电力系统自动化的应用及发展趋势
电力系统自动化发展历程及趋势

电力系统自动化发展历程及趋势引言概述:电力系统自动化是指利用先进的信息技术和通信技术,对电力系统进行监控、控制和管理的一种技术手段。
随着科技的不断发展,电力系统自动化在过去几十年中取得了巨大的进步。
本文将从五个方面详细阐述电力系统自动化的发展历程及趋势。
一、传统电力系统的自动化1.1 自动化的概念和意义传统电力系统的自动化是指利用自动化技术对电力系统的运行过程进行监控和控制,提高电力系统的效率和可靠性。
1.2 自动化的关键技术传统电力系统的自动化主要依靠计算机、通信和控制技术。
其中,计算机技术用于数据处理和算法运行,通信技术用于数据传输和远程控制,控制技术用于电力系统的实时控制和优化。
1.3 自动化的应用领域传统电力系统的自动化应用广泛,包括电力生产、输电、配电和用户侧的自动化控制。
二、智能电网的发展2.1 智能电网的概念和特点智能电网是利用先进的传感器、通信和控制技术实现电力系统的智能化管理和运行的一种新型电力系统。
它具有高度自动化、可靠性强和能源效率高等特点。
2.2 智能电网的关键技术智能电网的关键技术包括智能传感器、智能计量、智能监控和智能控制等。
这些技术可以实现电力系统的实时监测、故障诊断和优化控制。
2.3 智能电网的应用前景智能电网的应用前景广阔,可以提高电力系统的可靠性和安全性,降低能源消耗和环境污染,促进能源的可持续发展。
三、可再生能源的接入与管理3.1 可再生能源的接入问题随着可再生能源的快速发展,电力系统面临着可再生能源的大规模接入问题。
如何合理安排可再生能源的发电计划,确保电力系统的稳定运行成为一个重要的问题。
3.2 可再生能源的管理技术可再生能源的管理技术主要包括预测和调度技术。
预测技术可以准确预测可再生能源的发电量,调度技术可以合理安排可再生能源的发电计划。
3.3 可再生能源的管理挑战可再生能源的管理面临着不确定性和波动性的挑战。
如何有效应对可再生能源的波动性,提高电力系统的稳定性和可靠性是一个亟待解决的问题。
电力系统自动化

电力系统自动化标题:电力系统自动化引言概述:电力系统自动化是指利用先进的信息技术、通信技术和控制技术,对电力系统进行智能化管理和控制,以提高电网的可靠性、安全性和经济性。
随着科技的不断发展,电力系统自动化在电力行业中扮演着越来越重要的角色。
一、智能电网技术的发展1.1 传感器技术的应用:传感器技术的发展使得电力系统能够实时监测电网的状态和负载情况,提高了电网的安全性和可靠性。
1.2 云计算技术的应用:云计算技术使得电力系统能够实现大规模数据的存储和处理,为电网运行提供了更多的数据支持和分析能力。
1.3 人工智能技术的应用:人工智能技术的引入使得电力系统能够实现智能化的决策和控制,提高了电网的运行效率和响应速度。
二、电力系统自动化的优势2.1 提高电网的可靠性:电力系统自动化使得电网能够实现智能化的监测和控制,及时发现和处理故障,提高了电网的可靠性。
2.2 提高电网的安全性:电力系统自动化能够实现对电网的实时监测和预警,及时发现潜在的安全隐患,保障电网的安全运行。
2.3 提高电网的经济性:电力系统自动化能够实现电网的智能化管理和优化调度,降低了电网运行的成本,提高了电网的经济性。
三、电力系统自动化的应用领域3.1 输电线路监测:利用传感器技术对输电线路进行实时监测,提高了输电线路的安全性和可靠性。
3.2 配电系统管理:利用云计算技术对配电系统进行智能化管理和优化调度,提高了配电系统的运行效率。
3.3 负荷预测和调度:利用人工智能技术对电网负荷进行预测和调度,提高了电网的运行效率和经济性。
四、电力系统自动化的发展趋势4.1 大数据技术的应用:大数据技术的发展将进一步提升电力系统自动化的数据处理和分析能力,实现更加智能化的电网管理。
4.2 物联网技术的应用:物联网技术的发展将实现电力系统设备之间的互联互通,提高了电网的智能化和自适应性。
4.3 区块链技术的应用:区块链技术的引入将提高电力系统的数据安全性和可信度,保障电网运行的安全性和稳定性。
电力系统自动化的现状与发展

电力系统自动化的现状与发展一、电力系统自动化的现状1. 设备自动化水平提升随着科技的进步,电力系统中各类设备的自动化水平不断提高。
例如,智能变电站、智能输电线路、智能开关设备等,这些设备的应用大大降低了人工操作的风险,提高了电力系统的安全性和稳定性。
2. 控制系统优化电力系统自动化技术在控制系统方面也取得了显著的成果。
通过采用先进的控制算法和设备,实现了对电力系统的实时监控和自动调节,使电力系统的运行更加高效、稳定。
3. 信息化建设成果显著电力系统自动化技术的发展离不开信息化建设的支持。
目前,我国电力行业已建立了较为完善的信息系统,实现了数据采集、处理、传输和分析的自动化,为电力系统自动化提供了有力保障。
4. 安全防护体系日益完善随着电力系统自动化程度的提高,电力系统的安全防护体系也日益完善。
通过采用加密技术、防火墙、入侵检测等手段,有效保障了电力系统的信息安全。
二、电力系统自动化的发展趋势1. 智能化升级2. 大数据应用随着大数据技术的发展,电力系统自动化将更加注重数据的挖掘和应用。
通过对海量数据的分析,实现对电力系统的精准预测和智能调度,提高电力系统的运行质量和经济效益。
3. 绿色环保在能源结构调整和环保要求的背景下,电力系统自动化将更加注重绿色环保。
通过推广清洁能源、优化电力系统结构,实现电力系统的低碳、绿色、可持续发展。
4. 分布式发电与微电网技术随着分布式发电和微电网技术的不断发展,电力系统自动化将逐步实现电力供应的多元化和个性化。
通过分布式发电和微电网的接入,提高电力系统的灵活性和可靠性。
5. 网络安全防护随着电力系统自动化程度的提高,网络安全防护将成为未来发展的重要课题。
通过建立完善的网络安全防护体系,确保电力系统的信息安全。
电力系统自动化技术在现状的基础上,将继续朝着智能化、大数据、绿色环保、分布式发电与微电网等方向发展。
在未来的发展中,电力系统自动化将为我国电力行业的持续发展提供有力支持。
电力系统自动化技术的应用现状及发展趋势

电力系统自动化技术的应用现状及发展趋势电力系统自动化技术是指通过利用各种传感器、控制器、通信设备等现代技术手段,将电力系统各种运行状态信息实时采集、处理、传递和控制,以保障电力系统的安全、稳定、经济、高效运行的一种现代化技术。
随着我国电力工业的快速发展,电力系统自动化技术在电力系统中的应用日益广泛,发展逐渐趋于成熟,下面将从应用现状和发展趋势两方面进行分析。
应用现状1. 系统监控与管理电力系统自动化技术可以实现系统运行状态的实时监控及信息管理,包括对电力设备、电力负荷、电力线路等信息的采集、传输和处理,系统管理员可以获得全部信息,有效指导决策,及时制订应对措施,确保电力系统的稳定运行。
2. 智能电网建设智能电网是指通过集成能源的生产、传输、分配、储存和消费,基于信息化、自动化、智能化技术手段实现电力系统物质流、信息流和能量流高效协同、灵活调度的先进形态。
智能电网建设需要借助电力系统自动化技术,对电网进行智能化改造,实现智能负荷管理、智能电表、分布式能源管理等。
3. 电力质量检测与监测电力质量对电力系统运行稳定和电力设备安全性起着至关重要的作用,在电力系统自动化技术的帮助下,可以对电网电压、电流、谐波等质量指标进行检测和监测,及时发现异常情况,并进行处理。
4. 突发事件应急处置在电力系统运行过程中,有些突发事件如台风、地震等可能会造成电力系统的瘫痪,甚至会导致部分区域的停电。
电力系统自动化技术可以实现数字化、网络化、智能化的终端设备上下挂接,从而实现对各类设备的控制和监测,在突发事故时对电力系统进行应急处置。
发展趋势1. 多能联供随着环保意识的提升,多能联供逐渐成为未来电力系统发展趋势。
电力系统自动化技术将会有更加广泛的应用,包括光伏、风力、水力等多种清洁能源的连接、信息传输以及系统优化管理。
2. 大数据应用电力系统自动化技术采集的数据量越来越大,如何有效地利用这些数据成为了一个重要的课题。
大数据技术应用于电力系统自动化,可以对电力系统运行状况进行更加精准的预测和评估,并制定出科学合理的控制策略。
电力系统自动化发展趋势及新技术的应用

电力系统自动化发展趋势及新技术的应用近年来,随着技术的进步和社会的发展,电力系统自动化已经发展到一定的高度,在电力系统的运行管理和调度中发挥着重要作用。
自动化系统为电力系统优化调度和节约能源带来了诸多方面的好处,其发展和应用也是未来几年电力系统研究的热点话题。
一、电力系统自动化的发展趋势1、技术向智能化发展。
智能电网、智能变电站、智能变压器、智能电表、智能电力系统等技术的发展,将使网供电的效率得到极大的提升,有利于优化调度和节约能源。
2、应用开源软件及系统平台。
现代自动化系统已经由传统的封闭型软件升级为开源软件,已经实现了全面的数字技术应用,从而使得系统的可靠性和可维护性大大提高,使电力公司的管理更加高效灵活。
3、实现系统的可靠性提升。
自动化系统越来越智能,已经达到了对电网布置及运行状况建模,快速响应,客户自我受理等效果,使电力系统的可靠性大大提高,实现了“安全”、“高效”、“方便”等形式。
4、实现远程管控。
自动化系统可以通过远程管控实现复杂电力系统资源的及时调整和维护,实现电力系统的有效管理及高效运行。
二、新技术的应用及其实施1、采用物联网技术。
物联网技术可以实现电力系统的节能安全监控,通过传感器及其他数据采集技术,实现对电力系统运行状态的实时监测,进行节能安全管理。
2、智能控制系统的应用。
采用智能控制系统,可以通过系统的自动调整,实现负荷的稳定,提高设备的使用率,节省能源,降低运行成本。
3、人工智能技术的应用。
可以采用深度学习算法、多层安全授权等技术,实现电力系统的精准分析,以了解电力系统的运行状态,提高电力系统的安全性和可靠性。
4、采用大数据分析技术。
大数据技术可以根据电力系统实时运行情况及历史数据,对电力系统进行统计分析和预测,进一步提升电力系统的精准性和可靠性。
三、应用步骤1、建立智能电网系统。
建立新一代智能电网系统,根据电力系统实际运行情况,科学设置控制参数,以满足系统的安全性要求。
电力配电自动化技术的应用及发展趋势

电力配电自动化技术的应用及发展趋势随着经济的快速发展和人们对电力需求的不断增长,电力配电自动化技术逐渐成为了现代电力系统的重要组成部分。
本文将从该技术的应用和发展趋势两个方面来探讨电力配电自动化技术。
一、电力配电自动化技术的应用1. 智能电网智能电网是当前电力系统的重点发展方向,也是电力配电自动化技术的重要应用领域。
通过智能电网技术,可以实现电力系统的信息化、自动化、智能化。
智能电网中包括了智能感知、智能传输、智能配电和智能应用等多个方面,其中智能配电是整个智能电网系统的关键环节。
2. 远程监控电力配电自动化技术可以实现对电力系统的远程监控。
通过监控系统,可以实时监测各个配电设备的工作状态、负荷情况以及故障信息等,从而提高配电系统的可靠性和稳定性。
远程监控技术的应用可以减少人工巡检的成本,提高电力系统的运维效率。
3. 自动化装置电力配电自动化技术的核心是自动化装置,其中包括自动开关、遥控设备、自动保护装置等。
这些自动化装置可以实现对电力系统的自动控制和保护,提高配电系统的可靠性和安全性。
同时,自动化装置也可以优化电力系统的运行方式,提高电力系统的经济效益。
4. 能源管理电力配电自动化技术可以有效地应用于能源管理领域。
通过对电力系统的监测和调度,可以实现对能源的高效利用和合理分配。
同时,配电自动化技术还可以与可再生能源技术相结合,实现对可再生能源的接纳和调度,进一步提高能源利用效率。
二、电力配电自动化技术的发展趋势1. 5G技术的应用随着5G技术的发展,电力配电自动化技术也将得到进一步的提升。
5G技术具有高带宽、低延迟和大连接数的优势,可以实现对电力系统的高速传输和实时控制。
通过5G技术,可以进一步提高电力系统的智能化和自动化水平,实现对电力系统的更加精细化管理。
2. 大数据和人工智能的应用大数据和人工智能技术的不断发展,也将对电力配电自动化技术带来新的机遇和挑战。
通过对大数据的分析和挖掘,可以更好地了解电力系统的运行状态和负荷需求,从而实现对电力系统的优化调度。
电力系统自动化技术的应用前景如何

电力系统自动化技术的应用前景如何在当今社会,电力作为支撑经济发展和人们日常生活的重要能源,其供应的稳定性、安全性和高效性至关重要。
而电力系统自动化技术的出现和不断发展,为电力行业带来了前所未有的变革。
那么,电力系统自动化技术的应用前景究竟如何呢?电力系统自动化技术是指利用先进的信息技术、控制技术和通信技术,对电力系统的发电、输电、变电、配电和用电等环节进行监测、控制和管理,以实现电力系统的安全、稳定、经济运行。
这项技术涵盖了众多领域,如自动化控制、智能监测、远程通信等,它的应用使得电力系统的运行效率大幅提高,故障发生率显著降低。
首先,在发电环节,自动化技术的应用使得发电厂的运行更加智能化和高效化。
通过采用先进的控制系统,如集散控制系统(DCS),可以对发电机组的运行参数进行实时监测和精确控制,从而提高发电效率,降低能源消耗。
同时,利用自动化技术还可以实现对新能源发电的有效接入和管理,如风力发电、太阳能发电等。
随着全球对清洁能源的需求不断增加,新能源发电在电力系统中的比重将逐渐增大,而电力系统自动化技术将为新能源的大规模应用提供有力支撑。
在输电环节,自动化技术的应用可以有效提高输电线路的输送能力和安全性。
例如,通过采用智能监测系统,可以实时监测输电线路的运行状态,及时发现线路故障和隐患,并采取相应的措施进行处理。
此外,利用柔性交流输电技术(FACTS)和高压直流输电技术(HVDC)等先进的输电技术,可以实现对电力潮流的灵活控制,提高输电系统的稳定性和可靠性。
在变电环节,变电站自动化技术的应用已经相当成熟。
智能化变电站通过采用数字化的测量、控制和保护设备,实现了变电站的无人值守运行,大大提高了变电站的运行效率和安全性。
同时,智能化变电站还具备良好的兼容性和扩展性,可以方便地接入新的设备和系统,满足电力系统不断发展的需求。
在配电环节,自动化技术的应用可以显著提高配电系统的供电质量和可靠性。
通过采用配电自动化系统,可以实现对配电网络的实时监测和控制,快速定位和隔离故障区域,恢复非故障区域的供电。
电力系统自动化技术的应用与发展

电力系统自动化技术的应用与发展【摘要】电力系统自动化技术是当今电力行业的重要组成部分,其在电网运行、电力安全保障、能源管理以及节能减排中发挥着关键作用。
本文首先介绍了电力系统自动化技术的基本原理,然后探讨了其在电网运行中的作用和在电力安全保障中的应用。
接着讨论了电力系统自动化技术在能源管理中的发展和在节能减排中的应用。
结尾部分分析了电力系统自动化技术的未来发展趋势,强调了其重要性及应用前景。
电力系统自动化技术的不断进步和应用将为电力行业带来更大的效益和发展空间,对于实现电力系统的智能化、高效化和安全可靠运行具有重要意义。
【关键词】电力系统自动化技术、应用、发展、基本原理、电网运行、电力安全、能源管理、节能减排、未来发展趋势、重要性、应用前景1. 引言1.1 电力系统自动化技术的应用与发展电力系统自动化技术的应用与发展在当今社会中扮演着至关重要的角色。
随着电力工业的快速发展和电网规模的不断扩大,传统的人工操作已经不能满足对电力系统高效、安全运行的需求。
电力系统自动化技术应运而生,为电力系统的运行提供了更为智能、高效的解决方案。
电力系统自动化技术主要包括遥测、遥信、遥控、自动化保护等方面的应用。
通过实时监测电力系统的运行状态,实现对系统的远程操作和控制,提高了电力系统的可靠性和安全性。
电力系统自动化技术还能够实现对电网的智能化管理,提高能源利用效率,减少能源浪费,从而促进了清洁能源的发展和应用。
未来,随着信息技术和人工智能的不断发展,电力系统自动化技术将迎来更加广阔的应用前景。
在电力系统的智能化、大数据分析、智能配电等领域,电力系统自动化技术将发挥越来越重要的作用,推动电力行业向着更加高效、智能的方向发展。
电力系统自动化技术的应用与发展具有极大的潜力和重要性,将为电力行业的发展注入新的动力。
2. 正文2.1 电力系统自动化技术的基本原理首先是自动化控制系统的建立,即通过传感器获取电力系统的实时数据,如电压、电流、功率等,然后经过信号处理和数据传输,将这些数据传输到控制中心的监控系统中进行分析和处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力系统自动化的应用及发展趋势
摘要:在电力事业不断发展的形势下,作为一项重要且不容忽视的现代科学技术,电力系统自动化能够在推进电力系统的发展方面发挥积极的作用。
随着科学
水平的提升和社会的进步,电力系统自动化技术引起了社会各界的密切关注并且
有了更加广泛的应用,对于深入研究电力系统有着非同一般的意义。
基于此,本
文就电力系统自动化的相关应用及其发展趋势做了一定深度的研究,希望为有关
的研究者提供一定意义上的理论参考。
关键词:电力系统自动化;应用;发展趋势
电力行业是一个国家国民经济的重大命脉,它对国家的商业、军事、生产、交通等各个
行业的发展都有着极大的影响,只有拥有一套“安全、稳定、优质”的电力系统,才能保证国
民经济快速健康稳步发展。
电力系统自动化的发展和不断壮大,是国民经济和社会稳步发展
的必要条件,也是一个国家现代化程度的体现。
一、电力系统自动化概述
电力系统主要由发电、变电、输电、配电和用电等环节组成,其原理是通过发电设备把
风能、水能、光能等转化为电能,并经变电系统、输电系统和配电系统将电能传送给用电设备,以实现电能向热能、光能的转化,从而满足群众的生活、工作和生产需要。
电力系统自
动化是利用计算机操作系统,按照预先设计好的程序远程控制电力系统的设备,使其在没有
人直接参与的情况下自动完成各项任务,并自动修复电力设备在运行过程中出现的各种故障。
电力系统自动化的目的是更加安全、高效、快捷地利用电能,对发电、送电和配电过程进行
自动控制、自动调度,从而实现对电力系统的自动化管理。
我国电力系统自动化主要包括变
电站自动化及智能保护、电力系统管理自动化、电力系统自动化技术的应用、人工智能在电
力系统中的应用、电气设备自动检测及故障诊断和修复等。
电力系统自动化按照电能的生产
和分配可分为发电系统自动化、供电系统自动化、电网调度自动化、电力信息传送自动化、
电力事故处理自动化、电力管理自动化等。
二、电力系统自动化的相关应用
1、变电站自动化
在电力系统中,变电站是联系发电厂与电力用户的主要环节。
和传统变电站工作相比,
变电站自动化对人工监视和人工操作在很大程度上实现了自动化,并且对于变电站的监控范
围也有了很大程度的扩大,大大地提高了变电站的的运行以及工作效率。
在自动化应用中常
见的是采用计算机技术来代替电力信号电缆,不断的实现计算机操作的自动化和屏幕化,从
运行管理和记录的统计方面全面实现自动化。
2、发电厂自动化
应用自动化技术,不仅能够使发电厂的发电量受到严格的控制,还能维护相关电力设备
的高效、稳定以及安全运行,促进电力设备以及系统的自动化。
除此以外,变电站在电力系
统中还能与相关的网络技术共同实现电能的配备以及输送,紧密的连接用户以及电厂,更好
的了解以及满足用户的多元化需求。
因此要实现发电厂人机的一体化,进一步的改善生产模式,提高自动化水平以及电力生产的效率,就必须有机的融合网络技术以及电力自动化技术,如此才能大大的提高电厂的效率,赋予电能更高的质量,使发电厂更好的监控电力设备,维
护设备的正常运行。
3、电网调度自动化
电力系统自动化的重要部分之一就是电网调度的自动化,在我国电网调度自动化中,可
按级别分为国家、地区、省级、和县级的电网调度。
电网调度自动化实现了电力生产过程中
的数据实时采集,能够科学地估计和分析电力系统状态,从而使电力负荷预测、自动发电控制、经济调度等都得到了充分的实现,并且逐渐适应了电力市场中的运营需求。
4、配电自动化
配电系统是连接用户和供电部门的纽带,配电系统的管理直接关系着电力系统的安全、
经济和高效运行。
目前我国配电网覆盖区域大,在空间和布局上有不同的要求,其中配电设
施、地下管线以及各种相应设施都需要具体根据地理位置进行施工,地理信息系统的应用通过技术服务器连接了网桥和实时服务器,及时地接收实时数据,并且输送至地理信息系统技术客户机,保证数据采集与监视控制系统工作站与一台地理信息系统技术工作站以紧藕合方式联动运行。
通过网桥将配电网地理信息系统技术网与实时网隔离,在保证实现两网之间的实时数据、电网结构信息、地理信息系统技术运行控制参数等能够有效交换传送送前提下安全隔离。
还实现配电圈调度、监视控制、网络拓扑分析、短路电流计算、潮流计算、短期负荷预测、凭功优化等。
三、电力系统自动化的发展趋势
1、融合计算机技术
在电力系统中,有机的融合自动化技术以及计算机技术,不仅能够将电磁对电力设备产生的影响降低到最低的水平,解决磁力以及电力的存在的种种弊端,维持电力设备的正常稳定以及安全运行,还能实现智能化控制,更加广泛的应用神经网络以及模糊技术,更好的辅助电力系统自动化技术,并为其深入发展奠定坚实的基础。
2、融合GPRS技术以及地理信息系统
通过应用GPRS技术,能够使电力系统更好的进行数据传输,满足用户的相关需求,并达到监控低电压电力配置的目的。
在配电设备的运行过程中,产生的各种数据均能够通过GPRS系统得到及时准确的采集以及控制,并在此基础上得到精准、科学以及合理的分析,使数据的传输更加的高效以及准确。
除此以外,在运用电力远程抄表系统时,还能大大的减少相关设备的投资,尽量的节约建设所耗费的相关资源,对有关的电力设备实现全面的监控以及调整。
此外,同地理信息系统的融合,主要体现在空间资源规划系统以及配电系统方面。
3、变电站系统的结构革新
随着科学技术的发展,变电站自动化所采用的相关设备必将具有更高的科学含量,各种电力设备的融合以及共同作用的发挥将进一步的推进电力系统的自动化。
其测控装置对环境的要求将大大的降低,能够直接放置于现场,同时能够有效地发挥自身的使用功能,以满足系统相关的各种需求。
在控制室,传统的装置被取代,便携机器以及计算机显示器将有更加普遍的应用。
网络技术以及计算机技术在变电站的地位越来越突出,其在电力生产中所发挥的作用越来越不容忽视也无可替代,特别是总线技术,在现场的控制方面作用较为关键。
自动化系统随着其结构的革新而更加的简化,控制系统的性能也更加的卓越。
4、电能质量逐步提升
电能质量是用电户对电能需求的重要指标,因此,未来电力系统配电自动化将在电能质量方面进一步探索新技术,使电网能够在更稳定灵活的基础上提高电能的质量,保证电网的可靠性。
5、配电系统集成性提升
建立完善的、集成的配电系统一直以来是科研人员不断探索的主要技术,在未来,可以通过建立主站式一体配电系统来提高配电系统的集成性,建立统一的数据库管理系统资源,形成整个系统的一体化。
结束语
总而言之,在科学发展日新月异的现代化社会,人们对电力系统的相关研究为电力系统自动化技术的深入发展以及广泛应用提供了更加充足的有利条件,而要提高电力设备的自动化水平,增强电能的产出效率,提高供电的安全性以及可靠性,更加便利人们的生产生活,关键的是要有机的融合并善于利用相关的科学技术,充分的发挥各种独具特色的新技术的优势,不断地进行设备以及技术的改革与革新。
参考文献:
[1]童雪桥.浅析电力系统自动化技术的应用及发展趋势[J].中国新技术新产品,2012(06):155.
[2]王攀.电力系统自动化发展趋势及新技术的应用[J].煤炭技术,2012(09):39-40.
[3]郝洁.简述电力系统及其自动化发展趋势研究[J].电子制作,2013(04):177.。