据数列性质利用累加法求解.2.已知数列{}na 中,11a =,1111n na a n n +⎛⎫-=+ ⎪⎝⎭,*n N ∈.若对于任意的[]1,2t ∈,不等式()22212n at a t a a n<--++-+恒成立,则实数a 可能为( )A .-4B .-2C .0D .2答案:AB 【分析】由题意可得,利用裂项相相消法求和求出,只需对于任意的恒成立,转化为对于任意的恒成立,然后将选项逐一验证即可求解. 【详解】 ,, 则,,,,上述式子累加可得:,, 对于任意的恒成立解析:AB 【分析】由题意可得11111n n a a n n n n +-=-++,利用裂项相相消法求和求出122n a n n =-<,只需()222122t a t a a --++-+≥对于任意的[]1,2t ∈恒成立,转化为()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立,然后将选项逐一验证即可求解. 【详解】111n n n a a n n++-=,11111(1)1n n a a n n n n n n +∴-==-+++, 则11111n n a a n n n n --=---,12111221n n a a n n n n ---=-----,,2111122a a -=-, 上述式子累加可得:111n a a n n -=-,122n a n n∴=-<, ()222122t a t a a ∴--++-+≥对于任意的[]1,2t ∈恒成立,整理得()()210t a t a --+≤⎡⎤⎣⎦对于任意的[]1,2t ∈恒成立, 对A ,当4a =-时,不等式()()2540t t +-≤,解集5,42⎡⎤-⎢⎥⎣⎦,包含[]1,2,故A 正确;对B ,当2a =-时,不等式()()2320t t +-≤,解集3,22⎡⎤-⎢⎥⎣⎦,包含[]1,2,故B 正确;对C ,当0a =时,不等式()210t t +≤,解集1,02⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故C 错误;对D ,当2a =时,不等式()()2120t t -+≤,解集12,2⎡⎤-⎢⎥⎣⎦,不包含[]1,2,故D 错误,故选:AB. 【点睛】本题考查了裂项相消法、由递推关系式求通项公式、一元二次不等式在某区间上恒成立,考查了转化与划归的思想,属于中档题.3.著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}na 称为“斐波那契数列”,记Sn为数列{}na 的前n 项和,则下列结论正确的是( ) A .68a =B .733S =C .13520192022a a a aa++++=D .22212201920202019a a a aa+++=答案:ABD 【分析】根据,,,计算可知正确;根据,,,,,,累加可知不正确;根据,,,,,,累加可知正确. 【详解】依题意可知,,,, ,,,,故正确; ,所以,故正确; 由,,,,,, 可得,故不解析:ABD 【分析】根据11a =,21a =,21n n n aaa ++=+,计算可知,A B 正确;根据12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018aaa=-,累加可知C 不正确;根据2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a aaaaaaa=-=-,累加可知D 正确. 【详解】依题意可知,11a =,21a =,21n n naaa ++=+,312112a a a =+=+=,423123a a a =+=+=,534235a a a =+=+=,645358a a a =+=+=,故A 正确;7565813a a a =+=+=,所以712345671123581333S a a a a a a a =++++++=++++++=,故B 正确;由12a a =,342a a a =-,564a a a =-,786a a a =-,,201920202018aaa=-,可得13572019a a a a a+++++=242648620202018a a a a a a a aa+-+-+-++-2020a=,故C 不正确;2121a a a =,222312312()a a a a a a a a =-=-,233423423()a a a a a a a a =-=-,244534534()a a a a a a a a =-=-,,220192019202020182019202020182019()a aaaaaaa=-=-,所以2222212342019a a a a a +++++122312342345342019202020182019a a a a a a a a a a a a a a aaaa=+-+-+-+-20192020aa=,所以22212201920202019a a a aa+++=,故D 正确.故选:ABD. 【点睛】本题考查了数列的递推公式,考查了累加法,属于中档题.4.已知数列{}na 满足112a =-,111n na a +=-,则下列各数是{}n a 的项的有( ) A .2-B .23C .32D .3答案:BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】 因为数列满足,, ; ; ;数列是周期为3的数列,且前3项为,,3; 故选:. 【点睛】 本题主要解析:BD 【分析】根据递推关系式找出规律,可得数列是周期为3的周期数列,从而可求解结论. 【详解】因为数列{}n a 满足112a =-,111n na a +=-,212131()2a ∴==--; 32131a a==-; 4131112a a a ==-=-; ∴数列{}n a 是周期为3的数列,且前3项为12-,23,3;故选:BD . 【点睛】本题主要考查数列递推关系式的应用,考查数列的周期性,解题的关键在于求出数列的规律,属于基础题.5.设数列{}na 的前n 项和为*()nS n N ∈,关于数列{}na ,下列四个命题中正确的是( ) A .若1*()n naa n N +∈=,则{}na 既是等差数列又是等比数列B .若2nS An Bn =+(A ,B 为常数,*n N ∈),则{}na 是等差数列C .若()11n nS =--,则{}na 是等比数列D .若{}na 是等差数列,则nS ,2n n SS -,*32()n nS S n N -∈也成等差数列答案:BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】选项A: ,得是等差数列,当时不是等比数列,故错; 选项B: ,,得是等差数列,故对; 选项C: ,,当时也成立,是等比数列解析:BCD 【分析】利用等差等比数列的定义及性质对选项判断得解. 【详解】 选项A: 1*()n n a a n N +∈=,10n n aa +∴-=得{}na 是等差数列,当0n a =时不是等比数列,故错; 选项B:2nS An Bn =+,12nn a aA -∴-=,得{}na 是等差数列,故对;选项C: ()11n nS =--,112(1)(2)n nn nS Sa n --∴-==⨯-≥,当1n =时也成立,12(1)n na -∴=⨯-是等比数列,故对;选项D: {}na 是等差数列,由等差数列性质得nS ,2n n SS -,*32()n nS S n N -∈是等差数列,故对; 故选:BCD 【点睛】熟练运用等差数列的定义、性质、前n 项和公式是解题关键.6.朱世杰是元代著名数学家,他所著的《算学启蒙》是一部在中国乃至世界最早的科学普及著作.《算学启蒙》中涉及一些“堆垛”问题,主要利用“堆垛”研究数列以及数列的求和问题.现有100根相同的圆形铅笔,小明模仿“堆垛”问题,将它们全部堆放成纵断面为等腰梯形的“垛”,要求层数不小于2,且从最下面一层开始,每一层比上一层多1根,则该“等腰梯形垛”应堆放的层数可以是( ) A .4B .5C .7D .8答案:BD 【分析】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为,公差即每一层比上一层多的根数为,设一共放层,利用等差数列求和公式,分析即可得解. 【详解】依据题意,根数从上至下构成等差解析:BD 【分析】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差即每一层比上一层多的根数为1d =,设一共放()2n n ≥层,利用等差数列求和公式,分析即可得解. 【详解】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差为1d =,设一共放()2n n ≥层,则总得根数为:()()111110022n n n d n n S na na --=+=+= 整理得120021a n n=+-, 因为1a *∈N,所以n 为200的因数,()20012n n+-≥且为偶数,验证可知5,8n =满足题意. 故选:BD. 【点睛】关键点睛:本题考查等差数列的求和公式,解题的关键是分析题意,把题目信息转化为等差数列,考查学生的逻辑推理能力与运算求解能力,属于基础题.7.公差不为零的等差数列{}na 满足38aa =,n S 为{}n a 前n 项和,则下列结论正确的A .110S =B .10nnS S-=(110n ≤≤)C .当110S >时,5nS S ≥D .当110S <时,5nS S ≥答案:BC 【分析】设公差d 不为零,由,解得,然后逐项判断. 【详解】 设公差d 不为零, 因为, 所以, 即, 解得, ,故A 错误; ,故B 正确;若,解得,,故C 正确;D 错误; 故选:BC解析:BC 【分析】设公差d 不为零,由38a a =,解得192a d =-,然后逐项判断. 【详解】设公差d 不为零, 因为38a a =, 所以1127a d a d +=+, 即1127a d a d +=--,解得192a d =-, 11191111551155022S a d d d d ⎛⎫=+=⨯-+=≠ ⎪⎝⎭,故A 错误; ()()()()()()221101110910,10102222n n n n n n d d na d n n n a n n S S d ----=+=-=-+=-,故B 正确;若11191111551155022S a d d d d ⎛⎫=+=⨯-+=> ⎪⎝⎭,解得0d >,()()22510525222n d d d n n S n S =-=--≥,故C 正确;D 错误;8.设{}na 是等差数列,nS是其前n 项的和,且56S S <,678S S S =>,则下列结论正确的是( ) A .0d > B .70a =C .95S S >D .6S 与7S 均为nS 的最大值答案:BD 【分析】设等差数列的公差为,依次分析选项即可求解. 【详解】根据题意,设等差数列的公差为,依次分析选项: 是等差数列,若,则,故B 正确; 又由得,则有,故A 错误; 而C 选项,,即,可得,解析:BD 【分析】设等差数列{}na 的公差为d ,依次分析选项即可求解.【详解】根据题意,设等差数列{}na 的公差为d ,依次分析选项:{}na 是等差数列,若67SS =,则7670S S a -==,故B 正确;又由56S S <得6560S S a -=>,则有760d a a =-<,故A 错误; 而C 选项,95S S >,即67890a a a a +++>,可得()7820a a+>,又由70a =且0d <,则80a <,必有780a a +<,显然C 选项是错误的.∵56S S <,678S S S =>,∴6S 与7S 均为nS 的最大值,故D 正确;故选:BD. 【点睛】本题考查了等差数列以及前n 项和的性质,需熟记公式,属于基础题.9.已知等差数列{}na 的前n 项和为nS ()*n N ∈,公差0d ≠,690S=,7a 是3a 与9a 的等比中项,则下列选项正确的是( ) A .2d =-B .120a=-C .当且仅当10n =时,nS 取最大值D .当0nS <时,n 的最小值为22答案:AD 【分析】运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由解不等式可判断D . 【详解】等差数列的前n 项和为,公差,由,可解析:AD 【分析】运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由二次函数的配方法,结合n 为正整数,可判断C ;由0nS <解不等式可判断D .【详解】等差数列{}na 的前n 项和为nS,公差0d ≠,由690S =,可得161590a d +=,即12530a d +=,①由7a 是3a 与9a 的等比中项,得2739a a a =,即()()()2111628a d a d a d +=++,化为1100a d +=,②由①②解得120a =,2d =-,则202(1)222na n n =--=-,21(20222)212n S n n n n =+-=-, 由22144124n S n ⎛⎫=--+ ⎪⎝⎭,可得10n =或11时,n S 取得最大值110; 由2102nS n n -<=,解得21n >,则n 的最小值为22.故选:AD 【点睛】本题考查等差数列的通项公式和求和公式,以及等比中项的性质,二次函数的最值求法,考查方程思想和运算能力,属于中档题. 10.下列命题正确的是( )A .给出数列的有限项就可以唯一确定这个数列的通项公式B .若等差数列{}na的公差0d >,则{}na 是递增数列C .若a ,b ,c 成等差数列,则111,,a b c可能成等差数列D .若数列{}na是等差数列,则数列{}12++nn aa也是等差数列答案:BCD 【分析】根据等差数列的性质即可判断选项的正误. 【详解】A 选项:给出数列的有限项不一定可以确定通项公式;B 选项:由等差数列性质知,必是递增数列;C 选项:时,是等差数列,而a = 1,解析:BCD 【分析】根据等差数列的性质即可判断选项的正误. 【详解】A 选项:给出数列的有限项不一定可以确定通项公式;B 选项:由等差数列性质知0d >,{}na必是递增数列;C 选项:1a b c ===时,1111a b c===是等差数列,而a = 1,b = 2,c = 3时不成立;D 选项:数列{}na是等差数列公差为d ,所以11112(1)223(31)nn a aa n d a nd a n d ++=+-++=+-也是等差数列;故选:BCD 【点睛】本题考查了等差数列,利用等差数列的性质判断选项的正误,属于基础题.11.在下列四个式子确定数列{}na 是等差数列的条件是( )A .na knb =+(k ,b 为常数,*n N ∈); B .2n naa d +-=(d 为常数,*n N ∈);C .()*2120n n n a a a n ++-+=∈N ; D .{}na 的前n 项和21nSn n =++(*n N ∈).答案:AC 【分析】直接利用等差数列的定义性质判断数列是否为等差数列. 【详解】A 选项中(,为常数,),数列的关系式符合一次函数的形式,所以是等差数列,故正确,B 选项中(为常数,),不符合从第二项起解析:AC 【分析】直接利用等差数列的定义性质判断数列是否为等差数列. 【详解】A 选项中na knb =+(k ,b 为常数,*n N ∈),数列{}na 的关系式符合一次函数的形式,所以是等差数列,故正确, B 选项中2n naa d +-=(d 为常数,*n N ∈),不符合从第二项起,相邻项的差为同一个常数,故错误; C 选项中()*2120n n n aaa n ++-+=∈N ,对于数列{}na 符合等差中项的形式,所以是等差数列,故正确;D 选项{}na 的前n 项和21nSn n =++(*n N ∈),不符合2nS An Bn =+,所以{}na 不为等差数列.故错误. 故选:AC 【点睛】本题主要考查了等差数列的定义的应用,如何去判断数列为等差数列,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.12.无穷数列{}na 的前n 项和2nSan bn c =++,其中a ,b ,c 为实数,则( )A .{}na 可能为等差数列B .{}na 可能为等比数列 C .{}na 中一定存在连续三项构成等差数列 D .{}na 中一定存在连续三项构成等比数列 答案:ABC 【分析】由可求得的表达式,利用定义判定得出答案. 【详解】 当时,. 当时,. 当时,上式=. 所以若是等差数列,则所以当时,是等差数列, 时是等比数列;当时,从第二项开始是等差数列.解析:ABC 【分析】由2nS an bn c =++可求得na 的表达式,利用定义判定得出答案.【详解】当1n =时,11a S abc ==++.当2n ≥时,()()221112nnn a S San bn c a n b n c an a b -=-=++-----=-+.当1n =时,上式=+a b .所以若{}na 是等差数列,则0.ab a bc c +=++∴=所以当0c时,{}n a 是等差数列, 00a cb ==⎧⎨≠⎩时是等比数列;当0c ≠时,{}na 从第二项开始是等差数列. 故选:A B C 【点睛】本题只要考查等差数列前n 项和nS 与通项公式na 的关系,利用nS 求通项公式,属于基础题.二、等差数列多选题13.在等差数列{}na 中,公差0d ≠,前n 项和为nS,则( )A .4619a a a a >B .130S >,140S <,则78a a >C .若915S S =,则n S 中的最大值是12SD .若2nS n n a =-+,则0a =解析:AD 【分析】对于A ,作差后利用等差数列的通项公式运算可得答案;对于B ,根据等差数列的前n 项和公式得到70a >和780a a +<, 进而可得80a <,由此可知78||||a a <,故B 不正确;对于C ,由915S S =得到,12130a a +=,然后分类讨论d 的符号可得答案;对于D ,由nS 求出na 及1a ,根据数列{}na 为等差数列可求得0a =.【详解】对于A ,因为46191111(3)(5)(8)a a a a a d a d a a d -=++-+215d =,且0d ≠,所以24619150a a a a d -=>,所以4619a a a a >,故A 正确;对于B ,因为130S >,140S <,所以77713()1302a a a +=>,即70a >,787814()7()02a a a a +=+<,即780a a +<,因为70a >,所以80a <,所以7878||||0a a a a -=+<,即78||||a a <,故B 不正确;对于C ,因为915S S =,所以101114150a a a a ++++=,所以12133()0a a +=,即12130a a +=,当0d >时,等差数列{}na 递增,则12130,0a a <>,所以n S 中的最小值是12S ,无最大值;当0d <时,等差数列{}na 递减,则12130,0aa ><,所以n S 中的最大值是12S ,无最小值,故C 不正确;对于D ,若2nS n n a =-+,则11a S a ==,2n ≥时,221(1)(1)nnn a S Sn n a n n a -=-=-+--+--22n =-,因为数列{}n a 为等差数列,所以12120a a =⨯-==,故D 正确.故选:AD 【点睛】关键点点睛:熟练掌握等差数列的通项公式、前n 项和公式是解题关键.14.题目文件丢失!15.已知数列{}na 的前4项为2,0,2,0,则该数列的通项公式可能为( )A .0,2,nn a n ⎧=⎨⎩为奇数为偶数B .1(1)1n na -=-+C .2sin 2n n a π=D .cos(1)1na n π=-+解析:BD 【分析】根据选项求出数列的前4项,逐一判断即可. 【详解】解:因为数列{}na 的前4项为2,0,2,0,选项A :不符合题设;选项B :01(1)12,a =-+=12(1)10,a =-+=23(1)12,a =-+=34(1)10a =-+=,符合题设;选项C :,12sin2,2a π==22sin 0,a π==332sin 22a π==-不符合题设; 选项D :1cos012,a =+=2cos 10,a π=+=3cos212,a π=+=4cos310a π=+=,符合题设.故选:BD. 【点睛】本题考查数列的通项公式的问题,考查了基本运算求解能力,属于基础题.16.朱世杰是元代著名数学家,他所著的《算学启蒙》是一部在中国乃至世界最早的科学普及著作.《算学启蒙》中涉及一些“堆垛”问题,主要利用“堆垛”研究数列以及数列的求和问题.现有100根相同的圆形铅笔,小明模仿“堆垛”问题,将它们全部堆放成纵断面为等腰梯形的“垛”,要求层数不小于2,且从最下面一层开始,每一层比上一层多1根,则该“等腰梯形垛”应堆放的层数可以是( ) A .4 B .5 C .7D .8解析:BD 【分析】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差即每一层比上一层多的根数为1d =,设一共放()2n n ≥层,利用等差数列求和公式,分析即可得解. 【详解】依据题意,根数从上至下构成等差数列,设首项即第一层的根数为1a ,公差为1d =,设一共放()2n n ≥层,则总得根数为:()()111110022n n n d n n S na na --=+=+=整理得120021a n n=+-, 因为1a *∈N ,所以n 为200的因数,()20012n n+-≥且为偶数, 验证可知5,8n =满足题意. 故选:BD. 【点睛】关键点睛:本题考查等差数列的求和公式,解题的关键是分析题意,把题目信息转化为等差数列,考查学生的逻辑推理能力与运算求解能力,属于基础题. 17.已知数列{}na :1,1,2,3,5,…其中从第三项起,每个数等于它前面两个数的和,记nS为数列{}na 的前n 项和,则下列结论正确的是( )A .68S a = B .733S =C .13520212022a a a aa++++=D .2222123202020202021a a a a aa++++=解析:BCD 【分析】根据题意写出8a ,6S ,7S ,从而判断A ,B 的正误;写出递推关系,对递推关系进行适当的变形,利用累加法即可判断C ,D 的正误. 【详解】对A ,821a =,620S =,故A 不正确;对B ,761333S S =+=,故B 正确;对C ,由12a a =,342a a a =-,564a a a =-,…,202120222020aaa=-,可得13520212022a a a aa +++⋅⋅⋅+=,故C 正确;对D ,该数列总有21n n n aaa ++=+,2121a a a =,则()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,…,()220182018201920172018201920172018a a a a a a a a =-=-, 22019a =2019202020192018aaaa-,220202020202120202019a aaaa=-,故2222123202020202021a a a a a a+++⋅⋅⋅+=,故D 正确.故选:BCD 【点睛】关键点睛:解答本题的关键是对CD 的判断,即要善于利用21n n na aa ++=+对所给式子进行变形.18.已知等差数列{}na 的公差不为0,其前n 项和为nS,且12a 、8S 、9S 成等差数列,则下列四个选项中正确的有( )A .59823a a S +=B .27S S =C .5S 最小D .50a =解析:BD【分析】设等差数列{}na 的公差为d ,根据条件12a 、8S、9S 成等差数列可求得1a 与d 的等量关系,可得出na 、nS 的表达式,进而可判断各选项的正误.【详解】设等差数列{}na 的公差为d ,则8118788282S a d a d ⨯=+=+,9119899362S a d a d ⨯=+=+, 因为12a 、8S 、9S 成等差数列,则81922S a S =+,即11116562936a d a a d +=++,解得14a d =-,()()115n a a n d n d ∴=+-=-,()()219122nnn d n n dS na --=+=.对于A 选项,59233412a a d d +=⨯=,()2888942d S d -⨯==-,A 选项错误; 对于B 选项,()2229272d S d -⨯==-,()2779772d S d -⨯==-,B 选项正确;对于C 选项,()2298192224n d d S n n n ⎡⎤⎛⎫=-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦. 若0d >,则4S 或5S 最小;若0d <,则4S 或5S 最大.C 选项错误;对于D 选项,50a =,D 选项正确.故选:BD. 【点睛】在解有关等差数列的问题时可以考虑化归为a 1和d 等基本量,通过建立方程(组)获得解,另外在求解等差数列前n 项和nS 的最值时,一般利用二次函数的基本性质或者数列的单调性来求解. 19.定义11222n nna a a H n-+++=为数列{}na 的“优值”.已知某数列{}na 的“优值”2n nH =,前n 项和为nS ,则( )A .数列{}na 为等差数列 B .数列{}na 为等比数列C .2020202320202S =D .2S ,4S ,6S 成等差数列解析:AC 【分析】由题意可知112222n n nna a a H n-+++==,即112222n n na a a n -+++=⋅,则2n ≥时,()()111221212n n n n na n n n ---=⋅--⋅=+⋅,可求解出1na n =+,易知{}na 是等差数列,则A 正确,然后利用等差数列的前n 项和公式求出nS ,判断C ,D 的正误.【详解】 解:由112222n n nna a a H n-+++==,得112222n n na a a n -+++=⋅,①所以2n ≥时,()211212212n n n a a an ---+++=-⋅,②得2n ≥时,()()111221212n n n n na n n n ---=⋅--⋅=+⋅, 即2n ≥时,1na n =+,当1n =时,由①知12a =,满足1na n =+.所以数列{}na 是首项为2,公差为1的等差数列,故A 正确,B 错,所以()32n n n S +=,所以2020202320202S =,故C 正确.25S =,414S =,627S =,故D 错, 故选:AC . 【点睛】本题考查数列的新定义问题,考查数列通项公式的求解及前n 项和的求解,难度一般.20.数列{}n a 满足11,121n n naa a a +==+,则下列说法正确的是( ) A .数列1n a ⎧⎫⎨⎬⎩⎭是等差数列B .数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和2nS n =C .数列{}na 的通项公式为21nan =-D .数列{}na 为递减数列解析:ABD【分析】首项根据11,121n n n a a a a +==+得到1112n n a a +-=,从而得到1na ⎧⎫⎨⎬⎩⎭是以首项为1,公差为2的等差数列,再依次判断选项即可.【详解】对选项A ,因为121n n naa a +=+,11a =, 所以121112n n nna a a a ++==+,即1112n na a+-= 所以1n a ⎧⎫⎨⎬⎩⎭是以首项为1,公差为2的等差数列,故A 正确.对选项B ,由A 知:112121nn n a数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和()21212n n n S n +-==,故B 正确. 对选项C ,因为121nn a =-,所以121n a n =-,故C 错误. 对选项D ,因为121n a n =-,所以数列{}n a 为递减数列,故D 正确. 故选:ABD 【点睛】本题主要考查等差数列的通项公式和前n 项和前n 项和,同时考查了递推公式,属于中档题.21.设等差数列{}na 的前n 项和为nS,若39S =,47a =,则( )A .2nS n =B .223nS n n =-C .21na n =-D .35na n =-解析:AC 【分析】利用等差数列{}na 的前n 项和公式、通项公式列出方程组,求出11a =,2d =,由此能求出na 与nS .【详解】等差数列{}na 的前n 项和为n S .39S =,47a =,∴31413239237S a d a a d ⨯⎧=+=⎪⎨⎪=+=⎩, 解得11a =,2d =,1(1)221na n n ∴+-⨯=-=.()21212nn nS n +-==故选:AC . 【点睛】本题考查等差数列的通项公式求和公式的应用,考查等差数列的性质等基础知识,考查运算求解能力,是基础题.22.已知数列{}na 满足:13a =,当2n ≥时,()21111nn a a-=++-,则关于数列{}na 说法正确的是( )A .28a =B .数列{}na 为递增数列C .数列{}na 为周期数列D .22na n n =+解析:ABD【分析】由已知递推式可得数列{}1na +是首项为112a +=,公差为1的等差数列,结合选项可得结果. 【详解】()21111nn a a-=++-得()21111nn a a-+=++,∴1111nn a a-+=++,即数列{}1na +是首项为112a +=,公差为1的等差数列,∴12(1)11na n n +=+-⨯=+,∴22na n n =+,得28a =,由二次函数的性质得数列{}na 为递增数列,所以易知ABD 正确, 故选:ABD. 【点睛】本题主要考查了通过递推式得出数列的通项公式,通过通项公式研究数列的函数性质,属于中档题.23.无穷数列{}na 的前n 项和2nSan bn c =++,其中a ,b ,c 为实数,则( )A .{}na 可能为等差数列 B .{}na 可能为等比数列 C .{}na 中一定存在连续三项构成等差数列 D .{}na 中一定存在连续三项构成等比数列 解析:ABC 【分析】由2nS an bn c =++可求得na 的表达式,利用定义判定得出答案.【详解】当1n =时,11a S abc ==++.当2n ≥时,()()221112nnn a S San bn c a n b n c an a b -=-=++-----=-+.当1n =时,上式=+a b .所以若{}na 是等差数列,则0.ab a bc c +=++∴=所以当0c时,{}na 是等差数列, 00a cb ==⎧⎨≠⎩时是等比数列;当0c ≠时,{}na 从第二项开始是等差数列.故选:A B C 【点睛】本题只要考查等差数列前n 项和nS 与通项公式na 的关系,利用nS 求通项公式,属于基础题.24.等差数列{}na 的前n 项和为n S ,若90a <,100a >,则下列结论正确的是( )A .109S S >B .170S <C .1819S S >D .190S>解析:ABD 【分析】先根据题意可知前9项的和最小,判断出A 正确;根据题意可知数列为递减数列,则190a >,又181919S S a =-,进而可知1516S S >,判断出C 不正确;利用等差中项的性质和求和公式可知()01179179172171722aaa Sa <+⨯⨯===,()1191019101921919022aaa S a +⨯⨯===>,故BD 正确.【详解】根据题意可知数列为递增数列,90a <,100a >,∴前9项的和最小,故A 正确; ()11791791721717022a a a S a +⨯⨯===<,故B 正确;()1191019101921919022aaa S a +⨯⨯===>,故D 正确;190a >,181919S S a ∴=-, 1819S S ∴<,故C 不正确. 故选:ABD . 【点睛】本题考查等差数列的综合应用,考查逻辑思维能力和运算能力,属于常考题.三、等比数列多选题25.题目文件丢失! 26.题目文件丢失!27.在数列{}na 中,如果对任意*n N ∈都有211n n n na a k aa+++-=-(k 为常数),则称{}na 为等差比数列,k 称为公差比.下列说法正确的是( ) A .等差数列一定是等差比数列 B .等差比数列的公差比一定不为0 C .若32n na =-+,则数列{}na是等差比数列D .若等比数列是等差比数列,则其公比等于公差比 解析:BCD 【分析】考虑常数列可以判定A 错误,利用反证法判定B 正确,代入等差比数列公式判定CD 正确. 【详解】对于数列{}na ,考虑121,1,1nn n aaa++===,211n n n na aa a+++--无意义,所以A 选项错误;若等差比数列的公差比为0,212110,0n n n n n na aa a a a+++++---==,则1n n a a +-与题目矛盾,所以B 选项说法正确;若32n n a =-+,2113n n n na aa a+++-=-,数列{}n a 是等差比数列,所以C 选项正确; 若等比数列是等差比数列,则11,1n n q a a q -=≠,()()11211111111111n n nn n n n n n na q q a a a q a q q a a a q a q a q q +++--+---===---,所以D 选项正确. 故选:BCD 【点睛】易错点睛:此题考查等差数列和等比数列相关的新定义问题.解决此类问题应该注意: (1)常数列作为特殊的等差数列公差为0; (2)非零常数列作为特殊等比数列公比为1.28.已知数列{}na 的前n 项和为n S 且满足11130(2),3n n n a S S n a -+=≥=,下列命题中正确的是( )A .1n S ⎧⎫⎨⎬⎩⎭是等差数列B .13n S n= C .13(1)n a n n =--D .{}3nS 是等比数列解析:ABD 【分析】由1(2)n n n a S S n -=-≥代入已知式,可得{}n S 的递推式,变形后可证1n S ⎧⎫⎨⎬⎩⎭是等差数列,从而可求得nS ,利用nS 求出na ,并确定3n S 的表达式,判断D.【详解】因为1(2)n n n a S S n -=-≥,1130n n n n S S S S ---+=,所以1113nn S S--=,所以1n S ⎧⎫⎨⎬⎩⎭是等差数列,A 正确;公差为3,又11113S a ==,所以133(1)3nn n S =+-=,13n S n =.B 正确; 2n ≥时,由1n n n a S S -=-求得13(1)n a n n =-,但13a =不适合此表达式,因此C 错; 由13n S n =得1311333n n n S +==⨯,∴{}3n S 是等比数列,D 正确. 故选:ABD. 【点睛】本题考查等差数列的证明与通项公式,考查等比数列的判断,解题关键由1(2)n n n a S S n -=-≥,化已知等式为{}n S 的递推关系,变形后根据定义证明等差数列.29.已知数列{}na 前n 项和为nS.且1a p =,122(2)nn S Sp n --=≥(p 为非零常数)测下列结论中正确的是( )A .数列{}na 为等比数列 B .1p =时,41516S = C .当12p =时,()*,m n m n a a a m n N +⋅=∈ D .3856a a a a +=+解析:AC 【分析】 由122(2)nn S Sp n --=≥和等比数列的定义,判断出A 正确;利用等比数列的求和公式判断B 错误;利用等比数列的通项公式计算得出C 正确,D 不正确. 【详解】由122(2)n n S S p n --=≥,得22p a =. 3n ≥时,1222n n SSp ---=,相减可得120nn a a--=,又2112a a =,数列{}n a 为首项为p ,公比为12的等比数列,故A 正确; 由A 可得1p =时,44111521812S -==-,故B 错误; 由A 可得mnm na a a+⋅=等价为2121122m n m n p p ++⋅=⋅,可得12p =,故C 正确;38271133||||22128a a p p ⎛⎫+=+=⋅ ⎪⎝⎭,56451112||||22128a a p p ⎛⎫+=+=⋅ ⎪⎝⎭, 则3856a a a a +>+,即D 不正确;故选:AC. 【点睛】本题考查等比数列的通项公式和求和公式,考查数列的递推关系式,考查学生的计算能力,属于中档题.30.设等比数列{}na 的公比为q ,其前n 项和为nS,前n 项积为nT ,并且满足条件11a >,671a a >,67101a a -<-,则下列结论正确的是( ) A .01q << B .8601a a <<C .nS 的最大值为7SD .nT 的最大值为6T解析:ABD 【分析】先分析公比取值范围,即可判断A,再根据等比数列性质判断B,最后根据项的性质判断C,D. 【详解】若0q <,则67670,00a a a a <>∴<与671a a >矛盾;若1q ≥,则11a >∴671,1a a >>∴67101a a ->-与67101a a -<-矛盾; 因此01q <<,所以A 正确;667710101a a a a -<∴>>>-,因此2768(,1)0a a a =∈,即B 正确;因为0na >,所以n S 单调递增,即n S 的最大值不为7S ,C 错误;因为当7n ≥时,(0,1)na ∈,当16n ≤≤时,(1,)na ∈+∞,所以nT 的最大值为6T ,即D正确; 故选:ABD 【点睛】本题考查等比数列相关性质,考查综合分析判断能力,属中档题.31.记单调递增的等比数列{}na 的前n 项和为nS,若2410a a +=,23464a a a =,则( ) A .112n n nSS ++-=B .12n naC .21n nS =-D .121n nS -=-解析:BC 【分析】先求得3a ,然后求得q ,进而求得1a ,由此求得1,,nnn na S SS +-,进而判断出正确选项.【详解】由23464a a a =得3334a =,则34a =.设等比数列{}na 的公比为()0q q ≠,由2410a a +=,得4410q q+=,即22520q q -+=,解得2q 或12q =.又因为数列{}na 单调递增,所以2q,所以112810a a +=,解得11a =.所以12n na,()1122112n nnS ⨯-==--,所以()1121212n n n n n S S ++-=---=.故选:BC 【点睛】本题考查等比数列的通项公式、等比数列的性质及前n 项和,属于中档题.32.已知数列{a n },{b n }均为递增数列,{a n }的前n 项和为S n ,{b n }的前n 项和为T n .且满足a n +a n +1=2n ,b n •b n +1=2n (n ∈N *),则下列说法正确的有( ) A .0<a 1<1 B .1<b 12< C .S 2n <T 2nD .S 2n ≥T 2n解析:ABC 【分析】利用代入法求出前几项的关系即可判断出a 1,b 1的取值范围,分组法求出其前2n 项和的表达式,分析,即可得解.【详解】∵数列{a n }为递增数列;∴a 1<a 2<a 3;∵a n+a n +1=2n ,∴122324a a a a +=⎧⎨+=⎩; ∴12123212244a a aa a a a +⎧⎨+=-⎩>> ∴0<a 1<1;故A 正确.∴S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n ﹣1+a 2n )=2+6+10+…+2(2n ﹣1)=2n 2; ∵数列{b n}为递增数列;∴b 1<b 2<b 3; ∵b n•b n +1=2n∴122324b b b b =⎧⎨=⎩; ∴2132b b b b⎧⎨⎩>>; ∴1<b 12<,故B 正确.∵T 2n =b 1+b 2+…+b 2n=(b 1+b 3+b 5+…+b 2n ﹣1)+(b 2+b 4+…+b 2n )()()()()121212122122nnn b b b b⋅--=+=+-()()122212221n n b b ≥-=-; ∴对于任意的n ∈N*,S 2n <T 2n;故C 正确,D 错误.故选:ABC 【点睛】本题考查了分组法求前n 项和及性质探究,考查了学生综合分析,转化划归,数学运算的能力,属于较难题.33.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}na ,数列(){}nf a 仍是等比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,-∞⋃+∞上的四个函数中,是“保等比数列函数”的为( )A .()2f x x =B .()2x f x =C .()f x x =D .()ln f x x =解析:AC 【分析】直接利用题目中“保等比数列函数”的性质,代入四个选项一一验证即可. 【详解】设等比数列{}na 的公比为q .对于A ,则2221112()()n n n n n nf a a a q f a a a +++⎛⎫=== ⎪⎝⎭ ,故A 是“保等比数列函数”; 对于B ,则111()22()2n n n na a a n a nf a f a ++-+==≠ 常数,故B 不是“保等比数列函数”; 对于C ,则111()()n n n nnnaf a aq f a aa+++=== ,故C 是“保等比数列函数”;对于D ,则11ln ln ln ln ln ()1()ln ln ln ln n n n n nnnnna a q a q q f a f a a a a a++⋅+====+≠ 常数,故D 不是“保等比数列函数”. 故选:AC. 【点睛】本题考查等比数列的定义,考查推理能力,属于基础题.34.已知等比数列{a n }的公比23q =-,等差数列{b n }的首项b 1=12,若a 9>b 9且a 10>b 10,则以下结论正确的有( ) A .a 9•a 10<0 B .a 9>a 10C .b 10>0D .b 9>b 10解析:AD 【分析】设等差数列的公差为d ,运用等差数列和等比数列的通项公式分析A 正确,B 与C 不正确,结合条件判断等差数列为递减数列,即可得到D 正确. 【详解】数列{a n }是公比q 为23-的等比数列,{b n }是首项为12,公差设为d 的等差数列,则8912()3a a =-,91012()3a a =-, ∴a 9•a 1021712()3a =-<0,故A 正确; ∵a 1正负不确定,故B 错误; ∵a 10正负不确定,∴由a 10>b 10,不能求得b 10的符号,故C 错误; 由a 9>b 9且a 10>b 10,则a 1(23-)8>12+8d ,a 1(23-)9>12+9d ,由于910,a a 异号,因此90a <或100a<故 90b <或100b <,且b 1=12可得等差数列{b n }一定是递减数列,即d <0, 即有a 9>b 9>b 10,故D 正确. 故选:AD 【点睛】本题考查了等差等比数列的综合应用,考查了等比数列的通项公式、求和公式和等差数列的单调性,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.35.等差数列{}na 的公差为d ,前n 项和为nS,当首项1a 和d 变化时,3813++a a a 是一个定值,则下列各数也为定值的有( )A .7aB .8aC .15SD .16S解析:BC 【分析】根据等差中项的性质和等差数列的求和公式可得出结果. 【详解】由等差中项的性质可得381383a a a a ++=为定值,则8a 为定值,()11515815152a aS a +==为定值,但()()11616891682a aS a a +==+不是定值.故选:BC. 【点睛】本题考查等差中项的基本性质和等差数列求和公式的应用,考查计算能力,属于基础题.36.对于数列{}na ,若存在正整数()2k k ≥,使得1kk aa-<,1kk a a+<,则称ka 是数列{}na 的“谷值”,k 是数列{}na 的“谷值点”,在数列{}na 中,若98nan n=+-,下面哪些数不能作为数列{}na 的“谷值点”?( )A .3B .2C .7D .5解析:AD。
高中数学求数列最值的12种题型(含答案)

求数列最值的12种题型题型一:递推问题1、已知数列{a n }中,a 1>0,且a n +1=3+a n 2.(1)试求a 1的值,使得数列{a n }是一个常数数列;(2)试求a 1的取值范围,使得a n +1>a n 对任何自然数n 都成立;(3)若a 1=4,设b n =|a n +1-a n |(n =1,2,3…),并以S n 表示数列{b n }的前n 项和,试证明:S n <52.解:(Ⅰ)欲使数列{a n }是一个常数数列,则a n +1=3+a n 2=a n ,又依a 1>0,可以得a n >0并解出:a n =32.a n =-1(舍)即a 1=32(Ⅱ)研究a n +1-a n =3+a n 2-3+a n-12=a n -a n-12(3+a n 2+3+a n-12)(n ≥2)注意到:2(3+a n 2+3+a n-12)>0因此,a n +1-a n ,a n -a n -1,…,a 2-a 1有相同的符号.要使a n +1>a n 对任意自然数都成立,只须a 2-a 1>0即可.由3+a 12-a 1>0,解得:0<a 1<32.(Ⅲ)用与(Ⅱ)中相同的方法,可得当a 1>32时,a n +1<a n 对任何自然数n 都成立.因此当a 1=4时,a n +1-a n <0∴S n =b 1+b 2+…+b n .=|a 2-a 1|+|a 3-a 2|+…+|a n +1-a n |=a 1-a 2+a 2-a 3+…+a n -a n +1=a 1-a n +1=4-a n +1又:a n +2<a n +1即3+a n+12<a n+1,可得a n +1>32,故S n <4-32=52.题型二:最值问题2、已知数列{a n }满足:a 1=1,a n +1=a n 2a n +1(*n N ∈),数列{b n }的前n 项和S n =12-12(23)n (*n N ∈).(1)求数列{a n }和{b n }的通项公式;(2)设n n nb C a =,是否存在*m N ∈,使9m C ≥成立?并说明理由.解答:(1)由1111221n n n n n a a a a a ++=⇒=++,∴112(1)21n n n a =+-=-,*1()21n a n N n =∈-.由21212()3n n S =-⋅及1121212()(2)3n n S n --=-⋅≥,可得124()(2)3n n n n b S S n -=-=⋅≥,令1n =,则11121212()43b S ==-⋅=也满足上式,∴124()(*)3n n b n N -=⋅∈.1122(2)(21)4()4(21)(33n n n n n b C n n a --==-⋅=-,设m C 为数列{}n C 中的最大项,则12111224(21)()4(23)()33224(21)()4(21)()3327(21)23322521(21)32m m m m m mm m m m C C C C m m m m m m m m ----+⎧-≥-⎪≥⎧⎪⇒⎨⎨≥⎩⎪-≥+⎪⎩⎧⎧-⋅≥-≤⎪⎪⎪⎪⇒⇒⎨⎨⎪⎪-≥+⋅≥⎪⎪⎩⎩,∴3m =.即3C 为{}n C 中的最大项.∵2328020(939C ==<,∴不存在*m N ∈,使9m C ≥成立.题型三:公共项问题3、设A n 为数列{a n }的前n 项的和,A n =32(a n -1),数列{b n }的通项公式为b n =4n +3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学压轴数列的最值题型分类专题
题型一、求数列n a 的最大项、最小项
求解数列的最大项最小项通常采用 ①利用均值不等式求最值
②解不等式组 1+≥n n a a ,1-≥n n a a ③构造函数利用单调性法
④根据数列项的正负与单调性求数列的最大最小
项.
1. 基本不等式法
例1.已知数列{}n a 的通项公式为156
2
+=
n n
a n ,,求{}的最大值n a
2.解不等式组
例1.已知数列{}n a 的通项公式为156
2
+=
n n
a n ,,求{}的最大值n a
变式练习:
(1) 已知数列}{n a 中,)2(8.0+=n a n n ,求数列的最大项.
(2)已知等差数列{}n b 的前n 项和为n T ,且15,1054≤≥T T ,求的最大值4a
(3)已知数列}{n a 中,)2(8.0+=n a n n ,求数列的最大项.
(4)已知数列}{n a 的通项公式n
n n n a 11
)
1(10+=,试求出该数列的最大项.
3.构造函数利用单调性 (若1n n a a +<,则此数列为递增数列,若1n n a a +>,则其为递减数列,若1n n a a +=,则其为常数列)
例 1 数列}{n a 中,2017
2016--=n n a n ,则该数列中的最大项与最小项分别是
__________
例2. 设函数)1x 0(log log )x (f 2x x 2<<-=数列{}n a 满足),2,1n (,n 2)2(f n
a
==
(1)求n a 。
(2)求{}n a 的最小项
变式练习: (1)已知)N n (98
n 97n a n
*∈--=则在数列{}n a 的前
30项中最大项和最小项
分别是_____。
(2) 已知)N n (n
1
31211S n *∈++++
= ,记1n 1n 2n S S a ++-=,求数列{}n a 的最小值。
(3) 已知数列)N n (156
n n a 2
n
*
∈+=
,则该数列中的最大项是第几项?
(4) 已知无穷数列{}n a 的通项公式n
n n 10)
1n (9a +=,试判断此数列是否
有最大项,若有,求出第几项最大,若没有,说明理由。
4.根据数列项的正负与单调性求数列的最大最小项.
例 1 设等差数列}{n a 的前n 项和为n S ,已知3a =12,012>S ,013<S ,试指出
n
n a S a S a S ,,,22
11 中哪一个最小?说明理由.
题型二、求n S 的最值
求解数列前n 项和主要有①单调性法②配方法③邻项比较法④二次函数图像法
结论:一般地,如果一个数列{}n a 的前n 项和为:2
,n s pn qn r =++其中:p.q.r 为常数,且p ≠0,那么这个数列一定是等差数列吗?如果是,它的首项和公差分别是什么?结论:当r=0时为等差,当r ≠0时不是
一、单调性法
例1 等差数列{}n a 中,2338a a +=-,120a =,求n S 的最小值,以及相对应的n 的值.
例2.等差数列{}n a 中, 1490,a S S >=,则n 的取值为多少时?n S 最大
二、配方法
例1 数列{}n a 是递减等差数列,且3950a a +=,57616a a =·,试求数列{}n a 前n 项和n S 的最大值,并指出对应的n 的值.
例2、在等差数列{n a }中, 4a =-14, 公差d =3, 求数列{n a }的前n 项和n S 的最小值
例3.已知a n 是等差数列,其中a 1=31,公差d=﹣8,则数列a n 前n 项和的最大值为 .
例4.在等差数列a n 中,a 1=25,S 17=S 9,求S n 的最大值.
三、邻项比较法
(1) 当1a >0,d<0时,满足1
0m m a a +≥⎧⎨≤⎩的项数m 使得m S 取最大.
(2) (2)当1a <0,d>0时,满足10
m m a a +≤⎧⎨
≥⎩的项数m 使得
取最小值。
例1.已知等差数列{}n a 中,1102029a S S ==,,问这个数列的前多少项的和最大?并求最大值.
例2:已知等差数列{a n }的a n =24-3n ,则前多少项和最大?
例3.已知等差数列{b n }的通项b n =2n-17,则前多少项和最小?
题型三、求满足数列特定条件的n 的最值
例1.已知等差数列{}n a 中,23a =,67a =,设()
1
1n n n b a a =
-,则使
12100
101
n b b b ++
+≤
成立的最大n 的值为( ) A .98
B .99
C .100
D .101
例2.设等差数列{}n a 的前n 项和为n S ,且836S S =,2121n n a a +=+,则使
12111116
n S S S ++⋯+<的最大正整数n 的值为_____.
例3.设数列{}n a 满足()*16
4
n n n a a n a +-=
∈-N ,其中11a =. (Ⅰ)证明:32n n a a ⎧⎫
-⎨⎬-⎩⎭
是等比数列;
(Ⅱ)令1
12
n n b a =-
-,设数列{}(21)n n b -⋅的前n 项和为n S ,求使2019n S <成立的最大自然数n 的值.
例4.已知递增的等比数列{}n a 满足23428a a a ++=,且32a +是2a ,4a 的等差中项.
(1)求{}n a 的通项公式; (2)若12
log n n n
b a a =,123n n S b b b b =++++求使1230n n S n ++⋅>成立的n 的最
小值.
例5.已知数列{a n }为等比数列,a 1=2,公比q>0,且a 2,6,a 3成等差数列. (Ⅰ)求数列{a n }的通项公式; (Ⅱ)设2log n n b a =,12233411111...n n n T b b b b b b b b +=
++++,求使99100
n T <的n 的最大值.
题型四、求满足条件的参数的最值
解决参数有关的最值问题,主要是分离变量,构造新的函数
1.已知递增等比数列{}n a ,11a =,且1a ,22a +,3a 成等差数列,设数列{}n b 的前n 项和为n S ,点(),n P n S 在抛物线2y
x 上.
(1)求数列{}n a ,{}n b 的通项公式; (2)设n n n
b c a =,数列{}n c 的前n 项和为n T ,若()
*
21n T a n N <-∈恒成立,求实数a 的取值范围.
例2.已知各项都是正数的数列{}n a 的前n 项和为n S ,2
1
2
n n n S a a =+
,*n N ∈. ()1求数列{}n a 的通项公式;
()2设数列{}n b 满足:11b =,()122n n n b b a n --=≥,数列1n b ⎧⎫
⎨⎬⎩⎭
的前n 项和.n T 求证:
2n T <.
()3若()4n T n λ≤+对任意*n N ∈恒成立,求λ的取值范围.。