无线系统的微波与射频设计9

合集下载

微波与射频电子学技术

微波与射频电子学技术

微波与射频电子学技术电子与电气工程是一门广泛应用于各个领域的学科,而微波与射频电子学技术则是其中一项重要的分支。

微波与射频电子学技术主要研究与应用于高频电磁波范围内的电子设备和系统,包括微波通信、雷达、卫星通信、无线通信、无线电频谱分析等。

本文将从微波与射频电子学技术的基本原理、应用领域以及未来发展趋势等方面进行探讨。

微波与射频电子学技术的基本原理是在高频电磁波范围内对电子设备和系统进行设计、分析和优化。

微波频段通常指的是300 MHz到300 GHz的频率范围,而射频频段则是指300 MHz以下的频率范围。

在这个频段内,电磁波的特性与低频电磁波有很大的区别,因此需要独特的设计和分析方法。

微波与射频电子学技术主要涉及到电磁波传输、天线设计、射频电路设计、微波集成电路设计等方面的知识。

微波与射频电子学技术在各个领域都有广泛的应用。

其中最为常见的应用是无线通信领域。

无线通信技术的发展使得人们可以通过手机、无线网络等方式进行远程通信。

而微波与射频电子学技术则是支撑无线通信的核心技术。

通过设计和优化微波与射频电子学器件和系统,可以实现更高的通信速率、更远的通信距离以及更可靠的通信质量。

另一个重要的应用领域是雷达技术。

雷达是一种利用微波或射频信号进行探测和测量的技术。

它广泛应用于军事、航空、气象等领域。

雷达的性能直接关系到其微波与射频电子学技术的设计和实现。

通过优化雷达的天线、射频电路以及信号处理算法等方面,可以提高雷达的探测距离、分辨率和抗干扰能力。

除了无线通信和雷达技术,微波与射频电子学技术还在卫星通信、无线电频谱分析等领域得到广泛应用。

卫星通信是指通过卫星进行远程通信的技术,而微波与射频电子学技术则是支撑卫星通信的关键技术。

无线电频谱分析是指对无线电频谱进行测量和分析,以保证无线电通信的正常运行。

微波与射频电子学技术在这些领域的应用,不仅提高了通信的质量和效率,还推动了相关技术的发展和创新。

未来,微波与射频电子学技术将继续发展和演进。

射频与微波的基本概念

射频与微波的基本概念

射频与微波的基本概念
射频(RF)和微波(Microwave)是电磁波的一部分,它们在频率上分别处于3 kHz 至300 GHz和300 MHz至300 GHz之间。

射频和微波是广泛应用于通信、雷达、卫星、无线电调制解调器、无线电发射和接收设备等领域的电磁波。

射频和微波是无线电波的特殊类型,具有以下特征:
1. 高频:射频和微波的频率非常高,通常比较可见光的频率高数百万倍甚至更高。

2. 高速:射频和微波在空气和真空中的传输速度几乎达到光速。

3. 无线传输:射频和微波可以在不依赖传输媒介的情况下在空气、真空和其他透明材料中传输。

4. 强穿透能力:射频和微波可以穿透某些材料和物体,这使得它们在通信和雷达等领域中得到广泛应用。

射频和微波的应用非常广泛,例如在移动通信领域中,射频和微波被用于发送和接收无线信号。

在卫星通信中,射频和微波作为数据传输和信号接收的媒介。


雷达中,利用射频和微波来探测目标物体的距离和速度。

RF与微波技术

RF与微波技术

RF与微波技术RF与微波技术在电子与电气工程领域中扮演着重要的角色。

它们是无线通信、雷达、卫星通信、无线电频谱分析等领域的基础。

本文将介绍RF与微波技术的基本概念、应用以及相关的研究方向。

1. RF与微波技术的基本概念RF(Radio Frequency)是指无线电频率范围,通常在3kHz到300GHz之间。

微波技术则是指高频电磁波的应用,频率范围通常在300MHz到300GHz之间。

RF与微波技术的研究主要涉及高频电磁波的传输、调制、解调、放大、滤波等技术。

2. RF与微波技术的应用RF与微波技术在无线通信领域中具有广泛的应用。

无线通信技术的发展离不开对RF与微波技术的研究与应用。

例如,手机、无线局域网、蓝牙等无线通信设备都是基于RF与微波技术实现的。

此外,雷达技术也是RF与微波技术的重要应用之一。

雷达利用高频电磁波与目标物体进行相互作用,通过接收和分析回波信号来实现目标检测、跟踪和识别。

卫星通信也是RF与微波技术的重要应用领域,它通过卫星中继站实现地面与地面、地面与空间的通信。

3. RF与微波技术的研究方向随着无线通信技术的迅猛发展,RF与微波技术的研究也在不断深入。

其中一项重要的研究方向是射频集成电路(RFIC)的设计与制造。

RFIC是指将射频电路与数字电路集成在一起的芯片,它可以实现无线通信设备的小型化、低功耗化和高性能化。

另一个研究方向是天线技术的研究与优化。

天线是RF与微波技术中的重要组成部分,它对无线通信系统的性能起着至关重要的作用。

研究人员致力于设计更小、更高效、更宽频带的天线,以满足不断增长的通信需求。

此外,RF与微波技术在医学领域的应用也备受关注。

例如,微波医学成像技术可以用于乳腺癌的早期检测,射频热疗技术可以用于肿瘤的治疗。

综上所述,RF与微波技术在电子与电气工程领域中具有重要的地位和应用。

它们是无线通信、雷达、卫星通信等领域的基础。

未来的研究方向包括射频集成电路的设计与制造、天线技术的研究与优化以及RF与微波技术在医学领域的应用等。

微波电路-实验内容

微波电路-实验内容

微波通信概述微波无线通信是以空间电磁波为载体传送信息的一种通信方式,构建微波无线通信时不需要用线缆连接发信端和收信端。

因而在航空航天通信、海运和个人移动通信以及军事通信等方面,微波无线通信是其它通信方式所不可替代的。

微波通信是一种先进的通信方式,它利用微波(载频)来携带信息,通过电波空间同时传送若干相互无关的信息,并且还能再生中继。

由于微波具有频率高、频带宽、信息量大的特点,因此被广泛地应用于各种通信业务中。

如微波多路通信,微波接力通信,散射通信,移动通信和卫星通信等。

同时,用微波各波段的不同特点可实现特殊用途的通信,具体如下:A. S-Ku波段的微波适于进行以地面为基地的通信;B. 毫米波适用于空间与空间之间的通信;C. 毫米波段的60GHz频段的电波大气衰减大,适用于近距离的保密通信;D.90GHz频段的电波在大气中衰减很小,是一个无线电窗口频段,适用于地—空和远距离通信。

E.对于很长距离的通信L波段更适合。

微波通信的主要特点根据所传输基带信号的不同,微波通信又分为两种制式。

用于传输频分多路——调频(FDM-FM)基带信号的系统称作模拟微波通信系统。

用于传输数字基带信号的系统称作数字微波通信系统。

后者又进一步的分为PDH微波和SDH微波通信两种通信体制。

SDH微波通信系统是未来微波通信系统发展的主要方向,利用调制和复用技术,一条微波线路可以传送大量的信息。

这是微波通信的一个主要优点,例如,一个标准的4GHz微波载波,带宽约为10%~20%,可以传送几万条电话信道或几十万条电视信道。

微波通信系统的组成微波通信传输线路的组成形式可以是一条主干线,中间有若干分支,也可以是一个枢纽站向若干方向分支.但不论哪种组合形式,主要是有由微波终端站、中继站和分路站等组成的。

如图所示:终端站中继站再生中继站终端站微波微带电路系统实验设计平台一、适用范围本设计平台主要面向各大中专院校微波通信工程、电子工程、通信工程等专业开设的《微波技术》、《微波电路》、《天线原理》、等课程的实验教学及课程设计、毕业设计而研制的最新产品。

无线通信硬件电路设计

无线通信硬件电路设计

V V ( R j L) ( R j L) Zo I I k (G jC )

(2.1)
在上式中, V 为入射波电压; I 为入射波电流; V 为反射波电压; I 为反射波电流。 对于理想的无耗传输线模型, R G 0 ,特性阻抗的表示式可进一步简化为:
GPS 天线 GPS接 收模块 音频 接口 主PCB板 通信接口 键盘 接口 SIM卡 电路 SIMCom GSM/ GPRS 无线通信模块 GSM 天线
应用处理器 电源电路 外部 电源 输入
USB接 口
其它I/O 接口
显示 接口
图 1.1 典型的产品硬件框图 虽然 SIMCom GSM/GPRS 无线通信模块具有极高的集成度,但客户的外围设计仍然相当重要。其 中,天线、天线外围电路以及电源电路部分的设计,显得尤为关键,如设计不当,将会导致产品最 终的射频性能受到较大的影响。 基于此, 为使客户能够更好的使用 SIMCom 提供的 GSM/GPRS 无线通信模块, 设计出性能优越的 GSM/GPRS 移动通信终端产品, 缩短客户产品的设计周期, 本文就影响产品射频性能的一些关键部分, 从理论基础及实际设计两方面,给出必要的建议供客户参考。全文内容主要分为三个部分,第一部 分介绍一些基本的理论知识,其中涉及传输线,阻抗匹配及开关电源干扰特性分析等;第二部分介 绍推荐的天线外围电路及电源电路设计;第三部分给出 PCB 设计的一些重要原则。
2、一些基本理论 2.1 传输线 所谓传输线,是指能够导引电磁波沿着一定方向传输的导体、介质、或由它们共同组成的导波 系统。广义的说,在射频电路设计中,传输线是最重要的基本元件。传输线有多种形式,且传输线 的形式与所传输的电磁波的波型有关。在射频电路设计中,常见的传输线形式有双导线、同轴线、 带状线和微带线等,其结构如图 2.1 所示。

射频电路设计原理与应用

射频电路设计原理与应用

【连载】射频电路设计——原理与应用相关搜索:射频电路, 原理, 连载, 应用, 设计随着通信技术的发展,通信设备所用频率日益提高,射频(RF)和微波(MW)电路在通信系统中广泛应用,高频电路设计领域得到了工业界的特别关注,新型半导体器件更使得高速数字系统和高频模拟系统不断扩张。

微波射频识别系统(RFID)的载波频率在915MHz和2450MHz频率范围内;全球定位系统(GPS)载波频率在1227.60MHz和1575.42MHz的频率范围内;个人通信系统中的射频电路工作在1.9GHz,并且可以集成于体积日益变小的个人通信终端上;在C波段卫星广播通信系统中包括4GHz的上行通信链路和6GHz的下行通信链路。

通常这些电路的工作频率都在1GHz以上,并且随着通信技术的发展,这种趋势会继续下去。

但是,处理这种频率很高的电路,不仅需要特别的设备和装置,而且需要直流和低频电路中没有用到的理论知识和实际经验。

下面的内容主要是结合我从事射频电路设计方向研究4年来的体会,讲述在射频电路设计中必须具备的基础理论知识,以及我个人在研究和工作中累积的一些实际经验。

作者介绍ChrisHao,北京航空航天大学电子信息工程学院学士、博士生;研究方向为通信系统中的射频电路设计;负责或参与的项目包括:主动式射频识别系统设计、雷达信号模拟器射频前端电路设计、集成运算放大器芯片设计,兼容型GNSS接收机射频前端设计,等。

第1章射频电路概述本章首先给出了明确的频谱分段以及各段频谱的特点,接着通过一个典型射频电路系统以及其中的单元举例说明了射频通信系统的主要特点。

第1节频谱及其应用第2节射频电路概述第2章射频电路理论基础本章将介绍电容、电阻和电感的高频特性,它们在高频电路中大量使用,主要用于:(1)阻抗匹配或转换(2)抵消寄生元件的影响(扩展带宽)(3)提高频率选择性(谐振、滤波、调谐)(4)移相网络、负载等第1节品质因数第2节无源器件特性第3章传输线工作频率的提高意味着波长的减小,当频率提高到UHF时,相应的波长范围为10-100cm,当频率继续提高时,波长将与电路元件的尺寸相当,电压和电流不再保持空间不变,必须用波的特性来分析它们。

射频与微波信号发生器工作原理

射频与微波信号发生器工作原理

射频与微波信号发生器工作原理射频(RF)和微波信号发生器是在射频和微波领域中常用的仪器,用于产生高频信号。

它们在通信、雷达、无线电等领域有着广泛的应用。

本文将详细介绍射频与微波信号发生器的工作原理,包括振荡电路、频率控制、放大器、调制解调和输出接口等方面。

1.振荡电路振荡电路是射频与微波信号发生器中产生高频信号的核心部分。

它能够在特定的条件下产生稳定的振荡信号。

以下是几种常见的振荡电路:1.1LC振荡电路LC振荡电路是最简单和常见的振荡电路之一。

它由一个电感(L)和一个电容(C)构成。

当电流通过电感时,会在电容上积累电荷,形成电场能量。

然后,电容中的电荷会通过电感释放,再次充电,如此往复。

这种周期性的充放电过程导致了振荡信号的产生。

1.2晶体振荡电路晶体振荡电路使用压电晶体(如石英晶体)作为振荡器的谐振元件。

压电晶体具有固有的机械振动频率,当施加电场或力时,它会以固定的频率振动。

这种振动可以转换为电信号,并通过适当的反馈网络来维持振荡。

1.3微带振荡电路微带振荡电路是一种使用微带传输线和衬底作为振荡器的谐振元件的振荡电路。

微带传输线是在介质基板上形成的导电金属条。

通过选择合适的谐振结构和尺寸,微带振荡电路可以实现特定频率的振荡。

2.频率控制射频与微波信号发生器可以通过外部输入或内部设置来控制输出信号的频率。

以下是一些常用的频率控制方法:2.1可变电容可变电容器是一种可以改变电容值的元件。

通过调节电容器的电容值,可以改变振荡电路的谐振频率,从而实现不同频率的信号输出。

2.2可变电感可变电感器是一种可以改变电感值的元件。

通过调节电感器的电感值,可以改变振荡电路的谐振频率,从而实现不同频率的信号输出。

2.3可变晶体振荡器可变晶体振荡器是一种使用可变电容器或可变电感器来调节晶体振荡器频率的电路。

通过改变电容或电感值,可以调整晶体振荡器的谐振频率。

3.放大器放大器在射频与微波信号发生器中起到增强振荡电路产生的低功率信号的作用。

射频与微波电路设计-8-微波振荡器设计

射频与微波电路设计-8-微波振荡器设计

振荡器主要技术指标— 振荡器主要技术指标—调频噪声和相位噪声
在振荡器电路中,由于存在各种 不确定因素的影响,使振荡频率 和振荡幅度随机起伏。
7
振荡频率的随机起伏称为瞬时频 率稳定度,频率的瞬变将产生调 频噪声、相位噪声和相位抖动。 振荡幅度的随机起伏将引起调幅 噪声。因此,振荡器在没有外加 图8-1 振荡器输出的频谱 调制时,输出的频率不仅含振荡 频率f0,在f0附近还包含许多旁频,连续分布在f0两边。如图8-1 所示,纵坐标是功率,f0处是载波功率(振荡器输出功率),f0 两边的是噪声功率,它同时包含调频噪声功率和调幅噪声功率。
2
9
Hale Waihona Puke (1)功率表示 调频噪声可以用离载频 f0 为 fm 处的单位频带调频噪声功率 Pn 与载波功率 Po 之比表示。它与调制频率及频偏的关系如下
式中 ∆fp——频偏峰值; fm——调制频率; Pn——偏离载频 f0 为 fm 处的单位带宽单边带噪声功率。 如果 Pn 取双边带功率值,则上式改为
用 dB 数表示上两式,即
∆f = f − f 0 (Hz )
f——实际工作频率; f0——标称频率。 相对频率准确度是绝对频率准确度与标称频率的 比值。用下式表示 式中
f − f0 ∆f = f0 f0
频率稳定度
4
频率稳定度是指在规定的时间间隔内,频率准确度 变化的最大值。它也有两种表示方法:即绝对频率稳定 度和相对频率稳定度。通常用相对频率稳定度来表示, 又简称为频率稳定度。用下式表示
孤立的圆柱形介质谐振器的谐振频率可以用下式计算
34 D f0 = + 6 .9 D εr L
式中 c——光速,C = 3×1011mm/s; ; D——圆柱形介质谐振器直径(mm) f0——圆柱形介质谐振器频率(GHz) ; L——圆柱形介质谐振器高度(mm) 。 在 1.0<D/L<4,30<εr<50 情况下,式(8-15)的精度在 2%左右。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
codes.
§9.1 Analog Modulation §9.2 Binary Digital Modulation §9.3 Error Probabilities for Binary Modulation §9.4 Effect of Rayleigh Fading on Bit Error Rats §9.5 M-ary Digital Modulation
But
Ni
2g2
fm
gn0 2
2n0 fM
S0 Si N0 n0 fM
Conclusion: The coherent SSB and DSB-SC demodulators have the same SNR performance.
Microwave and RF Design of Wireless Systems
Chapter 9
Modulation Techniques
Dr. Zhang Yonghong
Comparing with transmitting baseband signal directly, to transmit data by modulating a higher frequency
vi (t) Acos(IF m )t n(t)
n(t) x(t) cosIF t y(t) sin IF t
v1(t) vi (t) cosIFt
cos cos cos cos / 2 cos2 1 cos 2 / 2 sin 2
xt
Input narrowband noise power:
Ni
E{n2 (t)}
1 2
E{x2 (t)}
1 2
E{y2 (t)}
E{x2 (t)} E{y2 (t)}
Output noise power:
N0
E{[ 1 2
x(t)]2}
1 4
E{x2 (t)}
Ni 4
The output SNR: S0 Si N0 Ni
carrier wave has the effect on:
➢ ①controlling the radiated frequency spectrum. ➢ ②more efficient use of the allocated RF bandwidth. ➢ ③flexibility in accommodating different baseband
by the input stages of the receiver.
The demodulator LO is identical in frequency and phase with the modulator LO-synchronous or coherent demodulator.
Conclusion: SSB demodulator does not degrade the input SNR.
Ni
2 n0 2
fM
n0 fM
S0 Si N0 n0 fM
2. DSB-SC Modulation
Double-sideband suppressed carrier (DSB-SC)
vi (t)
A 2
cos(IF
m )t
A 2
cos(IF
m )t
n(t)
S0 2 Si
N0
Ni
Conclusion: the DSB-SC demodulator improves the input signal-to-noise ratio by a factor of two.
FSSB=2FDSB
§9.1 Analog Modulation
Basic analog modulation: AM (SSB, DSB), FM, PM PPM (Pulse Position Modulation) is used in UWB (ultra wideband) system.
1. Signal-Sideband Modulation 2. DSB-SC Modulation 3. DSB-LC Modulation 4. Envelope Detection of DSB-LC Modulation 5. Frequency Modulation (FM)
➢ ①more efficient use of the radio spectrum. ➢ ②usually requires less power. CDMA ➢ ③over a fading communications channel. ➢ ④more compatible with the use of error correcting
signal formats.
V (t) Acos(t )
Amplitude Frequency Phase
AM
FM
PM
➢Analog modulation (vary continuously)
➢Digital modulation (change in discrete steps)
In contrast to analog modulation, digital modulation has:
mt
A 2
cos(2IF
m )t
1 2
x(1
cos
2IF t)
1 2
y(t)
sin
2IF t
v0 (t)
A 2
cos
m
t
1 2
xt
Input signal power: Si A2 / 2
Output signal power:
S0
1 ( A)2 22
A2 8
Si 4
v0 (t)
A 2
cos
1. Signal-Sideband Modulation
m(t): bandlimited modulating waveform fM: the maximum frequency of m(t)
m(t) cos 2 fmt 0 fm fM
n0/2: two-sided power spectral density of Gaussian white noise. Contributed by the transmitter channel and noise generated
相关文档
最新文档