第十二章 微生物工程生产举例
微生物工程工艺

促进剂和抑制剂:在氨基酸、抗生素和酶制剂的发酵过程中,可在发酵培养基中添加某些对发酵起一定促进或抑制作用的物质。
抗生素抑制剂作用机理:一直某些合成其他产物的途径像所需途径转化、降低产生菌的呼吸。
几种抗生素抑制剂:1、链霉素 甘露糖链霉素 甘露聚糖
2、去甲基链霉素 链霉素 乙硫氨酸
酿造酒包括哪些酒?
答:酿造酒又称发酵酒、原汁酒,是借着酵母作用,把含淀粉和糖质原料的物质进行发酵,产生酒精成分而形成酒。其生产过程包括糖化、发酵、过滤、杀菌等。
主要包括:黄酒,葡萄酒,啤酒,原浆白酒
葡萄酒,啤酒的制麦过程
答:其主要过程有原料粉碎,糖化,醪液过滤,麦汁煮沸,麦汁后处理等几个过程。
(5)其他突变型,如:营养缺陷型,药物抗性突变株,敏感型突变株等
如何筛选耐高浓度酒精的菌株
答:UV处理筛选耐高浓度酒精的菌株
微生物工程:应用微生物为工业大规模生产服务的一门工程技术,他直接建立在微生物工业基础上,随着微生物工业的发展而迅速发展,并于化学工业相结合。
微生物工程可分为发酵和提纯两部分。发酵部分即发酵工程包括菌种的选育,培养基的优化与灭菌,发酵醪的特性,发酵机理,发酵动力学,空气过滤除菌与气体交换,发酵过程控制与自动化等主要内容。
连续培养:又称连续发酵,是在一个开放的系统中进行的,以一定的速率向发酵罐内添加新的培养基,同时以相同的速度流出培养基,从而使罐内的液量维持恒定,使培养物很定的状态下生长的方法。
提高溶解氧的方法:不断通入无菌空气、搅拌
引起溶氧量异常下降的原因:1、污染好气性杂菌,大量的溶氧被消耗掉2、菌体代谢发生异常,需氧量增加3、某些设备或工艺发生故障或变化
固体发酵:指没有或几乎没有自由水存在下,在有一定湿度的水下溶性固态基质中,用一种或多种微生物的一个生物反应过程。
微生物工程与工业生产

糖化
将麦芽粉碎后,与热水混合, 在特定温度和pH值下进行糖化 反应,将淀粉转化为可发酵性 糖。
发酵
在糖化液中添加酵母,进行发 酵反应,将可发酵性糖转化为 乙醇和二氧化碳。
过滤与包装
发酵结束后,通过过滤去除酵 母和杂质,得到澄清的啤酒。 最后进行包装和杀菌处理,即
可上市销售。
案例二:抗生素生产过程剖析
智能化生产
结合人工智能和机器学习技术,实现微生物工程生产过程的智能化 控制和优化。
绿色可持续发展
注重环保和可持续发展,开发低能耗、低污染、高附加值的微生物工 程产品和技术。
05
工业生产中微生物工程实践案例
案例一:啤酒生产过程分析
原料选择与处理
选用优质大麦作为原料,经过 清洗、浸泡、发芽、干燥等工
微生物工程发展
自20世纪初以来,微生物工程经历了从经验到科学、从单一到多元的发展历程 。随着基因工程、代谢工程等技术的不断发展,微生物工程在工业生产中的应 用越来越广泛。
微生物工程应用领域
01
02
03
04
发酵工程
利用微生物进行发酵生产,如 酒精、酵母、抗生素等。
生物制药
利用微生物生产药物,如疫苗 、抗体、基因工程药物等。
菌种选育
Байду номын сангаас发酵工艺优化
通过诱变育种或基因工程手段,选育出高 产、优质、抗逆性强的抗生素生产菌种。
对发酵培养基、温度、pH值、溶氧等参数 进行优化,提高抗生素的产量和质量。
提取与精制
质量控制
采用适当的提取方法,如萃取、吸附等, 将抗生素从发酵液中分离出来。然后进行 精制处理,去除杂质,提高纯度。
建立严格的质量控制体系,对抗生素的效 价、杂质含量、微生物限度等指标进行检 测和控制,确保产品质量符合标准。
微生物工程

啤酒的发酵过程1.2.啤酒以大麦芽、酒花、水为主要原料,经酵母发酵作用酿制而成的饱含二氧化碳的低酒精度酒,是一种低浓度酒精饮料;啤酒的发酵先制备麦芽汁;在冷却的麦汁中接入酵母菌种,进行啤酒主发酵;一个星期后,发酵糖度由10到12度下降到4度左右,就可以进行发酵了。
发酵在0到2度的密闭的发酵罐中进行,经过1到3个月就成熟了。
3.啤酒的化学组成:乙醇,1浸出物,二氧化碳,挥发性成分4.啤酒重要代谢副产物的形成途径:高级醇的生成,硫化物的生成(二甲基硫对啤酒的风味有重要的影响),双乙醇的生成。
5.啤酒发酵原料:水,麦芽,辅料,酒花,6.麦汁制造:麦芽粉碎(粗细之比1:2.5),麦汁制造设备(糊化锅,糖化锅,过滤槽,麦汁煮沸锅),糖化(煮出糖化法,浸出糖化法),麦汁过滤,麦汁煮沸,麦汁预冷却和冷却,7.协定发糖化实验:1原理:利用麦汁中所含的各种酶将麦亚中的淀粉分解成可发酵性糖,蛋白质分解成氨基酸;2优质麦芽的条件:浸出物多,麦芽溶解度适当,酶活力强,质量均匀。
3,麦汁基本流程:50克麦芽 ---粉碎---加200ml 47度的水---45度保温30分钟 ---升温至70度---加100ml 70度水---测糖化时间---70度1h后,冷却---加水至450克---过滤糖化时间的测定过滤速度的测定气味的检查透明度的检查8.蛋白质凝固检查情况9.7.啤酒酵母的质量检查:基本步骤:显微形态检查,死亡率的检查,出芽率的检查,凝集性实验的实验,死亡温度检测,子囊孢子产生实验,发酵性测定10.啤酒酵母的扩大培养:实验步骤:麦汁斜面菌种---麦汁平板划线---28度 2天---镜检,单菌落接种至斜面---50ml麦汁三角瓶---20度2天,每天摇动三次---15度2天每天摇动3次---计数备用。
11.糖度的测定:利用糖锤度计12.麦汁的制备:实验步骤:麦芽用量的计算,麦芽的粉碎,糖化,麦汁过滤,麦汁煮沸13.啤酒主发酵:实验过程:麦汁10度---冷却到10度---接种---主发酵,10度---5到7天,每天测定各项指标---至4度时结束(嫩啤酒)。
举例说明微生物工程在生活中的应用

微生物工程在生活中的应用随着科技的发展和进步,微生物工程作为一门新兴的交叉学科,正在逐渐走进人们的生活并发挥着重要作用。
微生物工程是以微生物为研究对象,利用工程和技术手段对微生物进行改造和利用的一门学科。
微生物工程不仅在医学、环境保护等领域发挥作用,还在食品工业、化工行业等领域有着广泛的应用。
本文将主要介绍微生物工程在生活中的应用,并对其影响进行举例说明。
一、医学领域微生物工程在医学领域有着广泛的应用。
利用微生物工程技术可以制备抗生素、激素、疫苗等药物。
研究人员利用工程和技术手段可以改造微生物,使其生产出具有药用价值的物质,从而满足人们对药物的需求。
微生物工程还可以用于疾病的诊断和治疗,比如利用微生物工程技术可以检测和鉴定病原微生物,帮助医生进行准确的诊断。
二、食品工业微生物工程在食品工业中也发挥着重要作用。
利用微生物工程技术可以制备酵素、酸奶、酒精等食品和饮料,为人们提供了丰富多样的饮食选择。
利用微生物工程技术还可以改良食品的口感、延长食品的保鲜期,提高食品的营养价值,从而满足人们不同的饮食需求。
三、环境保护微生物工程在环境保护中也发挥着重要的作用。
利用微生物工程技术可以处理废水、废气、废土等工业废物,减少污染物的排放,保护环境。
另外,微生物工程还可以用于生物防治,例如利用微生物工程技术可以研发生物农药、生物杀虫剂等,减少化学农药对环境的污染。
四、化工行业微生物工程在化工行业中也有着重要的应用。
利用微生物工程技术可以生产酶、有机酸、生物柴油等化工产品,为工业生产提供原料和能源。
微生物工程还可以用于废弃物的处理和资源化利用,加快工业化学废物的降解,减少废物对环境的负面影响。
五、其他领域除了医学、食品工业、环境保护、化工行业,微生物工程还在许多其他领域有着重要的应用。
利用微生物工程技术可以生产生物肥料、生物能源等农业产品,提高农业生产的效率;利用微生物工程技术可以生产生物降解材料、生物塑料等生物材料,降低对化石能源的依赖,减少对环境的负面影响。
微生物工程

3 酵母菌细胞结构
4 繁殖方式
5 酵母菌与生产和生活的关系
酵母菌与人类的关系
① 酒类的生产 ② 面包的制作 ③ 乙醇甘油发酵 ④ 石油及油品脱蜡 ⑤ 饲用药用 ⑥ 单细胞蛋白生产SCP ⑦ 活性物质提取 ⑧ 微生物学研究 ⑨ 真核表达系统 ⑩ 人类疾病
(五)霉菌
1 霉菌:菌丝体发达而又不产生大型肉质 子实体的丝状真菌
细胞内存在两种S-腺苷甲硫氨酸合成酶酶
SAM1:其基因的转录在高浓度蛋氨酸存在 下受到抑制
SAM2:转录不受蛋氨酸的抑制
据此,可大大提高SAM2在DNA的拷贝, 或者
10.苹果酸脱氢酶 9.延胡索酸酶
8.琥珀酸脱氢酶
1.丙酮酸脱氢酶复合体
2.柠檬酸合成酶
3.顺乌头酸酶
4.顺乌头酸酶
5.异柠檬酸脱氢酶
代谢工程:又称代谢途径或途径工程, 是基于代谢流分析和基因重组技术改善 菌种遗传性状的一种先进技术的工程技 术。 优点:方向性强、目标明确、效率高、技 术手段先进、过程可控性和重现性好等 缺点:需要掌握相应的微生物的代谢和遗 传机理知识,以及基因操作工具。
举例:S-腺苷-L-蛋氨酸(SAM)
SAM:是甲硫氨酸 (Met)的活性形式。 在动植物体内广泛存 在,它是由底物L-甲 硫氨酸和ATP经S-腺 苷甲硫氨酸合成酶酶 促合成的。
另一方面,正因为微生物的遗传稳定性差,其遗传的保 守性低,使得微生物菌种培育相对容易得多。通过育种 工作,可大幅度地提高菌种的生产性能,其产量性状提 高幅度是高等动、植物所难以实现的。
(二)细菌
1 细菌的基本形态 ① 球形 球菌:直径
0.5×2um
② 杆形 宽×长 0.5~1×1~5um ③ 大肠杆菌:0.5×2um
《微生物工程》课件

一、课件封面《微生物工程》课件副探索微生物世界的奥秘二、目录1. 微生物工程的概述2. 微生物的分类与特性3. 微生物的生长与繁殖4. 微生物的代谢与调控5. 微生物的应用实例三、课件1. 微生物工程的概述1.1 微生物工程的定义1.2 微生物工程的发展历程1.3 微生物工程的应用领域2. 微生物的分类与特性2.1 微生物的分类2.2 细菌的特性2.3 真菌的特性2.4 病毒的特性3. 微生物的生长与繁殖3.1 微生物的生长曲线3.2 微生物的繁殖方式3.3 微生物的遗传特性4. 微生物的代谢与调控4.1 微生物的代谢途径4.2 微生物的代谢调控机制4.3 微生物的代谢工程5. 微生物的应用实例5.1 发酵工程5.2 生物制药5.3 生物净化5.4 微生物肥料5.5 微生物食品四、互动环节1. 微生物分类小游戏2. 微生物代谢调控实验3. 微生物应用案例讨论五、总结与展望1. 微生物工程的意义与价值2. 微生物工程的发展趋势3. 微生物工程的前景展望六、参考文献1. 《微生物学》2. 《微生物工程》3. 《微生物应用技术》七、致谢感谢大家对本课件的支持与鼓励,希望本课件能帮助大家更好地了解微生物工程,激发对微生物研究的兴趣。
八、答疑与反馈如有任何问题或建议,请随时与我联系,我将竭诚为您解答和修改。
九、课件设计者姓名:X单位:大学生命科学学院联系方式:X十、更新时间2024年10月1日六、微生物工程技术6.1 微生物细胞的培养技术6.2 微生物遗传转化技术6.3 微生物基因组编辑技术6.4 微生物代谢工程七、微生物工程在医药领域的应用7.1 抗生素的产生7.2 疫苗的研发7.3 基因治疗7.4 生物制药的案例分析八、微生物工程在环境领域的应用8.1 生物降解与生物修复8.2 生物传感器与生物监测8.3 微生物燃料电池8.4 微生物工程在农业与环境治理中的应用九、微生物工程在食品工业中的应用9.1 发酵技术的原理与应用9.2 乳酸菌的应用9.3 酶制剂的应用9.4 微生物工程在食品安全与质量控制中的应用十、案例研究10.1 酿酒行业的微生物工程应用10.2 酸奶制造中的微生物工程10.3 生物制药:人类健康的新希望10.4 微生物工程在环境保护中的创新实践十一、课程小测11.1 选择题11.2 判断题11.3 问答题十二、参考资料12.1 推荐阅读书目12.2 在线资源12.3 相关学术期刊十三、课程评价13.1 学生自我评价13.2 同行评价13.3 教学效果反馈十四、14.1 课程总结14.2 对未来学习的建议14.3 鼓励学生持续探索微生物工程的奥秘十五、附录15.1 微生物工程相关术语解释15.2 常见微生物图片集15.3 实验操作安全指南十六、设计者与制作日期6. 设计者:[设计者姓名]单位:[设计者单位]制作日期:[制作日期]十七、版权声明本课件内容受版权保护,未经允许不得擅自复制、传播或用于商业用途。
微生物工程利用微生物进行生物技术和工业生产

微生物工程利用微生物进行生物技术和工业生产微生物工程是一门利用微生物进行生物技术和工业生产的学科,通过对微生物的研究和利用,可以开发出广泛的应用,推动科技进步和经济发展。
本文将介绍微生物工程的概念、应用领域以及在生物技术和工业生产中的具体应用。
一、微生物工程的概念微生物工程是研究微生物在实验室和工业生产中的应用的一门学科。
它包括了对微生物生命周期、代谢机制、遗传结构等方面的研究,以及利用微生物进行生物技术和工业生产的实践应用。
微生物工程的研究和应用可以提高生产效率、减少资源消耗,对于人类社会的可持续发展起到重要作用。
二、微生物工程的应用领域微生物工程的应用范围非常广泛,涵盖了诸多领域。
以下是几个典型的应用领域:1. 生物药物制造微生物工程在生物药物制造方面发挥着重要作用。
通过对微生物的基因工程改造,可以使其产生医疗所需的蛋白质药物,如重组人胰岛素、重组抗体等。
利用微生物工程生产的生物药物具有高效、低成本和易于扩大生产规模的特点,对于满足患者需求起到了重要作用。
2. 环境修复微生物工程在环境修复领域也有广泛的应用。
微生物能够降解有机废物、净化水体、修复土壤等,通过利用微生物的降解能力,可以清除污染物质,恢复生态环境。
微生物工程在环境修复上的应用可以帮助人类减少环境污染,保护生态环境。
3. 农业生产微生物工程在农业生产中也有重要的应用。
通过利用微生物的固氮能力、产生有益物质的能力等,可以提高土壤肥力、减少农药使用、增加作物产量等。
微生物工程可以为农业生产带来更加可持续、环保的解决方案,对于解决全球粮食安全问题具有重要意义。
三、微生物工程在生物技术和工业生产中的具体应用微生物工程在生物技术和工业生产中有许多具体应用。
以下是几个常见的应用举例:1. 酶的生产微生物工程可以利用微生物生产酶类产物。
酶是一种具有催化作用的蛋白质,广泛应用于食品、制药、皮革、环保等产业。
通过优化微生物菌株、培养条件以及基因工程技术,可以提高酶的产量和活力,满足不同产业对酶类产品的需求。
微生物工程

微生物工程名词解释1生化诱导分析方法(BIA):采用测定溶源性λ噬菌体阻遏物支配下的启动子控制的转录和表达的酶活性的方法。
2诱变育种:利用若干种被称为诱变剂的物理因素和化学试剂处理微生物细胞,提高基因突变频率,在通过适当的方法获得所需要的高产优质菌种的育种方法。
3种子扩大培养:将保藏的生产菌种从斜面试管接出后,进行摇床培养及种子入罐逐级培养从而获得一定数量和质量的纯种的过程。
4前体:某些化合物被加入培养基后,能够直接在生物合成过程中结合到产物分子中去,而自身的结构并未发生太大变化,却能提高产物的产量,这类小分子物质被称为前体。
5培养基的分批灭菌:指将配制好的培养基放在发酵罐中,通入蒸汽进行灭菌的过程6絮凝:有机絮凝剂和聚丙乙烯胺,聚丙烯酸钠,聚季胺酯等中性、阴性、阳性的絮凝剂,这些高分子化合物长链的架桥作用使胶体成团聚集。
7错流过滤:切向流过滤则是指液体的流动方向是平行于膜表面的,在压力的作用下只有一部分的液体穿过滤膜进入下游,这种操作方式也有人称之为“错流过滤”(Cross Flow Filtration)。
8透析:是通过小分子经过半透膜扩散到水(或缓冲液)的原理,将小分子与生物大分子分开的一种分离纯化技术。
9 BOD5:在20℃培养5天的微生物利用有机物进行生物氧化所消耗的氧量(mg/L)10回沙:回沙”工艺是最传统的酱香工艺,回沙酒以小麦高温制曲,陈曲两次混入后,进行蒸馏取酒。
而对已取酒的酒醅仍从甑中取出,经过两次工艺处理,不加新料,经堆积,再入窖发酵一个月,又出窖蒸馏,取得第二次原酒入库,此酒即为回沙所得。
填空题:1、一般生产用菌种的分离纯化和筛选步骤是标本采集、标本材料的预处理、富集培养、菌种初筛、菌种复筛、性质鉴定、菌种保藏。
2、采集的到的含微生物材料的标本在分离提纯前,要进行预处理,通常可以采用加热、空气搅拌、离心法、膜过滤、这几种物理方法。
3、在分离放线菌和细菌时,可在分离培养基中加入抗真菌抗生素,分离真菌时,可加入抗细菌抗生素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、抗生素的分类
按生物来源、作用、化学结构、作用机制、合 成途径可分为:表22-1
二、抗生素生产工艺
生产方法:
1、生物合成法: ①传统方法 ② “工程菌”制造法 ③细胞融合技术法
2、化学合成法; 3、生物合成加化学合成法。
二、抗生素生产工艺
1、生物合成法: ①传统方法 大多数抗生素是由放线菌和霉菌产生的。菌
种是通过从土壤中分离、筛选获得,一般采用深 层通风搅拌发酵罐生产。
传统方法目前存在很多不足,因此,人们采 用基因工程和细胞融合技术,对抗生素产生菌进 行了改造和重新设计,不仅可以制造出许多高效 低毒的新型抗生素,还可改革工艺,使抗生素产 量成倍地增长。
第十二章 微生物工程 生产举例
提纲
第一节 抗生素生产工艺 第二节 氨基酸生产工艺 第三节 柠檬酸生产工艺 第四节 污水的生物处理
第一节 抗生素生产工艺
重点:抗生素的生物合成;微生物的次级
代谢与初级代谢的关系;抗生素生物合 成的代谢调节机制;细胞生长期到抗生 素产生期的过渡;酶的诱导作用;分解 代谢产物的调节控制;
二、抗生素生产工艺
1、生物合成法: ③细胞融合技术法
对抗生素产生菌采用细胞融合技术的成果更 为突出。橄榄色无孢小单孢菌细胞融合株抗生素 产率比原菌株提高100倍。
目前DNA重组技术已广泛用于红霉素、链霉 素等20多种抗生素的育种工作,可以预见不久将 来会有更多的由“工程菌”生产的新型抗生素问
世。
二、抗生素生产工艺
2、化学合成法 根据某种抗生素的化学组成和结构,
通过化学合成的方法,可生产部分抗生素。 如:氯霉素、磷霉素等。 经过化学合成方法和控制条件的不断
深入研究,越来越多的抗生素可用化学合 成法生产。
二、抗生素生产工艺
3、生物合成加化学合成法
许多细菌逐渐出现了抗药性,已经证实某些抗药性 因子位于细菌内的质粒上,质粒可以在细菌之间转移, 结果抗性菌日益增多,抗生素疗效就越来越低。
三、青霉素生产工艺
4、青霉素的分离纯化 过滤:板框、真空转鼓; 萃取:醋酸丁脂,2-3次; 脱色:活性碳,150-200g/10亿单位; 结晶:浓缩结晶或直接结晶; 洗涤 干燥
第二节 氨基酸生产工艺
一、氨基酸生产工艺控制 二、氨基酸生产工艺 三、异亮氨酸、亮氨酸生产工艺
概述
氨基酸可用作食品、饲料添加剂和药物。过去都采用 动植物蛋白提取和化学合成法生产,现18种氨基酸均可 采用发酵法和酶法生产,不仅成本下降、污染减少,还 可组织大量生产,世界产量每年递增5%~10%。
为了对付细菌的抗药性,科学家对原有的抗生素进 行了“整容手术”,细菌因再无法识别改头换面的抗生
素而 被抑制或杀死。
现在已能使用克隆了酰化酶基因的“工程菌”(大肠 杆 菌)高效率的生产半合成抗生素。临床现在使用的贵重 特效药物先锋霉素(头孢菌素类)、氨苄青霉素,就是 这类半合成抗生素类药物。国外已有几十种这类药物在 实验室研制成功。
三、青霉素生产工艺
3、发酵条件控制 补糖:残糖降至0.6%(PH上升); 补氮:氨氮0.05%,补硫铵、氨水或尿素;
PH:6.4—6.6,加糖、加酸、加碱调节; 温度:前期,25-26℃;后期, 23℃; 通气比:1:0.8; 溶氧:﹥氧饱和溶解度的30%; 消沫剂:玉米油、豆油或化学合成消沫剂。
难点:抗生素生物合成的代谢调节机制;
分解代谢产物的调节控制。
概述
抗生素是微生物产生的具有生物活性的物质,它 不但可以抑制其他微生物的发育与代谢,有的还可以抑 制癌的发育与代谢,以及具有抗血纤维蛋白溶酶作用。
抗生素是人们使用最多的药物,也是制药工业中利 润最高的产品。世界各国由发酵法生产的抗生素约400 种,广泛应用的仅120种,其他主要是毒性大、成本 高,无商业应用价值。
工业上重要氨基酸简介
一、氨基酸生产工艺控制
1、菌种:细菌,野生型或营养缺陷型、结 构类似物突变菌种;
2、培养基: 碳源:淀粉水解糖、糖蜜等; 氮源:铵盐、氨水或尿素,豆饼、麸皮粉; 无机盐:S、P、Ga、Mg、K等; 生物素:影响细胞膜透性,对氨基酸分泌影 响很大,来源:玉米浆、麸皮、糖蜜。
一、氨基酸生产工艺控制
3、发酵条件控制 PH:通过流加氨水或尿素来控制; 温度:菌体生长和产物形成最适温度
不同,并随菌种不同而异;
溶氧:不同氨基酸发酵有不同要求; 消沫剂:玉米油、豆油或化学合成消沫剂。
一、氨基酸生产工艺控制
4、氨基酸分离纯化 过滤:板框; 提取:等电点沉淀; 脱色:活性碳,(过滤除活性碳); 精制:离子交换或重结晶法。
三、青霉素生产工艺
三、青霉素生产工艺
三、青霉素生产工艺
1、菌种:产黄青霉 生长发育分六个阶段: Ⅰ—Ⅳ期:菌丝生长期,适宜做种子; Ⅳ—Ⅴ期:青霉素分泌期; Ⅵ期:菌丝体自溶期。
三、青霉素生产工艺
2、培养基: 碳源:乳糖、蔗糖、葡萄糖等; 氮源:玉米浆、麸皮粉、无机氮源; 前体:苯乙酸或苯乙酰胺;(一次﹤0.1%) 无机盐:S、P、Ga、Mg、K等。 铁离子有害, 控制在﹤30µg/ml。
二、抗生素生产工艺
1、生物合成法: ② “工程菌”制造法
第一次由“工程菌”制造的全新抗生素—麦迪紫红 素 A,是美国报道的。他们将产放线紫红素的部分基因插入 产麦迪霉素的放线菌中,构建的“工程菌”产生了全新 的抗生素。
我国新构建的生产丁胺卡那霉素的“工程菌”,就 是把 酰化酶基因克隆到卡那霉素产生菌中获得的。采用新的 “工程菌”生产,避免了现国外通用的使用有毒光气生 产的 办法,新抗生素毒副作用小,对耐卡那霉素、庆大霉素
在氨基酸产生菌选育中,过去多采用诱变育种方法, 诱变结果不易控制,现采用基因工程和细胞融合技术, 产量可成倍、甚至几十倍增加,生产成本大大下降。
如用基因重组构建的苏氨酸、色氨酸“工程菌”,比 原 始菌株提高产量几十倍(产酸达50~60克/升),色氨酸 成本从每公斤50美元降到23美元。用细胞融合构建的精 氨酸融合株,精氨酸产量达108克/升,比其他生产菌株 高2倍多。