各种仪器分析的基本原理
各种仪器分析的基本原理

各种仪器分析的基本原理仪器分析的基本原理主要涉及到不同类型仪器的工作原理和分析原理。
以下是一些常见仪器的基本原理:1.光谱仪器光谱仪器包括紫外可见光谱仪、红外光谱仪、质谱仪等。
其基本原理是测量样品对不同波长的光的吸收、发射或散射。
通过样品吸收、发射或散射光的特征,可以推断样品的组成、结构和浓度等信息。
2.色谱仪器色谱仪器包括气相色谱仪(GC)、液相色谱仪(HPLC)、离子色谱仪(IC)等。
其基本原理是在不同相的载体(固定相)上,利用样品分子在移动相中的不同分配、吸附、离子交换等特性,在固定相和移动相之间进行分离和分析。
3.质谱仪器质谱仪器是一种通过离子化技术对化学物质进行分析的仪器。
其基本原理是将样品中的分子或原子通过电离过程转变为带电的离子,然后通过质谱仪中不同电场、磁场等设备进行分析和检测。
4.电化学仪器电化学仪器包括电位计、电导仪、电解池等。
其基本原理是利用电化学反应来分析和测试样品中的化学物质。
常用电化学仪器有电化学分析技术、电化学平衡技术等。
5.核磁共振仪器核磁共振仪器通过检测和分析化学物质中原子核的行为来获得样品结构和性质的信息。
其基本原理是通过外加磁场和射频脉冲来激发和探测样品中的核磁共振信号,从而得到样品的谱图和数据。
6.能谱仪器能谱仪器是以能量测量为基础的一类仪器,包括γ射线仪、X射线仪、电子显微镜等。
其基本原理是通过测量材料与射线相互作用后所产生的能量变化来分析和测量样品的成分、形态和结构等。
7.热分析仪器热分析仪器主要有差示扫描量热仪(DSC)、示差热分析仪(DTA)、热重分析仪(TGA)等。
其基本原理是通过样品在不同温度下吸热、放热或失重的行为,来分析材料的性质、热稳定性和热分解特性。
8.电子显微镜电子显微镜是一种使用电子束替代可见光进行成像的仪器。
其基本原理是通过加速电子并聚焦形成电子束,然后在样品表面扫描,通过与样品相互作用所产生的信号来生成图像。
电子显微镜主要包括透射电子显微镜(TEM)和扫描电子显微镜(SEM)。
仪器分析的原理范文

仪器分析的原理范文仪器分析是一种利用各种物理、化学或生物原理和技术手段对物质进行定性或定量分析的方法。
下面,我会简要介绍几种常见的仪器分析原理。
1.光谱分析原理光谱分析利用物质与光的相互作用来进行定性和定量分析。
常见的光谱分析方法包括紫外可见光谱分析、红外光谱分析和拉曼光谱分析等。
这些方法根据物质不同的吸收、发射或散射光的特性来确定物质的成分或浓度。
2.质谱分析原理质谱分析是一种利用质谱仪来分析物质的化学成分和结构的方法。
它通过将样品离子化并通过磁场或电场将其分离,然后测量样品离子的质荷比来确定样品的成分和结构。
质谱分析广泛应用于无机分析、有机分析、生物分析和环境分析等领域。
3.色谱分析原理色谱分析是一种利用固态或液态材料对物质进行分离和分析的方法。
常见的色谱分析方法有气相色谱、液相色谱和层析色谱等。
这些方法根据样品在固定相或液相中的相互作用差异来分离物质,然后根据分离出来的物质的不同特性进行定性和定量分析。
4.电化学分析原理电化学分析是一种利用电性质来进行定性和定量分析的方法。
常见的电化学分析方法包括电位滴定、极谱分析和电化学传感器等。
这些方法基于样品在电极表面的电化学反应来确定样品的成分和浓度。
5.核磁共振分析原理核磁共振分析是一种利用样品中核自旋的性质来进行分析的方法。
核磁共振分析常用于确定样品的结构、测量样品中不同核自旋的含量和动力学研究等。
核磁共振分析依赖于样品中核自旋与外加磁场相互作用的性质。
6.质量分析原理质量分析是一种利用质量分析仪器对粒子、分子或离子的质量进行分析的方法。
质量分析常用于确定样品中不同化学元素或化合物的质量以及分析样品中的碳同位素比例、氢同位素比例等。
质量分析基于样品中质谱离子质量和质量荷比的性质来确定样品的成分和浓度。
总之,仪器分析方法的原理主要依赖于物质与特定性质(如光、质量、电性等)的相互作用,通过测量这些相互作用的特性来确定样品的成分和浓度。
这些原理为我们提供了广泛、灵敏和准确分析样品的手段,广泛应用于科学研究、工业生产和环境监测等领域。
仪器分析 知识点总结

仪器分析知识点总结一、基本原理1. 仪器分析的基本原理仪器分析是通过利用物理、化学、生物等现代科学技术的原理,将样品中所含的各种化学成分,或隐性特征转化为测定结果的工作过程。
其基本原理是将样品与仪器设备相结合,通过检测样品的光学、电学、热学、声学等性质,从而分析出样品中所含的成分、结构和性质。
2. 仪器分析的应用范围仪器分析广泛应用于生产、科研、医疗、环保、食品安全等领域。
在食品安全领域,通过仪器分析可以检测食品中的化学污染物、毒素、添加剂等,确保食品安全。
在医疗领域,可以使用仪器分析对生物样品进行分析,诊断疾病。
在环保领域,可以利用仪器分析监测环境中的污染物含量,保护环境。
二、常见的仪器设备1. 红外光谱仪红外光谱仪是一种分析化学仪器,主要用于分析样品的结构和成分。
其原理是通过测量样品对红外辐射的吸收情况,从而对样品进行分析。
红外光谱仪可以用于有机物、无机物、生物大分子等样品的分析,广泛应用于化学、医学、生物等领域。
2. 质谱仪质谱仪是一种高灵敏度、高分辨率的分析仪器,可以用于分析样品中的各种化合物和元素。
其原理是通过对样品离子化、分子裂解和质谱分析,从而获得样品的成分和结构信息。
质谱仪广泛应用于化学、生物、环境等领域,可以用于检测样品中的有机物、无机物、生物大分子等。
3. 气相色谱仪气相色谱仪是一种用于分离和分析样品中化合物的仪器设备。
其原理是通过气相色谱柱对样品中的化合物进行分离,再通过检测器对分离后的化合物进行检测。
气相色谱仪可以用于分析样品中的有机物、小分子有机化合物、环境中的污染物等,是化学、环境等领域中常用的仪器设备。
4. 离子色谱仪离子色谱仪是一种用于离子分析的仪器设备,主要用于分析水样中的离子成分和浓度。
其原理是通过离子交换柱对水样中的离子进行分离,再通过检测器对分离后的离子进行检测。
离子色谱仪广泛应用于环境、食品安全、医疗等领域,可以对水样中的无机离子、有机离子进行分析。
三、样品处理技术1. 样品前处理样品前处理是仪器分析中一个重要的环节,其目的是提高仪器分析的准确度和可靠性。
仪器分析方法的原理及应用

仪器分析方法的原理及应用1. 仪器分析方法简介仪器分析是一种利用仪器设备进行化学分析的方法,与传统的化学分析方法相比,仪器分析具有快速、准确、灵敏和自动化等特点。
仪器分析方法广泛应用于各个领域,包括环境监测、医药研发、食品安全、材料分析等。
2. 仪器分析的原理仪器分析的原理基于物质的性质与测量信号的相关性。
常见的仪器分析方法包括光谱分析、电化学分析、质谱分析等。
2.1 光谱分析原理光谱分析是利用物质对特定波长的光的吸收、发射或散射现象进行分析的方法。
它基于物质与光的相互作用的特性,通过测量光的强度变化来推断样品中物质的含量或性质。
常见的光谱分析方法包括紫外可见光谱、红外光谱、拉曼光谱、荧光光谱等。
这些方法在不同波长范围内对样品进行激发或检测,通过测量不同波长的光信号来获取样品的信息。
2.2 电化学分析原理电化学分析是利用电化学方法进行分析的一种手段。
它基于物质在电场或电流作用下的电化学反应,通过测量电流、电压等电学信号来分析样品的组成和性质。
常见的电化学分析方法包括电解析、电位法、极谱法等。
这些方法通过测量电化学反应产生的电信号来确定样品中某种物质的含量、反应速率等信息。
2.3 质谱分析原理质谱分析是利用质谱仪对样品中不同离子的质量-电荷比进行分析的方法。
它基于物质在电磁场中消耗或释放能量的特性,通过测量样品中离子的质量-电荷比来分析样品的组成和结构。
质谱分析方法包括质谱仪、质谱质点法、质谱图谱法等。
这些方法通过将样品原子或分子离子化后,利用电场、磁场或进一步的离子反应分析样品成分。
3. 仪器分析方法的应用仪器分析方法在不同领域都有广泛的应用,下面列举了一些典型应用场景:•环境监测:利用光谱分析、电化学分析等方法,监测空气、水体、土壤等环境中污染物的含量,以及有害物质的来源和分布情况。
•医药研发:利用质谱分析、光谱分析等方法,对药物、活性成分进行结构分析和含量测定,以提高药物的疗效和稳定性。
•食品安全:利用光谱分析、电化学分析等方法,对食品中的添加剂、农残、重金属等进行检测,保障食品的安全和品质。
仪器分析知识点总结大全

仪器分析知识点总结大全仪器分析是化学分析的重要分支,它利用特殊的仪器对物质进行定性、定量和结构分析。
以下是对常见仪器分析方法的知识点总结。
一、光学分析法(一)原子吸收光谱法(AAS)原子吸收光谱法是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量的一种方法。
其原理是:当光源发射的某一特征波长的辐射通过原子蒸气时,被原子中的外层电子选择性地吸收,使透过原子蒸气的入射辐射强度减弱,其减弱程度与蒸气相中该元素的原子浓度成正比。
原子吸收光谱仪主要由光源、原子化器、分光系统和检测系统组成。
优点:选择性好、灵敏度高、分析范围广、精密度好。
局限性:多元素同时测定有困难、对复杂样品分析干扰较严重。
(二)原子发射光谱法(AES)原子发射光谱法是依据原子或离子在一定条件下受激而发射出特征光谱来进行元素定性和定量分析的方法。
原理是:当原子或离子受到热能或电能激发时,核外电子会从基态跃迁到激发态,处于激发态的电子不稳定,会迅速返回基态,并以光的形式释放出能量,产生发射光谱。
其仪器包括激发光源、分光系统和检测系统。
优点:可同时测定多种元素、分析速度快、选择性好。
缺点:精密度较差、检测限较高。
(三)紫外可见分光光度法(UVVis)该方法是基于分子的紫外可见吸收光谱进行分析的。
原理是:分子中的价电子在不同能级之间跃迁,吸收特定波长的光,从而产生吸收光谱。
仪器主要由光源、单色器、吸收池、检测器和信号显示系统组成。
应用广泛,可用于定量分析、定性分析以及化合物结构研究。
(四)红外吸收光谱法(IR)红外吸收光谱法是利用物质对红外光区电磁辐射的选择性吸收来进行结构分析和定量分析的一种方法。
原理是:分子的振动和转动能级跃迁产生红外吸收。
仪器包括红外光源、样品室、单色器、检测器和记录仪。
常用于有机化合物的结构鉴定。
二、电化学分析法(一)电位分析法通过测量电极电位来确定物质浓度的方法。
包括直接电位法和电位滴定法。
各种仪器分析的谱图数据的坐标表示

作业五:各种仪器分析的基本原理及谱图表示方法 紫外吸收光谱 UV分析原理:吸收紫外光能量,引起分子中电子能级的跃迁谱图的表示方法:相对吸收光能量随吸收光波长的变化提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息荧光光谱法 FS分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光 谱图的表示方法:发射的荧光能量随光波长的变化提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息 200300400500600700800900nm标1(EM)0100020003000红外吸收光谱法 IR分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁谱图的表示方法:相对透射光能量随透射光频率变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率拉曼光谱法 Ram分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射谱图的表示方法:散射光能量随拉曼位移的变化提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率核磁共振波谱法 NMR分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁谱图的表示方法:吸收光能量随化学位移的变化提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息质谱分析法 MS分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息气相色谱法 GC分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离谱图的表示方法:柱后流出物浓度随保留值的变化提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关热重法 TG分析原理:在控温环境中,样品重量随温度或时间变化谱图的表示方法:样品的重量分数随温度或时间的变化曲线提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区热差分析 DTA分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化谱图的表示方法:温差随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息示差扫描量热分析 DSC分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线提供的信息:提供聚合物热转变温度及各种热效应的信息。
仪器分析与总结

仪器分析与总结分析仪器与总结仪器分析是一种通过仪器设备对物质进行测试和分析,获取精确数据和结果的方法。
其广泛应用于科研实验室、工业生产和环境监测等领域。
本文将对仪器分析的原理、分类和应用进行详细的分析,并总结其优缺点及发展趋势。
一、仪器分析的原理仪器分析的原理是基于物质与电磁辐射、粒子束、声波等相互作用的基础上进行分析。
具体而言,仪器分析分为光学分析、电化学分析、质谱分析、核磁共振分析和热分析等多种方法。
这些方法通过测量样品与仪器之间的响应信号,来推断样品的组成、结构和性质。
光学分析是利用光的吸收、散射、发射和干涉等现象对样品进行分析的方法。
其中,常用的方法有紫外可见分光光度法、荧光法和原子吸收光谱法。
电化学分析是通过样品与电极之间的电荷转移过程进行分析的方法,其中常见的有电位滴定法、电位荧光法和电解析光波法。
质谱分析是通过测量样品中离子的质量-电荷比来分析样品的成分和结构,其中常见的有质谱法和电离质谱法。
核磁共振分析是通过测量样品中核自旋的频率来分析样品的结构和性质,其中常见的有核磁共振光谱法和电子顺磁共振法。
热分析是通过测量样品在一定条件下的物理和化学变化来分析样品的成分和性质,其中常见的有差示热分析法和热重分析法。
二、仪器分析的分类根据仪器的特点和应用范围,仪器分析可分为定性分析和定量分析。
定性分析是通过测量样品的响应信号来确定样品中存在的成分和结构的方法。
定性分析常用于物质的鉴定和鉴别。
例如,通过光谱法可以确定物质的吸收或发射峰,从而判断物质的种类和结构。
定量分析是通过测量样品的响应信号来确定样品中成分的含量和浓度的方法。
定量分析常用于物质的含量测定和质量控制。
例如,通过光度法可以测定物质的吸光度,从而计算出物质的浓度。
三、仪器分析的应用仪器分析广泛应用于科研实验室、工业生产和环境监测等领域。
其应用范围涉及医药、化工、冶金、环保、食品、农业等多个行业。
在医药领域,仪器分析可用于药物的研发、质量控制和药物代谢的研究等。
仪器分析的原理

仪器分析的原理仪器分析是一种广泛应用于科学研究、工业生产和环境监测等领域的分析技术。
它通过使用各种仪器设备,利用物质的物理、化学性质和相互作用来定量或定性分析样品的成分和性质。
在仪器分析中,有多种原理被应用,下面将逐一介绍其中几种常见的原理。
1. 光谱分析原理:光谱分析是利用物质对光的吸收、发射或散射而进行分析的方法。
常见的光谱分析技术包括紫外可见光谱、红外光谱、质谱等。
光谱分析原理基于不同物质吸收或发射光的特征,通过测量样品与光源的相互作用,从而推断出样品的成分和浓度。
2. 色谱分析原理:色谱分析是利用物质在固定相和流动相中不同的分配或吸附性质进行分离分析的方法。
常见的色谱分析技术包括气相色谱、液相色谱等。
色谱分析原理基于样品成分在不同相中的携带速度差异,通过测量携带速度,从而实现对样品进行定性和定量分析。
3. 电化学分析原理:电化学分析是利用物质在电极上与电流或电势的关系进行分析的方法。
常见的电化学分析技术包括电解法、电沉积法、电化学阻抗谱等。
电化学分析原理基于物质在电场或电流的作用下,引起电势变化或电流变化,通过测量这些变化来推断样品的性质和浓度。
4. 质谱分析原理:质谱分析是利用物质在质谱仪中通过分子碎片的质量-电荷比进行分析的方法。
常见的质谱分析技术包括质谱质量分析、质谱图谱等。
质谱分析原理基于样品分子在高能状态下发生断裂,形成一系列碎片离子,根据这些离子的质量-电荷比进行分析。
5. 核磁共振分析原理:核磁共振分析是利用核自旋在外加磁场和射频电磁场的作用下发生共振而进行分析的方法。
常见的核磁共振分析技术包括核磁共振成像、核磁共振波谱等。
核磁共振分析原理基于不同核自旋在不同磁场中的共振频率差异,通过测量共振信号来推断样品的成分和分子结构。
综上所述,仪器分析的原理涵盖了光谱分析、色谱分析、电化学分析、质谱分析和核磁共振分析等多个领域,每种原理都有其独特的应用和优势。
仪器分析通过高效、准确的手段提供了快速分析样品成分和性质的方法,为科学研究和生产工作提供了重要的技术支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
紫外吸收光谱UV
分析原理:吸收紫外光能量,引起分子中电子能级的跃迁
谱图的表示方法:相对吸收光能量随吸收光波长的变化
提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息
荧光光谱法FS
分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光
谱图的表示方法:发射的荧光能量随光波长的变化
提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息
红外吸收光谱法IR
分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁
谱图的表示方法:相对透射光能量随透射光频率变化
提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率
拉曼光谱法Ram
分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射
谱图的表示方法:散射光能量随拉曼位移的变化
提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率
核磁共振波谱法NMR
分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁
谱图的表示方法:吸收光能量随化学位移的变化
提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息
电子顺磁共振波谱法ESR
分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁
谱图的表示方法:吸收光能量或微分能量随磁场强度变化
提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息质谱分析法MS
分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离
谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化
提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息
气相色谱法GC
分析原理:样品中各组分在流动相和固定相之间,由于分配系数不同而分离
谱图的表示方法:柱后流出物浓度随保留值的变化
提供的信息:峰的保留值与组分热力学参数有关,是定性依据;峰面积与组分含量有关
反气相色谱法IGC
分析原理:探针分子保留值的变化取决于它和作为固定相的聚合物样品之间的相互作用力
谱图的表示方法:探针分子比保留体积的对数值随柱温倒数的变化曲线
提供的信息:探针分子保留值与温度的关系提供聚合物的热力学参数
裂解气相色谱法PGC
分析原理:高分子材料在一定条件下瞬间裂解,可获得具有一定特征的碎片
谱图的表示方法:柱后流出物浓度随保留值的变化
提供的信息:谱图的指纹性或特征碎片峰,表征聚合物的化学结构和几何构型
凝胶色谱法GPC
分析原理:样品通过凝胶柱时,按分子的流体力学体积不同进行分离,大分子先流出
谱图的表示方法:柱后流出物浓度随保留值的变化
提供的信息:高聚物的平均分子量及其分布
热重法TG
分析原理:在控温环境中,样品重量随温度或时间变化
谱图的表示方法:样品的重量分数随温度或时间的变化曲线
提供的信息:曲线陡降处为样品失重区,平台区为样品的热稳定区
热差分析DTA
分析原理:样品与参比物处于同一控温环境中,由于二者导热系数不同产生温差,记录温度随环境温度或时间的变化谱图的表示方法:温差随环境温度或时间的变化曲线
提供的信息:提供聚合物热转变温度及各种热效应的信息
示差扫描量热分析DSC
分析原理:样品与参比物处于同一控温环境中,记录维持温差为零时,所需能量随环境温度或时间的变化
谱图的表示方法:热量或其变化率随环境温度或时间的变化曲线
提供的信息:提供聚合物热转变温度及各种热效应的信息
静态热―力分析TMA
分析原理:样品在恒力作用下产生的形变随温度或时间变化
谱图的表示方法:样品形变值随温度或时间变化曲线
提供的信息:热转变温度和力学状态
动态热―力分析DMA
分析原理:样品在周期性变化的外力作用下产生的形变随温度的变化
谱图的表示方法:模量或tgδ随温度变化曲线
提供的信息:热转变温度模量和tgδ
透射电子显微术TEM
分析原理:高能电子束穿透试样时发生散射、吸收、干涉和衍射,使得在相平面形成衬度,显示出图象
谱图的表示方法:质厚衬度象、明场衍衬象、暗场衍衬象、晶格条纹象、和分子象
提供的信息:晶体形貌、分子量分布、微孔尺寸分布、多相结构和晶格与缺陷等
扫描电子显微术SEM
分析原理:用电子技术检测高能电子束与样品作用时产生二次电子、背散射电子、吸收电子、X射线等并放大成象
谱图的表示方法:背散射象、二次电子象、吸收电流象、元素的线分布和面分布等
提供的信息:断口形貌、表面显微结构、薄膜内部的显微结构、微区元素分析与定量元素分析等
原子吸收AAS
原理:通过原子化器将待测试样原子化,待测原子吸收待测元素空心阴极灯的光,从而使用检测器检测到的能量变低,从而得到吸光度。
吸光度与待测元素的浓度成正比。
(Inductive coupling high frequency plasma)电感耦合高频等离子体ICP
原理:利用氩等离子体产生的高温使用试样完全分解形成激发态的原子和离子,由于激发态的原子和离子不稳定,外层电子会从激发态向低的能级跃迁,因此发射出特征的谱线。
通过光栅等分光后,利用检测器检测特定波长的强度,光的强度与待测元素浓度成正比。
X-ray diffraction ,x射线衍射即XRD
X射线是原子内层电子在高速运动电子的轰击下跃迁而产生的光辐射,主要有连续X射线和特征X射线两种。
晶体可被用作X光的光栅,这些很大数目的原子或离子/分子所产生的相干散射将会发生光的干涉作用,从而影响散射的X射线的强度增强或减弱。
由于大量原子散射波的叠加,互相干涉而产生最大强度的光束称为X射线的衍射线。
满足衍射条件,可应用布拉格公式:2dsinθ=λ
应用已知波长的X射线来测量θ角,从而计算出晶面间距d,这是用于X射线结构分析;另一个是应用已知d的晶体来测量θ角,从而计算出特征X射线的波长,进而可在已有资料查出试样中所含的元素。
高效毛细管电泳(high performance capillary electrophoresis,HPCE)
CZE的基本原理
HPLC选用的毛细管一般内径约为50μm(20~200μm),外径为375μm,有效长度为50cm(7~100cm)。
毛细管
两端分别浸入两分开的缓冲液中,同时两缓冲液中分别插入连有高压电源的电极,该电压使得分析样品沿毛细管迁移,当分离样品通过检测器时,可对样品进行分析处理。
HPLC进样一般采用电动力学进样(低电压)或流体力学进样(压力或抽吸)两种方式。
在毛细管电泳系统中,带电溶质在电场作用下发生定向迁移,其表观迁移速度是溶质迁移速度与溶液电渗流速度的矢量和。
所谓电渗是指在高电压作用下,双电层中的水合阴离子引起流体整体地朝负极方向移动的现象;电泳是指在电解质溶液中,带电粒子在电场作用下,以不同的速度向其所带电荷相反方向迁移的现象。
溶质的迁移速度由其所带电荷数和分子量大小决定,另外还受缓冲液的组成、性质、pH值等多种因素影响。
带正电荷的组份沿毛细管壁形成有机双层向负极移动,带负电荷的组分被分配至毛细管近中区域,在电场作用下向正极移动。
与此同时,缓冲液的电渗流向负极移动,其作用超过电泳,最终导致带正电荷、中性电荷、负电荷的组份依次通过检测器。
MECC的基本原理
MECC是在CZE基础上使用表面活性剂来充当胶束相,以胶束增溶作为分配原理,溶质在水相、胶束相中的分配系数不同,在电场作用下,毛细管中溶液的电渗流和胶束的电泳,使胶束和水相有不同的迁移速度,同时待分离物质在水相和胶束相中被多次分配,在电渗流和这种分配过程的双重作用下得以分离。
MECC是电泳技术与色谱法的结合,适合同时分离分析中性和带电的样品分子。
扫描隧道显微镜(STM)
扫描隧道显微镜(STM)的基本原理是利用量子理论中的隧道效应。
将原子线度的极细探针和被研究物质的表面作为两个电极,当样品与针尖的距离非常接近时(通常小于1nm),在外加电场的作用下,电子会穿过两个电极之间的势垒流向另一电极。
这种现象即是隧道效应。
原子力显微镜(Atomic Force Microscopy ,简称AFM)
原子力显微镜的工作原理就是将探针装在一弹性微悬臂的一端,微悬臂的另一端固定,当探针在样品表面扫描时,探针与样品表面原子间的排斥力会使得微悬臂轻微变形,这样,微悬臂的轻微变形就可以作为探针和样品间排斥力的直接量度。
一束激光经微悬臂的背面反射到光电检测器,可以精确测量微悬臂的微小变形,这样就实现了通过检测样品与探针之间的原子排斥力来反映样品表面形貌和其他表面结构。
俄歇电子能谱学(Auger electron spectroscopy),简称AES
俄歇电子能谱基本原理:入射电子束和物质作用,可以激发出原子的内层电子。
外层电子向内层跃迁过程中所释放的能量,可能以X光的形式放出,即产生特征X射线,也可能又使核外另一电子激发成为自由电子,这种自由电子就是俄歇电子。
对于一个原子来说,激发态原子在释放能量时只能进行一种发射:特征X射线或俄歇电子。
原子序数大的元素,特征X射线的发射几率较大,原子序数小的元素,俄歇电子发射几率较大,当原子序数为33时,两种发射几率大致相等。
因此,俄歇电子能谱适用于轻元素的分析。