直线与圆地位置关系练习题

合集下载

直线与圆的位置关系经典例题

直线与圆的位置关系经典例题

直线与圆的位置关系经典例题一、点与圆的位置关系结合图形认识直线与圆的位置关系,比较OA 与r 的大小关系若点A 在⊙O 内OA r 若点A 在⊙O 上OA r 若点A 在⊙O 外OA r小练习:1.在△ABC 中,90C ∠=︒,AC=2,BC=4,如果以点A 为圆心,AC 为半径作⊙A,那么斜边中点D 与⊙A 的位置关系是()(A)D 在圆外(B)D 在圆上(C)D 在圆内(D)无法确定二、直线与圆的位置关系(1)实验创境:用移动的观点认识如果我们把太阳看作一个圆,那么太阳在升起的过程中,太阳和海平面就有图中的几种位置关系。

(可让学生用硬币自己操作演示)根据直线与圆公共点的个数可以得到三种位置关系:、、。

(2)用数量关系判断从以上的一个例子,可以看到,直线与圆的位置关系只有以下三种,如下图所示:若要判断圆与直线的位置关系,可以将______与_____进行比较大小,由比较的结果得出结论。

典型例题:例1、已知圆的半径等于5厘米,圆心到直线MN 的距离是:(1)4厘米;(2)5厘米;(3)6厘米。

分别说出直线MN 与圆的位置关系以及直线MN 和圆分别有几个公共点?例2.Rt △ABC 中,∠C=90°,AC=3,BC=4,若以C 为圆心,r 为半径作圆,当3,4.2,2===r r r 时,⊙C 与直线AB 分别是怎样的位置关系?★①直线l 和⊙O 相交d r ②直线l 和⊙O 相切d r ③直线l 和⊙O 相离d r1、如果⊙O 的直径为10厘米,圆心O 到直线AB 的距离为10厘米,那么⊙O 与直线AB有怎样的位置关系是2、已知:⊙A 的直径为6,点A 的坐标为)4,3(--,则⊙A 与x 轴的位置关系是;⊙A 与y 轴的位置关系是。

三、切线的判定实验探究:在练习纸上画⊙O ,在⊙O 上任取一点A ,连结OA ,过A 点作直线l ⊥OA ,判断直线l 是否与⊙O 相切?为什么?当直线和圆有唯一公共点时,直线是圆的切线;当直线和圆的距离等于该圆半径时,直线是圆的切线;那么,直接从直线和圆的位置上观察,具备什么条件的直线也是圆的切线呢?两个条件缺一不可(1)经过半径外端(2)垂直于这条半径切线判定定理:经过直径外端并且于这条直径的直线是圆的切线。

2.5 直线与圆、圆与圆的位置关系(精练)(解析版).

2.5 直线与圆、圆与圆的位置关系(精练)(解析版).

2.5直线与圆、圆与圆的位置关系(精练)1直线与圆的位置关系1.(2022·山东滨州)已知直线()22:1(32)250l m m x m y m +++---=,圆22:20C x y x +-=,则直线l 与圆C 的位置关系是()A .相离B .相切C .相交D .不确定【答案】D【解析】直线()22:1(32)250l m m x m y m +++---=,即2(2)(2)(35)0x m x y m x y -+-++-=,由2020350x x y x y -=⎧⎪-=⎨⎪+-=⎩解得21x y =⎧⎨=⎩,因此,直线l 恒过定点(2,1)A ,又圆22:20C x y x +-=,即22(1)1x y -+=,显然点A 在圆C 外,所以直线l 与圆C 可能相离,可能相切,也可能相交,A ,B ,C 都不正确,D 正确.故选:D2(2021·黑龙江)直线43110x y -+=与圆()()22114x y +++=的位置关系是()A .相离B .相切C .相交D .不确定【答案】B【解析】圆心坐标为()1,1--,半径为2,圆心到直线的距离为341125-+=,所以直线43110x y -+=与圆()()22114x y +++=相切.故选:B3.(2022·辽宁·瓦房店市高级中学高二期末)直线()1R y kx k =+∈与圆22(1)(1)4x y -+-=的位置关系是()A .相交B .相切C .相离D .不确定【答案】A【解析】直线()1R y kx k =+∈恒过定点()0,1,又22(01)(11)14-+-=<,即点()0,1在圆22(1)(1)4x y -+-=内部,所以直线与圆相交;故选:A4.(2022·湖北省武汉市汉铁高级中学高三阶段练习)直线230kx y k +--=与圆22450x y x +--=的位置关系是()A .相离B .相切C .相交D .相交或相切【答案】C【解析】直线230kx y k +--=即()()320k x y -+-=,过定点()3,2,因为圆的方程为22450x y x +--=,则223243540+-⨯-=-<,所以点()3,2在圆内,则直线与圆相交.故选:C5.(2021·重庆市两江中学校高二阶段练习)已知过点(3,1)P 的直线与圆22(1)(2)5x y -+-=相切,且与直线10x my --=垂直,则m =()A .12-B .12C .2-D .2【答案】C【解析】设过点(3,1)P 的直线为l .(1)当l 的斜率不存在时,直线l :3x =.圆22(1)(2)5x y -+-=的圆心到l 的距离为312-=≠,所以不是圆的切线,不合题意.(2)当l 的斜率存在时,直线l :()13y k x -=-.=k =2.因为l 与直线10x my --=垂直,所以121m⨯=-,解得:m =-2.故选:C6.(2022·全国·高二课时练习)若直线:420l kx y k -++=与曲线y =有两个交点,则实数k 的取值范围是()A .{}1k k =±B .3{|}4k k <-C .3{|1}4k k -≤<-D .3{|1}4k k -≤<【答案】C【解析】由题意,直线l 的方程可化为(2)40x k y +-+=,所以直线l 恒过定点(2,4)A -,y =可化为224(0)x y y +=≥其表示以(0,0)为圆心,半径为2的圆的一部分,如图.当l 与该曲线相切时,点(0,0)到直线的距离24221kd k +==+,解得34k =-.设(2,0)B ,则40122AB k -==---.由图可得,若要使直线l 与曲线24y x =-314k -≤<-.故选:C.7.(2022·贵州遵义·高二期末(文))若直线():100l ax by ab +-=>始终平分圆()()22:124C x y -+-=的周长,则11a b+的最小值为()A .322+B .6C .7D .32+【答案】A【解析】圆C 的圆心为()1,2C ,由题意可知,直线l 过圆心C ,则21a b +=,因为0ab >,则0a >且0b >,因此,()1111222332322b a b a a b a b a ba b a b ⎛⎫+=++=++≥+⋅=+ ⎪⎝⎭当且仅当2a b 时,等号成立,故11a b+的最小值为322+.故选:A.8.(2022·广西梧州·高二期末(文))已知对任意的实数k ,直线l :0kx y k t --+=与圆C :2210x y +=有公共点,则实数t 的取值范围为()A .[3,0)-B .[3,3]-C .(,3](0,3]-∞-D .(,3)[0,3]-∞-【答案】B【解析】由直线0kx y k t --+=可化为(1)-=-y t k x ,则直线l 过定点(1,)t ,因为直线l :kx y k t --+0=与圆C :2210x y +=有公共点,所以定点(1,)t 在圆C 上或圆C 内,可得22110t +≤,解得33t -≤≤,故选:B9.(2022·江西上饶·高二期末(文))已知直线2y kx =-与圆22(1)1x y -+=相交,则实数k 的取值范围是()A .3,4⎛⎤-∞ ⎥⎝⎦B .3,4⎛⎫-∞ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .3,4⎛⎫+∞ ⎪⎝⎭【答案】D【解析】由题意,圆心()1,0到直线20kx y --=1,即22441k k k -+<+,解得34k >故选:D10.(2022·浙江·温州中学高二期末)已知直线10kx y k -+-=与圆22(2)1x y -+=有两个不同的交点,则实数k 的取值范围是()A .3,04⎡⎤-⎢⎥⎣⎦B .30,4⎛⎫ ⎪⎝⎭C .30,4⎡⎤⎢⎥⎣⎦D .3,04⎛⎫- ⎪⎝⎭【答案】B【解析】因为直线10kx y k -+-=与圆22(2)1x y -+=有两个不同的交点,1<,即2860k k -<,解得304k <<,所以实数k 的取值范围是30,4⎛⎫⎪⎝⎭,故选:B.2直线与圆的弦长1.(2021·浙江高二期末)已知过点()1,3P 的直线l 被圆()2224x y -+=截得的弦长为l 的方程是()A.43130x y +-=B.34150x y +-=C.34150x y +-=或1x =D.43130x y +-=或1x =【答案】D【解析】圆()2224x y -+=的圆心为点()2,0,半径为2r =,圆心到直线l 的距离为1d ==.①若直线l 的斜率不存在,则直线l 的方程为1x =,此时圆心到直线l 的距离为1,合乎题意;②若直线l 的斜率存在,可设直线l 的方程为()31y k x -=-,即30kx y k -+-=,圆心到直线l的距离为1d ==,解得43k =-.此时直线l 的方程为43130x y +-=.综上所述,直线l 的方程为43130x y +-=或1x =.故选:D.2(2022·贵溪市)直线y kx =被圆222x y +=截得的弦长为()A.B.2C.D.与k 的取值有关【答案】A【解析】由于圆222x y +=的圆心在直线y kx =上,所以截得弦为圆222x y+=,故截得的弦长为.故选:A 3.(2022·江苏·高二)过点(-2,1)的直线中,被圆x 2+y 2-2x +4y =0截得的弦最长的直线的方程是()A .x +y +1=0B .x +y -1=0C .x -y +1=0D .x -y -1=0【答案】A【解析】由题意得,圆的方程为()221(2)5x y -++=,∴圆心坐标为()1,2-.∵直线被圆截得的弦长最大,∴直线过圆心()1,2-,又直线过点(-2,1),所以所求直线的方程为211221y x +-=+--,即10x y ++=.故选:A .4.(2022·全国·模拟预测)(多选)已知直线l :()()121740m x m y m ---+-=,圆C :2224200x y x y +---=,则()A .直线l 恒过定点()1,3B .直线l 与圆C 相交C .圆C 被x 轴截得的弦长为D .当圆C 被直线l 截得的弦最短时,34m =【答案】BD【解析】依题意,直线l :()()121740m x m y m ---+-=可化为()2740x y m x y --+++-=,由27040x y x y --+=⎧⎨+-=⎩解得3x =,1y =,即直线l 过定点()3,1P ,A 不正确;圆C :22(1)(2)25x y -+-=的圆心(1,2)C ,半径=5r ,||PC r =<,即点P 在圆C 内,直线l 与圆C 恒相交,B 正确;圆心C 到x 轴的距离2d =,则圆C 被x 轴截得的弦长为==C 不正确;由于直线l 过定点()3,1P ,圆心(1,2)C ,则直线PC 的斜率121312k -==--,当圆C 被直线l 截得的弦最短时,由圆的性质知,l PC ⊥,于是得1221m m -=-,解得34m =,D 正确.故选:BD5.(2022·湖北恩施·高二期末)(多选)已知直线l :()()221310m x m y m ++---=与圆C :()()222116x y -++=交于A ,B 两点,则弦长|AB |的可能取值是()A .6B .7C .8D .5【答案】BC【解析】由()()221310m x m y m ++---=,得()23210x y m x y +-+--=,令230210x y x y +-=⎧⎨--=⎩解得1,1,x y =⎧⎨=⎩故直线l 恒过点(1,1)M .圆心(2,1)C ,半径4r =,CM ==,则2AB r ≤≤,即8AB ≤≤.故选:BC.6.(2022·辽宁辽阳市·高二期末)已知圆22:4850C x y x y +-+-=,直线:20l mx y m --=.(1)证明:直线l 与圆C 相交.(2)设l 与圆C 交于,M N 两点,若MN =,求直线l 的倾斜角及其方程.【答案】(1)证明见解析;(2)答案见解析.【解析】(1)证明:直线:2()0l m x y --=过定点()2,0,因为224250-⨯-<,所以点()2,0在圆C 的内部,故直线l 与圆C 相交.(2)圆C 的标准方程为()2225()42x y -++=,则圆C 的圆心坐标为4(2,)C -,半径为5,且圆心C 到直线l 的距离()22242411m md m m ---==++因为2225213MN d =-=,所以23d =由24231m =+,得33m =±当33m =时﹐直线l 的方程为()323y x =-,倾斜角为6π当33m =-时﹐直线l 的方程为()323y x =--,倾斜角为56π3圆与圆的位置关系1.(2022·西藏)圆x 2+y 2-2x +4y =0与直线2x +y +1=0的位置关系为()A .相离B .相切C .相交D .以上都有可能【答案】C【解析】圆x 2+y 2-2x +4y =0的圆心坐标为(1,2)-,半径5r =圆心(1,2)-到直线2x +y +1=0的距离2221(2)15521d ⨯+-+==+由555d r =<=,可得圆与直线的位置关系为相交.故选:C2.(2022·陕西渭南)已知圆1C :()()22321x y -++=与圆2C :()()227150x y a -+-=-,若圆1C 与圆2C 有且仅有一个公共点,则实数a 等于()A .14B .34C .14或45D .34或14【答案】D【解析】圆1C :()()22321x y -++=的圆心为()113,2,1C r -=,圆2C :()()227150x y a -+-=-的圆心为()227,1,50C r a =-()()221237215C C -+--=,因为圆1C 与圆2C 有且仅有一个公共点,故圆1C 与圆2C 相内切或外切,故215r -=或215r +=,从而26=r 或24r =,所以2506r a =-=或2504r a =-=,解得:34a =或14a =所以实数a 等于34或14故选:D3.(2022广东)圆2220x y x +-=与圆22(1)(2)9x y -++=的位置关系为()A.内切B.相交C.外切D.相离【答案】A【解析】圆221:20C x y x +-=,即22(1)1x y -+=,表示以1(1,0)C 为圆心,半径等于1的圆.圆222:(1)(2)9C x y -++=,表示以2(1,2)C -为圆心,半径等于3的圆.∴两圆的圆心距|20|2d =--=,231=-,故两个圆相内切.故选:A.4.(2022·江西)已知圆()221:210C x y x my m R +-++=∈关于直线210x y ++=对称,圆2C 的标准方程是()()222316x y ++-=,则圆1C 与圆2C 的位置关系是()A.相离B.相切C.相交D.内含【答案】B【解析】22210x y x my +-++=即()222124m m x y 骣琪-++=琪桫,圆心1,2m ⎛⎫- ⎪⎝⎭,因为圆1C 关于直线210x y ++=对称,所以圆心1,2m ⎛⎫- ⎪⎝⎭在直线210x y ++=上,即12102m ⎛⎫+⨯-+= ⎪⎝⎭,解得2m =,()()22111x y -++=,圆心()1,1-,半径为1,()()222316x y ++-=,圆心()2,3-,半径为4,5=,因为圆心间距离等于两圆半径之和,所以圆1C 与圆2C 的位置关系是相切,故选:B.5.(2022云南)已知圆1C 的标准方程是()()224425x y -+-=,圆2C :22430x y x my +-++=关于直线10x +=对称,则圆1C 与圆2C 的位置关系为()A.相离B.相切C.相交D.内含【答案】C【解析】由题意可得,圆()()221:4425C x y -+-=的圆心为()4,4,半径为5因为圆222:430C x y x my +-++=关于直线10x ++=对称,所以2102m-+=(),得m =,所以圆()(222:24C x y -++=的圆心为(2,,半径为2,则两圆圆心距12C C =1252725C C -<<=+,所以圆1C 与圆2C 的位置关系是相交,故选:C .6.(2022·上海中学东校高二期末)已知圆22:28M x y ax +-=截直线:0l x y -=所得的弦长M 与圆22:(1)4N x y +-=的位置关系是()A .内切B .相交C .外切D .相离【答案】B【解析】由22:28M x y ax +-=,即()2228y a x a +=+-,故圆心(),0M a ,半径M r =所以点M 到直线:0l x y -=的距离d =故解得:1a =±;所以()1,0M ±,3M r =;又22:(1)4N x y +-=,圆心()0,1N ,2N r =,所以MN ==,且15M N M N r r r r -=<<=+,即圆M 与圆N 相交,故选:B.7.(2022·湖南岳阳·高二期末)圆221:1O x y +=与圆222:680O x y x y m +-++=外切,则实数m =_________.【答案】9【解析】圆1O 的圆心()10,0O ,半径11r =,圆2O 的圆心()23,4O -,半径2r =125O O =根据题意可得:1212O O r r =+,即51=9m =故答案为:9.8.(2022·上海徐汇·高二期末)已知圆221:(2)(2)1C x y -+-=和圆2222:()(0)C x y m m m +-=>内切,则m 的值为___________.【答案】72【解析】圆1C 的圆心为()2,2,半径为11r =,圆2C 的圆心为()0,m ,半径为2r m =,所以两圆的圆心距()()22202d m =-+-,又因为两圆内切,有()()222021d m m =-+-=-,解得72m =.故答案为:72.9.(2023·全国·高三专题练习)已知圆221:4C x y +=与圆222:860C x y x y m +-++=外切,此时直线:0l x y +=被圆2C 所截的弦长_________.【答案】34【解析】由题可知:221:4C x y +=222:860C x y x y m +-++=,即()()224325-++=-x y m且25025->⇒<m m 由两圆向外切可知()()224030225-+--=+-m ,解得16m =所以2:C ()()22439x y -++=2C 到直线的距离为22431211-==+d ,设圆2C 的半径为R则直线:0l x y +=被圆2C 所截的弦长为221229342-=-=R d 故答案为:344圆与圆的弦长1.(2021·辽宁高三其他模拟)圆O :229x y +=与圆1O :()()222316x y -+-=交于A 、B 两点,则AB =()A.6B.5C.67813D.123913【答案】D【解析】圆O 的半径3r =,圆1O 的半径14r =,113OO =故在1AOO中,22211111cos sin21313r OO rAOO AOOr OO+-∠===⇒∠=⋅,故1sin21313ABr AOO AB=∠=⇒=.故选:D2.(2021·山东济南市·高二期末)(多选)已知圆221:1C x y+=和圆222:40C x y x+-=的公共点为A,B,则()A.12||2C C=B.直线AB的方程是14x=C.12AC AC⊥D.||2AB=【答案】ABD【解析】圆1C的圆心是()0,0,半径11r=,圆()222:24C x y-+=,圆心()2,0,22r=,122C C∴=,故A正确;两圆相减就是直线AB的方程,两圆相减得1414x x=⇒=,故B正确;11AC=,22AC=,122C C=,2221212AC AC C C+≠,所以12AC AC⊥不正确,故C不正确;圆心()0,0到直线14x=的距离14d=,2AB===,故D正确.故选:ABD3.(2021·全国高二课时练习)(多选)圆221:20x y xO+-=和圆222:240O x y x y++-=的交点为A ,B ,则有()A.公共弦AB 所在直线方程为0x y -=B.线段AB 中垂线方程为10x y +-=C.公共弦AB的长为2D.P 为圆1O 上一动点,则P 到直线AB 距离的最大值为212+【答案】ABD【解析】对于A,由圆221:20x y x O +-=与圆222:240O x y x y ++-=的交点为A ,B ,两式作差可得440x y -=,即公共弦AB 所在直线方程为0x y -=,故A 正确;对于B,圆221:20x y x O +-=的圆心为()1,0,1AB k =,则线段AB 中垂线斜率为1-,即线段AB 中垂线方程为:()011y x -=-⨯-,整理可得10x y +-=,故B 正确;对于C,圆221:20x y x O +-=,圆心1O ()1,0到0x y -=的距离为2d ==,半径1r =所以AB ==,故C 不正确;对于D,P 为圆1O 上一动点,圆心1O ()1,0到0xy -=的距离为2d =,半径1r =,即P 到直线AB 距离的最大值为12+,故D 正确.故选:ABD4.(2022·全国·高二专题练习)已知圆22110C x y +=:与圆22222140C x y x y +++-=:.(1)求证:圆1C 与圆2C 相交;(2)求两圆公共弦所在直线的方程;(3)求经过两圆交点,且圆心在直线60x y +-=上的圆的方程.【答案】(1)证明见解析(2)20x y +-=(3)226620x y x y +--+=【解析】(1)证明:圆2C :2222140x y x y +++-=化为标准方程为()()221116x y +++=,()21,1C ∴--,4r =圆221:10C x y +=的圆心坐标为()10,0C ,半径为=R,12C C ∴44<,∴两圆相交;(2)解:由圆221:10C x y +=与圆222:22140C x y x y +++-=,将两圆方程相减,可得2240x y +-=,即两圆公共弦所在直线的方程为20x y +-=;(3)由22222214010x y x y x y ⎧+++-=⎨+=⎩,解得3113x x y y ==-⎧⎧⎨⎨=-=⎩⎩或,则交点为()3,1A -,()1,3B -,圆心在直线60x y +-=上,设圆心为()6,P n n -,则AP BP ==3n =,故圆心()3,3P ,半径4r AP ==,∴所求圆的方程为()22(3)316x y -+-=.5.(2021·湖南·嘉禾县第一中学高二阶段练习)已知圆1C :222220x y x y +++-=,圆2C :22410x y y +--=.(1)证明:圆1C 与圆2C 相交;(2)若圆1C 与圆2C 相交于A ,B 两点,求AB .【答案】(1)证明见解析;【解析】(1)圆1C 的标准方程为()()22114x y +++=,圆心为()1,1--,半径为2,圆2C 的标准方程为()2225x y +-=,圆心为()0,2∴圆1C 和圆2C =22<,可知:圆1C 和圆2C 相交,得证.(2)由(1)结论,将圆1C 与圆2C 作差,得:直线AB 的方程为2610x y +-=,圆2C 的圆心()0,2到直线AB=,∴AB =6.(2022·江苏·高二单元测试)已知圆221:210240 C x y x y +-+-=和圆222:2280C x y x y +++-=.(1)试判断两圆的位置关系;(2)求公共弦所在直线的方程;(3)求公共弦的长度.【答案】(1)相交(2)240x y -+=(3)【解析】(1)将两圆方程化为标准方程为221:(1)(5)50C x y -++=,222:(1)(1)10C x y +++=,则圆1C 的圆心为(1,5)-,半径1r =圆2C 的圆心为(1,1)--,半径2r =12C C =12r r +=12r r -=121212r r C C r r ∴-<<+,∴两圆相交.(2)将两圆方程相减,得公共弦所在直线的方程为240x y -+=.(3)由22222102402280x y x y x y x y ⎧+-+-=⎨+++-=⎩,解得40x y =-⎧⎨=⎩或02x y =⎧⎨=⎩,∴两圆的交点坐标为(4,0)-和(0,2).∴=5切线问题1.(2022·全国·高二课时练习)设圆221:244C x y x y +-+=,圆222:680C x y x y ++-=,则圆1C ,2C 的公切线有()A .1条B .2条C .3条D .4条【答案】B【解析】由题意,得圆()()2212:312C x y -+=+,圆心()11,2C -,圆()()2222:534C x y ++=-,圆心()23,4C -,∴125353C C -<=+,∴1C 与2C 相交,有2条公切线.故选:B .2.(2022·全国·高二课时练习)(多选)已知圆()221:9C x y a +-=与圆()222:1C x a y -+=有四条公切线,则实数a 的取值可能是()A .-4B .-2C .D .3【答案】AD【解析】圆心()10,C a ,半径13r =,圆心()2,0C a ,半径21r =.因为两圆有四条公切线,所以两圆外离.又两圆圆心距d =31>+,解得a <-或a >3.(2022·全国·高二课时练习)(多选)已知圆()()22:211M x y -+-=,圆()()22:211N x y +++=,则下列是M ,N 两圆公切线的直线方程为()A .y =0B .3x -4y =0C.20x y -=D.20x y -=【答案】ACD【解析】圆M 的圆心为M (2,1),半径11r =.圆N 的圆心为N (-2,-1),半径21r =.圆心距2d =>,两圆相离,故有四条公切线.又两圆关于原点O 对称,则有两条切线过原点O ,设切线方程为y =kx1=,解得k =0或43k =,对应方程分别为y =0,4x -3y =0.另两条切线与直线MN 平行,而1:2MN l y x =,设切线方程为12y x b =+1=,解得2b =±,切线方程为20x y -+=,20x y --=.故选:ACD .4.(2022·全国·高二专题练习)过点()1,2且与圆221x y +=相切的直线的方程是______.【答案】1x =或3450x y -+=【解析】当直线l 的斜率不存在时,因为过点()1,2,所以直线:1l x =,此时圆心(0,0)到直线1x =的距离为1=r ,此时直线:1l x =与圆221x y +=相切,满足题意;当直线l 的斜率存在时,设斜率为k ,所以:l 2(1)y k x -=-,即20kx y k --+=,因为直线l 与圆相切,所以圆心到直线的距离1d r ==,解得34k =,所以直线l 的方程为3450x y -+=.综上:直线的方程为1x =或3450x y -+=故答案为:1x =或3450x y -+=5.(2022·全国·高二专题练习)求过点()13M -,的圆224x y +=的切线方程__________.【答案】326122633y x ++=+或326122633y x --=+【解析】过点()13M -,的斜率不存在的直线为:1x =-,圆心到直线的距离为1,与圆相交,当斜率存在,设其为k ,则切线可设为()31y k x -=+.2=,解得:33k +=或33k -=.所以切线方程为:326122633y x ++=+或326122633y x --=+.6(2022·广东·中山一中高三阶段练习)已知圆22:240C x y x y m +--+=.若圆C 与圆22:(2)(2)1D x y +++=有三条公切线,则m 的值为___________.【答案】11-【解析】由22240x y x y m +--+=,得22(1)(2)5x y m -+-=-,所以圆C 的圆心为()1,2C 因为圆22:(2)(2)1D x y +++=,所以圆D 的圆心为()22D ,--,半径为1,因为圆C 与圆D 有三条公切线,所以圆C 与圆D 相外切,即1CD ==+,解得11m =-,所以m 的值为11-.故答案为:11-.7.(2022·全国·高二课时练习)已知圆221:64120C x y x y +-++=与圆222:1420C x y x y a +--+=,若圆1C 与圆2C 有且仅有一个公共点,则实数a 的值为___________.【答案】34或14【解析】设圆1C ,圆2C 的半径分别为1r ,2r .圆1C 的方程可化为22(3)(2)1x y -++=,圆2C 的方程可化为22(7)(1)50x y a -+-=-.由两圆相切,得1212C C r r =+或1212C C r r =-.因为11r =,125C C ==,所以215r +=或215r -=,可得24r =或26=r 或24r =-(舍去),因此5016a -=或5036a -=,解得34a =或14a =.故答案为:34或148.(2022·贵州黔东南·高二期末(理))若圆221x y +=与圆()()22416x a y -+-=有3条公切线,则正数a =___________.【答案】35=∴3,0,3a a a =±>∴=又6最值问题1.(2022·广东·高三阶段练习)已知C :222220x y x y +---=,直线l :220x y ++=,M 为直线l 上的动点,过点M 作C 的切线MA ,MB ,切点为A ,B ,当四边形MACB 的面积取最小值时,直线AB 的方程为____.【答案】210x y ++=【解析】C :222220x y x y +---=的标准方程为22(1)(1)4x y -+-=,则圆心()11C ,,半径2r =.因为四边形MACB 的面积2•2CAMS SCA AM AM ====,要使四边形MACB 面积最小,则需CM 最小,此时CM 与直线l 垂直,直线CM 的方程为()121y x -=-,即21y x =-,联立21220y x x y =-⎧⎨++=⎩,解得()0,1M -.则CM =则以CM 为直径的圆的方程为221524x y ⎛⎫-+= ⎪⎝⎭,与C 的方程作差可得直线AB 的方程为210x y ++=.故答案为:210x y ++=.2.(2021·广东·南海中学高二阶段练习)已知圆22:(4)(3)1C x y -++=和两点(,0)A a -、(,0)(0)B a a >,若圆C 上存在点P ,使得90APB ∠=︒,则a 的最小值为()A .1B .6C .3D .4【答案】D【解析】由90APB ∠=︒得点P 在圆222x y a +=上,所以,点P 在圆222x y a +=上,又在圆C 上,所以,两圆有交点,因为圆222x y a +=的圆心为原点O ,半径为a ,圆C 的圆心为()4,3-,半径为1.所以,|1|1a OC a -≤≤+,即|1|5146a a a -≤≤+⇒≤≤所以,a 的最小值为4.故选:D3.(2021·吉林油田高级中学高二开学考试)已知圆P 的方程为22680x y x y ++-=,过点()1,2M -的直线与圆P 交于A ,B 两点,则弦AB 的最小值为()A .B .10C .D .5【解析】圆P 的方程可化为()()223425x y ++-=,则(3,4),5P r -=,因为()()22132425-++-<,故点()1,2M -在圆内,过点()1,2M -的最长弦一定是圆P 的直径,当AB PM ⊥时,AB 最短,此时PM =则AB ==故选:A .4.(2022·浙江·杭州市富阳区场口中学高二期末)过点(7,-2)且与直线2360x y -+=相切的半径最小的圆方程是()A .()()22515x y -++=B .()()225113x y -+-=C .()()224413x y -++=D .()()221652x y -++=【答案】B【解析】过点()7,2A -作直线2360x y -+=的垂线,垂足为B ,则以AB 为直径的圆为直线2360x y -+=相切的半径最小的圆,其中AB =(),B a b ,则221732360b a a b +⎧⨯=-⎪-⎨⎪-+=⎩,解得:34a b =⎧⎨=⎩,故AB 的中点,即圆心为7342,22+-⎛⎫ ⎪⎝⎭,即()5,1,故该圆为()()225113x y -+-=故选:B5.(2022·江苏·高二专题练习)已知M 是圆22:1C x y +=上一个动点,且直线1:310(R)l mx y m m --+=∈与直线2:310(R)l x my m m +--=∈相交于点P ,则||PM 的取值范围是()A.1,1⎤⎦B.1⎤⎦C.1,1⎤⎦D.1⎤⎦【答案】B【解析】直线1:310(R)l mx y m m --+=∈整理可得,(3)(1)0m x y ---=,即直线1l 恒过(3,1),同理可得,直线2l 恒过(1,3),又()110m m ⨯+-⨯=,∴直线1l 和2l 互相垂直,∴两条直线的交点P 在以(1,3),(3,1)为直径的圆上,即P 的轨迹方程为22(2)(2)2x y -+-=,设该圆心为M ,圆心距||1MC =>,∴两圆相离,1||1PM ∴-+ ,||PM ∴的取值范围是1].故选:B .。

高二数学直线与圆的位置关系试题答案及解析

高二数学直线与圆的位置关系试题答案及解析

高二数学直线与圆的位置关系试题答案及解析1.圆与直线相切,正实数b的值为 ( )A.B.C.D.3【答案】B【解析】该圆的圆心坐标为,半径为,由题意知,又,。

【考点】直线与圆相切,圆心到直线的距离等于圆的半径。

2.过点的直线l与圆有公共点,则直线l的倾斜角的取值范围是A.B.C.D.【答案】D【解析】设直线l的倾斜角为,当时,直线l的斜率,则直线l的方程可写成:即:,由直线l与圆有公共点,得,,解得,故选D.【考点】1.直线与圆的位置关系;2.点到直线的距离.3.过原点且倾斜角为的直线被圆学所截得的弦长为(科网 )A.2B.2C.D.【答案】A.【解析】设直线与圆的交点为,,首先由题意知直线的方程为:,然后根据圆心到直线的距离公式计算得,于是可得弦长,即为所求.【考点】直线与圆的位置关系.4.在平面直角坐标系中,若圆上存在,两点关于点成中心对称,则直线的方程为 .【答案】x+y=3【解析】由题意,圆的圆心坐标为C(0,1),∵圆上存在A,B两点关于点P(1,2)成中心对称,∴CP⊥AB,P为AB的中点,∵,∴,∴直线AB的方程为y-2=-(x-1),即x+y-3=0.【考点】直线与圆的位置关系.5.已知曲线C上的动点P()满足到定点A(-1,0)的距离与到定点B(1,0)距离之比为(1)求曲线C的方程。

(2)过点M(1,2)的直线与曲线C交于两点M、N,若|MN|=4,求直线的方程。

【答案】(1):(或);(2)或【解析】(1)根据动点P(x,y)满足到定点A(-1,0)的距离与到定点B(1,0)距离之比,建立方程,化简可得曲线C的方程.(2)分类讨论,设出直线方程,求出圆心到直线的距离,利用勾股定理,即可求得直线l的方程.试题解析:(1)由题意得|PA|=|PB| 2分;故 3分;化简得:(或)即为所求。

5分;(2)当直线的斜率不存在时,直线的方程为,将代入方程得,所以|MN|=4,满足题意。

直线与圆的位置关系练习题及参考答案

直线与圆的位置关系练习题及参考答案

直线与圆的位置关系练习题及参考答案一、选择题1. 在平面上,已知点A(4,-2),圆心O(1,3),半径R=5. 则点A与圆的位置关系是:A. A在圆内B. A在圆上C. A在圆外答案: A. A在圆内2. 已知直线L的方程为2x - 3y = 6,圆C的方程为x^2 + y^2 = 25.则直线L与圆C的位置关系是:A. 直线L与圆C相切B. 直线L与圆C相交于两点C. 直线L与圆C不相交答案: B. 直线L与圆C相交于两点3. 在平面上,已知两个圆C1与C2,圆C1的半径为3,圆心坐标为(1,1),圆C2的半径为2,圆心坐标为(-2,-3). 则两个圆的位置关系是:A. 两个圆相交于两点B. 两个圆内切C. 两个圆相离答案: C. 两个圆相离二、填空题1. 已知圆C的半径为2,圆心坐标为(3,5). 则圆心到原点的距离是______.答案: sqrt(3^2 + 5^2) = sqrt(34)2. 在平面上,已知直线L的方程为y = 2x + 1,圆C的半径为4,圆心坐标为(-1,2). 则直线L与圆C的位置关系可以表示为______.答案: (x+1)^2 + (y-2)^2 = 16三、解答题1. 如图所示,在平面上有一个圆C,其圆心坐标为(2,3),半径为4. 请写出圆C的方程,并确定点A(-3,4)与圆C的位置关系。

解答:圆C的方程为:(x-2)^2 + (y-3)^2 = 16点A(-3,4)与圆C的位置关系可以通过计算点A到圆心的距离来判断。

点A到圆心的距离为:distance = sqrt((-3-2)^2 + (4-3)^2) = sqrt(25) = 5比较点A到圆C的距离与圆的半径的关系:若 distance < 4,则点A在圆内;若 distance = 4,则点A在圆上;若 distance > 4,则点A在圆外。

因为 distance = 5 > 4,所以点A在圆外。

九年级 直线与圆的位置关系练习(含答案)

九年级 直线与圆的位置关系练习(含答案)

直线与圆的位置关系练习(含答案)一.选择题(共19小题)1.如图,已知PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=40°,则∠BAC的大小是()A.70°B.40°C.50°D.20°2.已知⊙O的半径为4cm,如果圆心O到直线l的距离为3.5cm,那么直线l与⊙O的位置关系是()A.相交B.相切C.相离D.不确定3.如图,PA、PB切⊙O于点A、B,PA=10,CD切⊙O于点E,交PA、PB于C、D两点,则△PCD的周长是()A.10 B.18 C.20 D.224.已知⊙O的半径为3,圆心O到直线L的距离为2,则直线L与⊙O的位置关系是()A.相交B.相切C.相离D.不能确定5.如图,AB是⊙O的直径,PA切⊙O于点A,OP交⊙O于点C,连接BC.若∠P=20°,则∠B的度数是()A.20°B.25°C.30°D.35°6.如图,⊙O过正方形ABCD的顶点A、B,且与CD相切,若正方形ABCD的边长为2,则⊙O的半径为()A.1 B.C.D.7.如图,已知⊙O的直径AB与弦AC的夹角为35°,过C点的切线PC与AB的延长线交于点P,则∠P等于()A.15°B.20°C.25°D.30°8.如图,PA和PB是⊙O的切线,点A和B是切点,AC是⊙O的直径,已知∠P=40°,则∠ACB的大小是()A.60°B.65°C.70°D.75°9.如图,P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=5,则△PCD的周长为()A.5 B.7 C.8 D.1010.如图,⊙C与∠AOB的两边分别相切,其中OA边与⊙C相切于点P.若∠AOB=90°,OP=6,则OC的长为()A.12 B.C.D.11.如图,已知直线AD是⊙O的切线,点A为切点,OD交⊙O于点B,点C在⊙O上,且∠ODA=36°,则∠ACB的度数为()A.54°B.36°C.30°D.27°12.AB是⊙O的直径,PA切⊙O于点A,PO交⊙O于点C;连接BC,若∠P=40°,则∠B等于()A.20°B.25°C.30°D.40°13.把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是()A.12cm B.24cm C.6cm D.12cm14.如图,AB是⊙O的直径,PA切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=10,∠P=30°,则AC的长度是()A.B.C.5 D.15.已知⊙O的半径是5,直线l是⊙O的切线,P是l上的任一点,那么()A.0<OP<5 B.OP=5 C.OP>5 D.OP≥516.如图,△ABC的边AC与⊙O相交于C,D两点,且经过圆心O,边AB与⊙O相切,切点为B.如果∠A=34°,那么∠C等于()A.28°B.33°C.34°D.56°17.如图,AB是⊙O的直径,点C在⊙O上,过点C作⊙O的切线交AB的延长线于点D,连接OC,AC.若∠D=50°,则∠A的度数是()A.20°B.25°C.40°D.50°18.如图,PA、PB是⊙O的切线,切点分别是A,B,如果∠P=60°,那么∠AOB 等于()A.60°B.90°C.120° D.150°19.如图,AB、AC是⊙O的两条弦,∠A=25°,过点C的切线与OB的延长线交于点D,则∠D的度数()A.25°B.30°C.40°D.50°二.填空题(共16小题)20.如图,⊙M与x轴相切于原点,平行于y轴的直线交⊙M于P、Q两点,P 点在Q点的下方.若点P的坐标是(2,1),则圆心M的坐标是.21.如图,Rt△ABC中,∠C=90°,若AC=4,BC=3,则△ABC的内切圆半径r=.22.如图,AB与⊙O相切于点C,∠A=∠B,⊙O的半径为6,AB=16,则OA的长为.23.如图,PA、PB分别与⊙O相切于A、B两点,若∠C=65°,则∠P的度数为.24.如图,平面直角坐标系中,⊙P与x轴分别交于A、B两点,点P的坐标为(3,﹣1),AB=2.若将⊙P向上平移,则⊙P与x轴相切时点P的坐标为.25.一直角三角形的两条直角边长分别为6和8,则它的内切圆半径为.26.若⊙O的直径是4,圆心O到直线l的距离为3,则直线l与⊙O的位置关系是.27.如图,在平面直角坐标系中,⊙M与x轴相切于点A(8,0),与y轴分别交于点B(0,4)和点C(0,16),则圆心M的坐标为.28.如图,线段AB与⊙O相切于点B,线段AO与⊙O相交于点C,AB=12,AC=8,则⊙O的半径长为.29.如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD,若∠A=50°,则∠COD的度数为.30.在平面直角坐标系中,O是坐标原点,A、B两点的坐标分别为(3,0)、(0,4),则△AOB的内心与外心之间的距离是.31.P是⊙O的直径AB的延长线上一点,PC与⊙O相切于点C,∠APC的平分线交AC于Q,则∠PQC=.32.如图,AB、AC、BD是⊙O的切线,P、C、D为切点,如果AB=5,AC=3,则BD的长为.33.如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,∠P=50°,则∠BAC=.34.如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC,∠P=40°,则∠ABC的度数为.35.如图,已知⊙O的外切△PCD切⊙O于A、B、E三点,(1)若PA=5,则PB=;(2)若∠P=40°,则∠COD=度.三.解答题(共15小题)36.如图,CD是⊙O的直径,并且AC=BC,AD=BD.求证:直线AB是⊙O的切线.37.如图,已知三角形ABC的边AB是⊙O的切线,切点为B.AC经过圆心O并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求⊙O的半径.38.在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是边AB上一点,以BD为直径的⊙O经过点E,且交BC于点F.(1)求证:AC是⊙O的切线;(2)若BF=6,⊙O的半径为5,求CE的长.39.如图,在Rt△ABC中,∠ABC=90°,以AB为直径的⊙O与AC边交于点D,过点D作⊙O的切线交BC于点E,连接OE(1)证明OE∥AD;(2)①当∠BAC=°时,四边形ODEB是正方形.②当∠BAC=°时,AD=3DE.40.如图所示,AB是⊙O的直径,AD与⊙O相切于点A,DE与⊙O相切于点E,点C为DE延长线上一点,且CE=CB.(1)求证:BC为⊙O的切线;(2)若AB=4,AD=1,求线段CE的长.41.如图△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.42.如图,四边形ABCD 内接于⊙O,BD是⊙O的直径,过点A作⊙O的切线AE交CD的延长线于点E,DA平分∠BDE.(1)求证:AE⊥CD;(2)已知AE=4cm,CD=6cm,求⊙O的半径.43.如图,已知AB为⊙O的弦,C为⊙O上一点,∠C=∠BAD,且BD⊥AB于B.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为3,AB=4,求AD的长.44.如图所示,以Rt△ABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE.(1)求证:DE是⊙O的切线;(2)连接OE,AE,当∠CAB为何值时,四边形AOED是平行四边形?并在此条件下求sin∠CAE的值.45.已知:如图,△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D 作DE⊥AC于点E,交BC的延长线于点F.求证:(1)AD=BD;(2)DF是⊙O的切线.46.如图,AC是⊙O的直径,PA切⊙O于点A,点B是⊙O上的一点,且∠BAC=30°,∠APB=60°.(1)求证:PB是⊙O的切线;(2)若⊙O的半径为2,求弦AB及PA,PB的长.47.如图,AB为⊙O的直径,D为的中点,连接OD交弦AC于点F,过点D 作DE∥AC,交BA的延长线于点E.(1)求证:DE是⊙O的切线;(2)连接CD,若OA=AE=4,求四边形ACDE的面积.48.如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE 交AC于点E.(1)求证:∠A=∠ADE;(2)若AD=16,DE=10,求BC的长.49.如图,已知AB是⊙O的直径,CD与⊙O相切于C,BE∥CO.(1)求证:BC是∠ABE的平分线;(2)若DC=8,⊙O的半径OA=6,求CE的长.50.如图,AB是⊙O的直径,点D在AB的延长线上,点C在⊙O上,CA=CD,∠CDA=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为4,求点A到CD所在直线的距离.直线与圆的位置关系练习参考答案一.选择题(共19小题)1.D;2.A;3.C;4.A;5.D;6.D;7.B;8.C;9.D;10.C;11.D;12.B;13.D;14.A;15.D;16.A;17.A;18.C;19.C;二.填空题(共16小题)20.(0,2.5);21.1;22.10;23.50°;24.(3,2);25.2;26.相离;27.(8,10);28.5;29.80°;30.;31.45°;32.2;33.25°;34.25°;35.5;110;三.解答题(共15小题)36.;37.;38.;39.45;30;40.;41.;42.;43.;44.;45.;46.;47.;48.;49.;50.;。

苏科版九年级数学(上册) 直线与圆的位置关系 一课一练【含答案】

苏科版九年级数学(上册) 直线与圆的位置关系 一课一练【含答案】

苏科版九年级数学(上册) 直线与圆的位置关系 一课一练一、单选题1.在中,,以点为圆心,为半径作圆.若与边只有ABC 9045C AC AB ︒∠===,,C R C AB 一个公共点,则的取值范围是( )R A .B .C .或D .或125R =34R 03R <<4R >34R < 125R =2.如图,PA 切⊙O 于点A ,PB 切⊙O 于点B ,如果∠APB=60°,⊙O 半径是3,则劣弧AB 的长为( )A .B .πC .2πD .4π2π3.在中,,,,以C 为圆心作与AB 相切,则的半径Rt ABC △90C ∠=︒10AB =8AC =C C 长为()A .8B .4C .9.6D .4.84.已知⊙O 的半径是5,直线l 是⊙O 的切线,那么点O 到直线l 的距离是( )A .2.5B .3C .5D .105.已知某直线到圆心的距离为,圆的周长为,请问这条直线与这个圆的公共点的个数为( 5cm 10cm π)A .0B .1C .2D .无法确定6.如图,在中,,点在线段上(不与、重合),若为的ABC 40B C ∠=∠=︒D BCB C O ADC 内心,则不可能是( )AOC ∠A .B .C .D .100︒120︒140︒150︒7.如图,△ABC 的内切圆⊙O 与BC 、CA 、AB 分别相切于点D 、E 、F ,且AB =5,BC =13,CA =12,则阴影部分(即四边形AEOF)的面积是()A .4B .6.25C .7.5D .98.已知⊙O 分别与△ABC 的BC 边,AB 的延长线,AC 的延长线相切,则∠BOC等于()A .(∠B+∠C )B .90°+∠AC .90°-∠AD .180°-∠A1212129.如图,AB 是⊙O 的直径,点P 在BA 的延长线上,PA =AO,PD 与⊙O 相切于点D ,BC ⊥AB 交PD 的延长线于点C,若⊙O 的半径为1,则BC 的长是( )A .1.5B .2CD 10.如图,AB 是⊙O 的直径,C ,D 在⊙O上,且BC=CD ,过点C 作CE ⊥AD ,交AD 延长线于E ,交AB 延长线于F 点.若AB=4ED ,则cos ∠ABC 的值是( )A .B .C .D .12131415二、填空题11.如图,⊙O 的半径OC =5cm ,直线l ⊥OC ,垂足为H ,且l 交⊙O 于A 、B 两点,AB =8cm ,则l沿OC 所在直线向下平移 __________cm 时与⊙O 相切.12.如图,已知,M 为OB 边上任意一点,以M 为圆心,2cm 为半径作,当30AOB ∠=︒M ________cm时,与OA 相切.OM =M 13.以正方形的边为直径作半圆,过点作直线切半圆于点,交边于点,若ABCD AB O C F AB E的周长为,则直角梯形周长为___________.CDE ∆12ABCE 14.如图,已知Rt △ABC 中,AC =5,BC =12,∠ACB =90°,P 是边AB 上的动点,Q 是边BC上的动点,且∠CPQ =90°,则线段CQ 的取值范围是____.15.在Rt △ABC 中,∠C=90°,AC=4,BC=3,若以C 为圆心,R 为半径作的圆与直线AB 相切,则R=______.16.已知⊙O的半径OA=5cm,延长OA到B,AB=2cm,以OB为一边作∠OBC=45°,那么BC所在直线与⊙O的位置关系是_____.17.如图,△ABC是⊙O的内接三角形,AB是⊙O的直径,I是△ABC的内心,则∠BIA的度数是_______°.18.等腰直角△ABC中, ∠C=90度,斜边AB=6,则此三角形的内心与外心之间的距离是_________.三、解答题19.在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有何位置关系?(1) r=2cm;(2) r=2.4cm;(3) r=3cm.20.已知:如图,⊙O内切于△ABC,∠BOC=105°,∠ACB=90°,AB=20cm.求BC、AC的长.21.已知:如图,△ABC三边BC=a,CA=b,AB=c,它的内切圆O的半径长为r.求△ABC的面积S.22.如图,在锐角△ABC 中,BC =5,sin ∠BAC =,点I 为三角形ABC 的内心,AB =BC ,求AI 的45长.23.如图,以平行四边形的顶点为圆心,长为半径作,分别交于两点,ABCD A ABA ,BC AD ,E F 交的延长线于点.BA G (1)求证:;EF FG =(2)连接,若,求的度数.AE 140EAG ︒∠=D ∠24.已知:如图,⊙O 是Rt △ABC 的内切圆,∠C=90°.(1)若AC=12cm,BC=9cm,求⊙O的半径r;(2)若AC=b,BC=a,AB=c,求⊙O的半径r.25.如图,AB是⊙O的直径,点P是弦AC上一动点(不与A,C重合),过点P作PE⊥AB,垂足为 ACE,射线EP交于点F,交过点C的切线于点D.(1)求证:DC=DP;AC(2)若∠CAB=30°,当F是的中点时,判断以A,O,C,F为顶点的四边形是什么特殊四边形?说明理由.26.如图,⊙O与四边形ABCD的各边依次切于M,N,G,H.(1)猜想AB+CD与AD+BC有何数量关系,并证明你的猜想;(2)若四边形ABCD 增加条件AD ∥BC 而成为梯形,梯形的中位线长为m ,其他条件不变,试用m 表示梯形的周长.27.如图,都为⊙O 的切线,切点分别为,且.52,,,APB PA PB DE ︒∠=,,A B F 6PA =(1)求的周长;PDE △(2)求的度数.DOE ∠28.如图,在Rt △ABC 中,∠BAC =90°,CD 平分∠ACB ,交AB 于点D ,以点D 为圆心,DA 为半径的⊙D 与AB 相交于点E.(1)判断直线BC 与⊙D 的位置关系,并证明你的结论.(2)若AC=3,BC=5,求BE的长.答案1.D如图,过点作于点.C CD AB ⊥D ,.9045ACB AC AB ︒∠=== ,,3BC ∴=①如果以点为圆心,为半径的圆与斜边相切,则.此时C R AB CD R =.1112225CD AB AC BC R CD ⋅=⋅∴==,②当时,圆与边也只有一个公共点.34R < AB 综上,或.34R < 125R =故选D.2.C解:连接OA ,OB .则OA ⊥PA ,OB ⊥PB∵∠APB=60°∴∠AOB=120°∴劣弧AB 的长是:120π32π.180⨯=故选C .3.D解:如图,过点C 作CD ⊥AB 于点D ,∵,,,90C ∠=︒10AB =8AC =∴,6BC ==∵S △ABC ,1122AC BC CD AB =⋅=⋅∴,4.8AC BC CD AB ⋅==则以C 为圆心CD 为半径作与AB 相切.C 故选D.4.C根据圆与直线的位置关系可得:当直线与圆相切时,圆心到直线的距离等于半径;当直线与圆相交时,圆心到直线的距离小于半径;当直线与圆相离时,圆心到直线的距离大于半径.5.B解:∵圆的周长为10πcm ,∴圆的半径为5cm ,∵圆心到直线l 的距离为5cm ,∴d=r ,∴直线与圆相切,∴直线l 和这个圆的公共点的个数为1个.故选:B .6.A∵中,,ABC 40B C ∠=∠=︒∴∠BAC=180º﹣∠B﹣∠C=100º,∵为的内心,O ADC ∴∠OAC=∠DAC ,∠ACO=∠ACB=20º,1212∴∠AOC=180º﹣∠OAC﹣∠ACO=160º﹣∠DAC ,12∵点在线段上(不与、重合),D BC B C ∴0º﹣∠DAC﹣100º,即0º﹣∠DAC﹣50º,12∴110º﹣∠AOC﹣160º,故∠AOC 不可能是100º,故选:A .7.A∵AB=5,BC=13,CA=12,∴AB 2+AC 2=BC 2,∴△ABC 为直角三角形,且∠BAC=90°,∵⊙O 为△ABC 内切圆,∴∠AFO=∠AEO=90°,且AE=AF ,∴四边形AEOF 为正方形,设⊙O 的半径为r ,∴OE=OF=r ,∴S 四边形AEOF =r²,连接AO ,BO ,CO,∴S △ABC =S △AOB +S △AOC +S △BOC ,∴,11()22AB AC BC r AB AC ++=⋅∴r=2,∴S 四边形AEOF =r²=4,故选A.8.C设⊙O 分别与△ABC 的BC 边,AB 的延长线,AC 的延长线相切,切点分别为D ,E ,F ,∴OE ⊥AB ,OF ⊥AC ,∠BOD =∠EOD ,∠COD =∠FOD ,1212∴∠EOF =180°-∠A ,∴∠BOC =∠BOD +∠COD=(∠EOD +∠FOD )12=∠EOF12=×(180°-∠A )12=90°-∠A .12故选C .9.D连接OD ,如图所示∵PC 切⊙O 于D ∴∠ODP =90°∵⊙O 的半径为1,PA =AO ,AB 是⊙O 的直径 ∴PO =1+1=2,PB =1+1+1=3,OD =1∴由勾股定理得:PD==∵BC ⊥AB ,AB 过O ∴BC 切⊙O 于B ∵PC 切⊙O 于D ∴CD =BC设CD =CB =x 在Rt △PBC 中,由勾股定理得:PC 2=PB 2+BC 2即 解得:x即BC222)3x x =+故选:D10.A连接OC 、AC,∵CE ⊥AD ,∴∠EAC+∠ECA=90°,∵OC=OA ,∴∠OCA=∠OAC ,又∵BC=CD ,∴∠OAC=∠EAC ,∴∠OCA=∠EAC ,∴∠ECA+∠OCA=90°,∴EF 是⊙O 的切线,∴∠ECD=∠EAC ,又∵BC=CD ,∴∠EAC=∠BAC ,∴∠ECD=∠BAC ,又∵AB 是直径,∴∠BCA=90°,在△BAC 和△DCE 中,∠BCA=∠DEC=90°,∠ECD=∠CAB ,∴△CDE ∽△ABC ,∴ =,CDDE A B B C 又∵AB=4DE ,CD=BC ,∴,=14BC AB BCAB∴BC=AB ,12∴cos ∠ABC= =.BC AB 12故选:A .11.2∵直线和圆相切时,OH =5,又∵在直角三角形OHA 中,HA =AB ÷2 =4,OA =5,∴OH =3.∴需要平移5-3=2cm .故答案是:2.12.4解:如图,过M 作MN ⊥OA 于点N ,∵MN=2cm ,,30AOB ∠=︒∴OM=4cm ,则当OM=4cm 时,与OA相切.M 故答案为4.13.212设正方形ABCD 的边长为a则,AB BC CD AD a ====90BAD ABC D ∠=∠=∠=︒由圆的切线的判定得:AD 、BC 均为圆O 的切线由切线长定理得:,AE FE FC BC a===的周长为CDE 12,即12DE CE CD ∴++=12DE FE FC CD +++=,即12DE AE BC CD ∴+++=12AD BC CD ++=,解得312a ∴=4a =设,则AE x =3,3DE AD AE x CE FE FC x =-=-=+=+在中,,即Rt CDE △222CD DE CE +=2223(3)(3)x x +-=+解得34x =315,344AE CE x ∴==+=则直角梯形周长为ABCE 1532133442AB BC CE AE +++=+++=故.21214.≤CQ ≤12.203∵Rt △ABC 中,AC =5,BC =12,∠ACB =90°,∴AB =13,①当半圆O 与AB 相切时,如图,连接OP ,则OP ⊥AB ,且AC =AP =5,∴PB =AB ﹣AP =13﹣5=8;设CO =x ,则OP =x ,OB =12﹣x ;在Rt △OPB 中,OB 2=OP 2+OB 2,即(12﹣x )2=x 2+82,解之得x =,103∴CQ =2x =;203即当CQ =且点P 运动到切点的位置时,△CPQ 为直角三角形.203②当<CQ ≤12时,半圆O 与直线AB 有两个交点,当点P 运动到这两个交点的位置时,△CPQ 为直203角三角形;③当0<CQ <时,半圆O 与直线AB 相离,即点P 在AB 边上运动时,均在半圆O 外,∠CPQ <90°,203此时△CPQ 不可能为直角三角形;∴当≤CQ ≤12时,△CPQ 可能为直角三角形.203故≤CQ ≤12.20315.2.4解:过C 作CD ⊥AB 于D.∵ AB 2=AC 2+BC 2,AC =3,BC =4,∴ AB 2=32+42=25,∴ AB =5,根据三角形面积,得AC ·BC =CD ·AB∴CD =2.4.∵直线AB 和⊙C相切,∴ R =CD =2.4.16.相交过O 作OC ⊥BC ,在Rt △OBC 中,∠B=45°,OB=5+2=7,∴5,∴BC 所在直线与⊙O 的位置关系是相交,故答案为相交.17.135∵AB 是⊙O 的直径∴=90ACB ∠︒∴90CAB CBA ∠+∠=︒∵I 是△ABC 的内心∴IA 、IB 是角平分线∴()1452IAB IBA CAB CBA +=+=︒∠∠∠∠∴()180135AIB IAB IBA =︒-+=︒∠∠∠故135.18.3如图,∵AB=6,AC=BC ,∠ABC=90°∴CO 1= AO 1= BO 1=3AC=BC=∵O 2是内心,∴11()22AB CDAB AC BC r ⋅=++∴-3即O 1O 2-3故-319.(1)相离(2)相切(3)相交∵∠C =90°,AC =3cm ,BC =4cm ,∴AB =5cm.作CD ⊥AB 于D , 则 AC ·BC = AB ·CD , CD = cm.(1) ∵CD =2.4cm >r =2cm, ∴直线AB 与⊙C 相离.(2) ∵CD =2.4cm =r =2.4cm, ∴直线AB 与⊙C 相切.(3) ∵CD =2.4cm <r =3cm, ∴直线AB 与⊙C 相交.20.BC 、AC 的长分别是10cm 、cm.解:∵圆O 内切于△ABC ,∴∠ABO=∠CBO ,∠BCO=∠ACO ,∵∠ACB=90°,∴∠BCO=×90°=45°,12∵∠BOC=105°,∴∠CBO=180°−45°−105°=30°,∴∠ABC=2∠CBO=60°,∴∠A=30°,∴BC=AB=×20=10cm ,1212∴==∴BC 、AC 的长分别是10cm 、21.S=(a+b+c)r12如图,设△ABC 与⊙O 相切与点D 、E 、F .连接OA 、OB 、OC 、OD 、OE 、OF .则OD ⊥AB ,OE ⊥AC ,OF ⊥BC .∵S △AOB =AB•OD=cr ,同理,S △OBC =ar ,S △OAC =br .12121212∵S △ABC =S △AOB +S △OBC +S △OAC ,即S=cr+ar+br=(a+b+c)r1212121222.AI .连结CI ,BI ,且延长BI 交AC 于点F ,过点I 作IG ⊥BC 于点G ,IE ⊥AB 于点E .∵AB =BC =5,点I 为△ABC 的内心,∴BF ⊥AC ,AF =CF .在Rt △ABF 中,∵sin ∠BAC =,∴BF =4.∴AF=3,∴AC =6.∵点I 是△ABC 的内心,45BF AB =IE ⊥AB ,IF ⊥AC ,IG ⊥BC ,∴IE =IF =IG .∴S △ABC =AB +AC +BC )·IF =AC ·BF ,∴IF =1212,∴AI.6436562AC BF AB AC BC ⨯ ==++++23.(1)详见解析;(2)70°(1)证明:连接.AE∵四边形是平行四边形,ABCD ,//AD BC ∴,,EAF AEB ∴∠=∠GAF B ∠=∠,AE AB = ,B AEB ∴∠=∠,EAF GAF ∴∠=∠.EF FG ∴=(2)解:为的直径,,GB A 140EAG ︒∠=,40BAE ︒∴∠=,70B AEB ︒∴∠=∠=∵四边形是平行四边形,ABCD .70D B ︒∴∠=∠=24.(1)r=3cm. (2) r=(a+b-c ).12(1)如图,连接OD ,OF ;在Rt △ABC 中,∠C=90°,AC=12cm ,BC=9cm ;根据勾股定理=15cm ;四边形OFCD 中,OD=OF ,∠ODC=∠OFC=∠C=90°;则四边形OFCD 是正方形;由切线长定理,得:AD=AE ,CD=CF ,BE=BF ;则CD=CF=(AC+BC-AB );12即:r=(12+9-15)=3cm .12(2)当AC=b ,BC=a ,AB=c ,由以上可得: CD=CF=(AC+BC-AB );12即:r=(a+b-c ).则⊙O 的半径r 为:(a+b-c ).121225.(1)证明见解析;(2)菱形,理由见解析.解:(1)连接BC、OC,∵AB是⊙O的直径,∴∠OCD=90°,∴∠OCA+∠OCB=90°,∵∠OCA=∠OAC,∠B=∠OCB,∴∠OAC+∠B=90°,∵CD为切线,∴∠OCD=90°,∴∠OCA+∠ACD=90°,∴∠B=∠ACD,∵PE⊥AB,∴∠APE=∠DPC=∠B,∴∠DPC=∠ACD,∴AP=DC;(2)以A,O,C,F为顶点的四边形是菱形.理由如下:∵∠CAB=30°,∴∠B=60°,∴△OBC为等边三角形,∴∠AOC=120°,连接OF,AF,AC∵F是的中点,∴∠AOF=∠COF=60°,∴△AOF与△COF均为等边三角形,∴AF=AO=OC=CF,∴四边形OACF为菱形.26.(1)AB+CD=AD+BC,证明详见解析;(2)4m.(1)AB+CD=AD+BC证明:由切线长定理,得:AM=AH,BN=BM,CN=CG,DG=DH,所以AB+CD=AM+BM+CG+DG=AH+BN+CN+DH=AD+BC,即AB+CD=AD+BC(2)AD∥BC,在梯形ABCD中,由梯形的中位线定理得,AD+BC=2m,梯形的周长=AB+CD+AD+BC=2(AD+BC)=2×2m=4m27.(1)12;(2)64°解:(1)∵PA 、PB 、DE 都为⊙O 的切线,∴DA=DF ,EB=EF ,PA=PB=6,∴DE=DA+EB ,∴PE+PD+DE=PA+PB=12,即△PDE 的周长为12;(2)连接OF,∵PA 、PB 、DE 分别切⊙O 于A 、B 、F 三点,∴OB ⊥PB ,OA ⊥PA ,∠BOE=∠FOE=∠BOF ,∠FOD=∠AOD=∠AOF ,1212∵∠APB=52°,∴∠AOB=360°-90°-90°-52°=128°,∴∠DOE=∠FOE+∠FOD=(∠BOF+∠AOF )=∠BOA=64°.121228.(1)直线BC 与⊙D 相切,理由见解析;(2)BE=1.(1)直线BC 与⊙D 相切,理由:过D 作DF ⊥BC 于F ,∴∠CFD =∠A =90°,∵CD 平分∠ACB ,∴DA =DF ,∴直线BC 与⊙D 相切;(2)∵∠BAC =90°,AC =3,BC =5,∴AB 4,在Rt △ACD 与Rt △FCD 中,AD DF CD CD =⎧⎨=⎩∴Rt △ACD ≌Rt △FCD(HL),∴CF =AC =3,∴BF =2,∵BF 是⊙D 的切线,∴BF 2=BA•BE ,∴.22214BF BE AB ===。

沪科版数学九年级下 直线和圆的位置关系经典题型汇编(含答案)

沪科版数学九年级下 直线和圆的位置关系经典题型汇编(含答案)

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯沪科版九年级数学直线和圆的位置关系经典题型汇编一、选择题1.以坐标原点O为圆心,作半径为2的圆.若直线y=-x+b与⊙O相交,则b的取值范围是( )A. 0≤b<2 2B. -22≤b≤2 2C. -23<b<2 3D. -22<b<2 22.如图,直线l是⊙O的切线,A为切点,B为直线l上一点,连接OB交⊙O于点C.若AB=12,OA=5,则BC的长为( )A. 5B. 6C. 7D. 8第2题第3题3.如图,AB是⊙O的直径,PA切⊙O于点A,PO交⊙O于点C,连接BC.若∠P=40°,则∠B的度数为( )A. 20°B. 25°C. 30°D. 40°4.如图,点A,B,C在⊙O上,∠ABC=29°,过点C作⊙O的切线交OA的延长线于点D,则∠D的度数为( )A. 29°B. 32°C. 42°D. 58°第4题第5题5. 如图,直线AD是⊙O的切线,A为切点,OD交⊙O于点B,点C在⊙O上,且∠ODA=36°,则∠ACB的度数为( )A. 54°B. 36°C. 30°D. 27°6. 如图,圆内接四边形ABCD的边AB过圆心O,过点C的切线垂直于边AD所在的直线于点M.若∠ABC =55°,则∠ACD的度数为( )A. 20°B. 35°C. 40°D. 55°第6题第7题7. 如图,⊙O是△ABC的内切圆,则O是△ABC的( )A. 三条边的垂直平分线的交点B. 三条角平分线的交点C. 三条中线的交点D. 三条高的交点8.如图,在△ABC中,∠A=66°,点I是内心,则∠BIC的度数为( )A. 114°B. 122°C. 123°D. 132°第8题 第11题9.已知一个三角形的三边长分别为5,7,8,则其内切圆的半径为( ) A.32 B. 32C. 3D. 2 3 10. 若正方形的外接圆半径为2,则其内切圆的半径为( ) A. 2 B. 2 2 C.22D. 1 11.如图,⊙O 的直径AB =4,BC 切⊙O 于点B ,OC 平行于弦AD ,OC =5,则AD 的长为( ) A. 65 B. 85 C. 75 D. 23512.如图,AB 是⊙O 的直径,PA 切⊙O 于点A ,连接PO 并延长交⊙O 于点C ,连接AC ,AB =10,∠P=30°,则AC 的长度是( )A. 5 3B. 5 2C. 5D. 52第12题第13题13.如图,菱形ABCD 的边AB =20,面积为320,∠BAD<90°,⊙O 与边AB ,AD 都相切,AO =10,则⊙O 的半径为( )A. 5B. 6C. 2 5D. 3 2 二、 填空题14.如图,AT 切⊙O 于点A ,AB 是⊙O 的直径.若∠ABT =40°,则∠ATB =________°.第14题第15题15. (2017·齐齐哈尔)如图,AC 是⊙O 的切线,切点为C ,BC 是⊙O 的直径,AB 交⊙O 于点D ,连接OD.若∠A =50°,则∠COD 的度数为________.16. 如图,AB 是⊙O 的直径,AC 与⊙O 相切,切点为A ,CO 交⊙O 于点D.若∠CAD =30°,则∠BOD =________°.第16题第17题17. 如图,AB 与⊙O 相切于点B ,线段OA 与弦BC 垂直,垂足为D ,AB =BC =2,则∠AOB =________°. 18. 如图,线段AB 与⊙O 相切于点B ,线段AO 与⊙O 相交于点C ,AB =12,AC =8,则⊙O 的半径为________.第18题第19题19.如图,在Rt △ABC 中,∠C =90°,BC =3,点O 在AB 上,OB =2,以OB 为半径的⊙O 与AC 相切于点D ,交BC 于点E ,则弦BE 的长为________ .20.如图,∠AOB =30°,在射线OA 上取点O 1,以点O 1为圆心的圆与OB 相切;在射线O 1A 上取点O 2,以点O 2为圆心、O 2O 1为半径的圆与OB 相切;在射线O 2A 上取点O 3,以点O 3为圆心、O 3O 2为半径的圆与OB 相切;…;在射线O 9A 上取点O 10,以点O 10为圆心、O 10O 9为半径的圆与OB 相切.若⊙O 1的半径为1,则⊙O 10的半径是________.第20题 第21题21.如图,⊙O 是△ABC 的外接圆,AB 为直径,∠BAC 的平分线交⊙O 于点D ,过点D 的切线分别交AB ,AC 的延长线于点E ,F ,连接BD.(1) AF ,EF 所在直线的位置关系是________; (2) 若AC =6,CF =2,则⊙O 的半径为________.22. 如图,⊙C 的半径为3,圆外一定点O 满足OC =5,P 为⊙C 上一动点,经过点O 的直线l 上有两点A ,B ,且OA =OB ,∠APB =90°,l 不经过点C ,则AB 的最小值为________.第22题第23题第24题23. 如图,在直角坐标系中,⊙A 的圆心A 的坐标为(-1,0),半径为1,点P 为直线y =-34x +3上的动点,过点P 作⊙A 的切线,切点为Q ,则切线长PQ 的最小值是________.24.如图,在平面直角坐标系xOy 中,▱ABCO 的顶点A ,B 的坐标分别是(3,0),(0,2).动点P 在直线y =32x 上运动,以点P 为圆心、PB 长为半径的⊙P 随点P 运动.当⊙P 与▱ABCO 的边相切时,点P 的坐标为____________________.三、 解答题25.已知AB 是⊙O 的直径,AT 是⊙O 的切线,∠ABT =50°,BT 交⊙O 于点C ,E 是AB 上一点,延长CE 交⊙O 于点D.(1) 如图①,求∠T 和∠CDB 的大小;(2) 如图②,当BE =BC 时,求∠CDO 的大小.第25题26. 如图,⊙O的半径为5,PA是⊙O的一条切线,切点为A,连接PO并延长,交⊙O于点B,过点A 作AC⊥PB交⊙O于点C、交PB于点D,连接BC,∠P=30°.(1) 求弦AC的长;(2) 求证:BC∥PA.第26题27.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.(1) 求证:DE⊥AC;(2) 若DE+EA=8,⊙O的半径为10,求AF的长度.第27题28.如图,PA,PB是⊙O的切线,A,B为切点,连接AO并延长,交PB的延长线于点C,连接PO,交⊙O于点D.(1) 求证:PO平分∠APC;(2) 连接DB,若∠C=30°,求证:DB∥AC.第28题29. 如图,AB与⊙O相切于点B,BC为⊙O的弦,OC⊥OA,OA与BC相交于点P.(1) 求证:AP=AB;(2) 若OB=4,AB=3,求线段BP的长.第29题30. 如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE交AC于点E.(1) 求证:∠A=∠ADE;(2) 若AD=16,DE=10,求BC的长.第30题31.如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1) 判断直线DE与⊙O的位置关系,并说明理由;(2) 若AC=6,BC=8,OA=2,求线段DE的长.第31题32.如图,△ABD是⊙O的内接三角形,E是弦BD的中点,C是⊙O外一点,且∠DBC=∠A,连接OE并延长与⊙O相交于点F,与BC相交于点C.(1) 求证:BC是⊙O的切线;(2) 若⊙O的半径为6,BC=8,求弦BD的长.第32题33. 如图,AN 是⊙M 的直径,NB ∥x 轴,AB 交⊙M 于点C.(1) 若点A 的坐标为(0,6),点N 的坐标为(0,2),∠ABN =30°,求点B 的坐标; (2) 若D 为线段NB 的中点,求证:直线CD 是⊙M 的切线.第33题34如图,在等腰三角形ABC 中,AB =BC ,以BC 为直径的⊙O 与AC 相交于点D ,过点D 作DE ⊥AB 交CB 的延长线于点E ,垂足为F.(1) 判断DE 与⊙O 的位置关系,并说明理由;(2) 若⊙O 的半径R =5,tan C =12,求EF 的长.第34题35. 如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为H ,与AC 平行的⊙O 的一条切线交CD 的延长线于点M ,交AB 的延长线于点E ,切点为F ,连接AF 交CD 于点N.(1) 求证:CA =CN ;(2) 连接DF ,若cos ∠DFA =45,AN =210,求⊙O 的直径.第35题36.如图,在菱形ABCD 中,点P 在对角线AC 上,且PA =PD ,⊙O 是△PAD 的外接圆. (1) 求证:AB 是⊙O 的切线;(2) 若AC =8,tan ∠BAC =22,求⊙O 的半径. 第36题参考答案一、 1. D 2. D 3. B 4. B 5. D 6. A 7. B 8. C 9. C 10. A 11. B 12. A 13. C二、 14. 50 15. 80° 16. 120 17. 60 18. 5 19. 2 20. 2921. (1) AF ⊥EF (2) 5 22. 4 23. 2 2 24. (0,0)或⎝ ⎛⎭⎪⎫23,1或⎝ ⎛⎭⎪⎫3-5,9-352三、 25. (1) 如图①,连接AC.∵ AT 是⊙O 的切线,AB 是⊙O 的直径,∴ AT ⊥AB.∴ ∠TAB =90°.∵ ∠ABT =50°,∴ ∠T =90°-∠ABT =40°.∵ AB 是⊙O 的直径,∴ ∠ACB =90°.∴ ∠CAB =90°-∠ABC =40°.∴ ∠CDB =∠CAB =40° (2) 如图②,连接AD.∵ 在△BCE 中,BE =BC ,∠EBC =50°,∴ ∠BCE =∠BEC =65°.∴ ∠BAD =∠BCD =65°.∵ OA =OD ,∴ ∠ODA =∠OAD =65°.∵ ∠ADC =∠ABC =50°,∴ ∠CDO =∠ODA -∠ADC =65°-50°=15°第25题26. (1) 连接OA.∵ PA 是⊙O 的切线,OA 为⊙O 的半径,∴ ∠PAO =90°.∵ 在Rt △PAO 中,∠P =30°,OA =5,∴ OP =2OA =10,PA =OP 2-OA 2=5 3.∵ AC ⊥PB ,∴ 12OP ×AD =12PA ×OA ,即12×10×AD=12×53×5,解得AD =532.∵ AC ⊥PB ,PB 过圆心O ,∴ AD =DC.∴ AC =2AD =5 3 (2) ∵ AC ⊥PB ,∠P =30°,∴ ∠PAC =60°.∵ 在Rt △PAO 中,∠P =30°,∴ ∠AOP =60°.∴ ∠BOA =180°-∠AOP =120°.∴ ∠BCA =12∠BOA =60°.∴ ∠PAC =∠BCA.∴ BC ∥PA27. (1) ∵ OB =OD ,∴ ∠ABC =∠ODB.∵ AB =AC ,∴ ∠ABC =∠ACB.∴ ∠ODB =∠ACB.∴ OD ∥AC.∵ DE 是⊙O 的切线,OD 是半径,∴ DE ⊥OD.∴ DE ⊥AC (2) 过点O 作OH ⊥AF 于点H ,则∠ODE =∠DEH =∠OHE =90°,∴ 四边形ODEH 是矩形.∴ OD =EH ,OH =DE.设AH =x.∵ DE +AE =8,OD =10,∴ AE=10-x ,OH =DE =8-(10-x)=x -2.在Rt △AOH 中,由勾股定理,知AH 2+OH 2=OA 2,即x 2+(x -2)2=102,解得x 1=8,x 2=-6(不合题意,舍去).∴ AH =8.∵ OH ⊥AF ,∴ AH =FH =12AF.∴ AF =2AH =2×8=1628. (1) 连接OB.∵ PA ,PB 是⊙O 的切线,∴ OA ⊥AP ,OB ⊥BP.又∵ OA =OB ,∴ PO 平分∠APC (2) ∵ OA ⊥AP ,OB ⊥BP ,∴ ∠CAP =∠OBP =90°.∵ ∠C =30°,∴ ∠APC =90°-∠C =90°-30°=60°.∵ PO 平分∠APC ,∴ ∠OPC =12∠APC =12×60°=30°.∴ ∠POB =90°-∠OPC =90°-30°=60°.又∵OD =OB ,∴ △ODB 是等边三角形.∴ ∠OBD =60°.∴ ∠DBP =∠OBP -∠OBD =90°-60°=30°.∴ ∠DBP =∠C.∴ DB ∥AC29. (1) ∵ OC =OB ,∴ ∠OCB =∠OBC.∵ AB 是⊙O 的切线,∴ OB ⊥AB.∴ ∠OBA =90°.∴ ∠ABP+∠OBC =90°.∵ OC ⊥AO ,∴ ∠AOC =90°.∴ ∠OCB +∠CPO =90°.又∵ ∠APB =∠CPO ,∴ ∠APB =∠ABP.∴ AP =AB (2) 过点O 作OH ⊥BC 于点H.∵ 在Rt △OAB 中,OB =4,AB =3,∴ OA =32+42=5.∵ AP =AB =3,∴ OP =2.∴ 在Rt △POC 中,PC =OC 2+OP 2=2 5.∵ OC ⊥OA ,OH ⊥BC ,∴ S △COP =12PC ·OH=12OC ·OP.∴ OH =OC ·OP PC =455.∴ 在Rt △CHO 中,CH =OC 2-OH 2=855.∵ OH ⊥BC ,OH 过圆心O ,∴ CH =BH.∴ BC =2CH =1655.∴ BP =BC -PC =1655-25=65530. (1) 如图,连接OD.∵ DE 是切线,∴ ∠ODE =90°.∴ ∠ADE +∠BDO =90°.∵ ∠ACB =90°,∴ ∠A +∠B =90°.∵ OD =OB ,∴ ∠B =∠BDO.∴ ∠A =∠ADE (2) 如图,连接CD.∵ ∠ADE =∠A ,∴ AE =DE.∵ BC 是⊙O 的直径,∠ACB =90°,∴ EC 是⊙O 的切线.∴ ED =EC.∴ AE =EC.∵ DE =10,∴ AC =2DE =20.∵ AE =DE =CE ,∴ ∠A =∠EDA ,∠EDC =∠ECD.∵ ∠A +∠EDA +∠EDC +∠ECD =180°,∴ ∠ADE +∠EDC =12×180°=90°.∴ 在Rt △ADC 中,DC =202-162=12.∵ BC 是⊙O 的直径,∴ ∠BDC =90°.设BD =x ,在 Rt △BDC 中,BC 2=x 2+122;在Rt △ABC 中,BC 2=(x +16)2-202.∴ x 2+122=(x +16)2-202,解得x =9,即BD =9.∴ 在Rt △BDC 中,BC =122+92=15第30题31. (1) 直线DE 与⊙O 相切 理由:如图,连接OD.∵ OD =OA ,∴ ∠A =∠ODA.∵ EF 是BD 的垂直平分线,∴ EB =ED.∴ ∠B =∠EDB.∵ ∠C =90°,∴ ∠A +∠B =90°.∴ ∠ODA +∠EDB =90°.∴ ∠ODE =180°-90°=90°,即OD ⊥DE.∵ OD 是⊙O 的半径,∴ 直线DE 与⊙O 相切.(2) 如图,连接OE.设DE =x ,则EB =ED =x ,CE =8-x.∵ ∠C =∠ODE =90°,∴ OC 2+CE 2=OE 2=OD 2+DE 2.∵ AC =6,AO =2,∴ OC =4.∴ 42+(8-x)2=22+x 2,解得x =4.75.∴ DE =4.75第31题32. (1) 如图,连接OB ,OD.∵ E 是弦BD 的中点,∴ BE =DE ,BD =2BE.∵ OB =OD ,∴ OE ⊥BD ,∠BOF =∠DOF ,即∠BOD =2∠BOF.∵ ∠BOD =2∠A ,∴ ∠BOF =∠A.∵ ∠DBC =∠A ,∴ ∠BOF =∠DBC.∵ 在Rt △BEO 中,∠DBO +∠BOF =90°,∴ ∠DBO +∠DBC =90°,即∠CBO =90°.∴ CB ⊥OB.∵ OB 是⊙O 的半径,∴ BC 是⊙O 的切线 (2) ∵ ∠CBO =90°,OB =6,BC =8,∴ OC =62+82=10.∵ BE ⊥OC ,∴ S△OBC =12OC ·BE =12OB ·BC.∴ BE =OB ·BC OC =6×810=4.8.∴ BD =2BE =9.6 第32题33. (1) ∵ 点A 的坐标为(0,6),点N 的坐标为(0,2),∴ ON =2,AN =4.∵ NB ∥x 轴,x 轴⊥y 轴,∴ NB ⊥y 轴.∴ ∠ANB =90°.∵ 在Rt △ANB 中,∠ABN =30°,∴ AB =2AN =8.∴ 由勾股定理,可知NB =AB 2-AN 2=4 3.∴ 点B 的坐标为(43,2) (2) 如图,连接MC ,NC.∵ AN 是⊙M 的直径,∴ ∠ACN =90°.∴ ∠NCB =90°.在Rt △NCB 中,D 为NB 的中点,∴ CD =12NB =ND.∴ ∠CND =∠NCD.∵ MC =MN ,∴ ∠MCN =∠MNC.∵ ∠ANB =∠MNC +∠CND =90°,∴ ∠MCN +∠NCD =90°,即∠MCD =90°.∴ MC ⊥CD.∵ MC 是⊙M 的半径,∴ 直线CD 是⊙M 的切线第33题34. (1) DE 与⊙O 相切 理由:如图,连接OD.∵ OC =OD ,∴ ∠C =∠ODC.∵ AB =BC ,∴ ∠C =∠A.∴ ∠ODC =∠A.∴ OD ∥AB.∵ DE ⊥AB ,∴ DE ⊥OD.∵ OD 是⊙O 的半径,∴ DE 与⊙O 相切. (2) 如图,连接BD ,过点D 作DH ⊥BC 于点H.∵ BC 为⊙O 的直径,∴ ∠CDB =90°.∴ tan C =BD CD =12.不妨设BD =k ,则CD =2k ,BC =BD 2+CD 2=5k.∵ BC =2R =10,∴ k =25,即BD =25,CD =4 5.∵ 在Rt△CDB 中,S △CDB =12BC ·DH =12CD ·BD ,∴ DH =CD ·BD BC =4.∴ 在Rt △OHD 中,OH =OD 2-DH 2=3.∵ DE ⊥OD ,DH ⊥BC ,∴ ∠ODE =∠OHD =90°.∵ ∠DOH =∠EOD ,∴ △DOH ∽△EOD.∴ OD OE =OH OD ,即5OE =35.∴ OE =253.∴ EB =OE -OB =253-5=103.∵ OD ∥AB ,即BF ∥OD ,∴ △BFE ∽△ODE.∴ BF OD =BE OE ,即BF 5=103253.∴ BF =2.∴ 在Rt △BFE 中,EF =EB 2-BF 2=83第34题35. (1) 如图,连接OF.∵ OF =OA ,∴ ∠OAN =∠OFN.∵ ME 与⊙O 相切与点F ,∴ OF ⊥ME ,即∠OFN +∠MFN =90°.∵ CD ⊥AB ,∴ ∠OAN +∠ANH =90°.∴ ∠MFN =∠ANH.又∵ ME ∥AC ,∴ ∠MFN =∠NAC.∴ ∠ANH =∠NAC.∴ CA =CN (2) ∵ ∠DFA =∠ACH ,cos ∠DFA =45,∴ cos ∠ACH =45.∵ CD ⊥AB ,∴ 在Rt △AHC 中,设AC =5a ,则HC =4a ,AH =AC 2-HC 2=3a.由(1)知,CA =CN ,∴ NH =a.在 Rt △AHN 中,利用勾股定理,得AH 2+NH 2=AN 2,即(3a)2+a 2=(210)2,解得a =2.∴ AH =6,HC =8.如图,连接OC ,在Rt △OHC 中,利用勾股定理,得OH 2+HC 2=OC 2.设⊙O 的半径为R ,则(R -6)2+82=R 2,解得R =253.∴ 2R=503,即⊙O 的直径为503第35题36. (1) 如图,连接OP ,OA ,OD ,设OP 交AD 于点E.∵ PA =PD ,∴ AP ︵=DP ︵,∠AOP =∠DOP.∵ OA =OD ,∴ OP ⊥AD ,AE =DE.∴ ∠1+∠OPA =90°.∵ OP =OA ,∴ ∠OAP =∠OPA.∴ ∠1+∠OAP =90°.∵ 四边形ABCD 为菱形,∴ 易证∠1=∠2.∴ ∠2+∠OAP =90°,即∠OAB =90°.∴ OA ⊥AB.∵ OA 是⊙O 的半径,∴ AB 是⊙O 的切线 (2) 如图,连接BD ,交AC 于点F.∵ 四边形ABCD 为菱形,∴ DB 与AC 互相垂直平分.∵ AC =8,tan ∠BAC =22,∴ AF =4,tan ∠DAC =DF AF =22.∴ DF =2 2.∴ 在Rt △AFD 中,AD =AF 2+DF 2=2 6.∴ AE = 6.∵ ∠1=∠2,∴ 在Rt △PAE 中,tan ∠1=PE AE =22.∴ PE = 3.设⊙O 的半径为R ,则OE =R -3,OA =R.在Rt △OAE 中,由OA 2=OE 2+AE 2,得R 2=(R -3)2+(6)2,解得R =332.∴ ⊙O 的半径为332第36题一天,毕达哥拉斯应邀到朋友家做客。

点和直线及圆的位置关系40题带详细解析

点和直线及圆的位置关系40题带详细解析

一.选择题〔共9小题〕1.以下语句中,正确的选项是〔 〕A.同一平面上三点确定一个圆B.能够重合的弧是等弧C.三角形的外心到三角形三边的距离相等D.菱形的四个顶点在同一个圆上2.在平面直角坐标系中,圆心为坐标原点,⊙O的半径为5,则点P〔﹣3,4〕与⊙O的位置关系是〔 〕A.点P在⊙O外B.点P在⊙O上C.点P在⊙OD.无法确定3.以下说法:①过三点可以作圆;②同弧所对的圆周角度数相等;③一条对角线平分一组对角的平行四边形是菱形;④三角形的外心到三角形的三个顶点的距离相等.其中正确的有〔 〕A.1 个B.2 个C.3 个D.4 个4.如图,△ABC为⊙O的接三角形,假设∠AOC=160°,则∠ADC的度数是〔 〕A.80°B.160°C.100°D.80°或100°5.圆O的直径为10,OP=6,则点P的位置是〔 〕A.点P在圆O外B.点P在圆OC.点P在圆O上D.无法确定6.如图,⊙O的半径为3,△ABC接于⊙O,∠ACB=135°,则AB的长为〔 〕A.3B.C.D.47.如图,⊙O是△ABC的外接圆,⊙O的半径为4,AB=4,则∠C为〔 〕A.60°B.30°C.45°D.90°8.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为*的圆,假设要求另外三个顶点A、B、C中至少有一个点在圆,且至少有一个点在圆外,则r的取值围是〔 〕A.3<r<4B.3<r<5C.3≤r≤5D.r>49.如图,AB是半圆O的直径,点D在半圆O上,AB=2,AD=10,C是弧BD上的一个动点,连接AC,过D点作DH⊥AC于H,连接BH,在点C 移动的过程中,BH的最小值是〔 〕A.5B.6C.7D.8二.填空题〔共22小题〕10.如图,△ABC为⊙O的接三角形,O为圆心,OD⊥AB于点D,OE⊥AC于点E,假设DE=2,则BC=.11.如图△ABC是坐标纸上的格点三角形,试写出△ABC外接圆的圆心坐标.12.如图,Rt△ABC是圆O的接三角形,过O作OD⊥BC于D,其中∠BAC=60°,半径OB=2,则弦BC=.13.如图,在Rt△ABC中,∠ACB=90°,BC=5,AC=12,点D是边BC上的一动点,连接AD,作CE⊥AD于点E,连接BE,则BE的最小值为.14.如图,点O为△ABC的外接圆圆心,点E为圆上一点,BC、OE互相平分,CF⊥AE于F,连接DF.假设OE=2,DF=1,则△ABC的周长为.15.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC部的一个动点,且满足∠PAB+∠PBA=90°,则线段CP长的最小值为.16.如图,△ABC是⊙O的接三角形,∠C=30°,⊙O的半径为5,假设点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为.17.如图,⊙O的半径为10,△ABC是⊙O的接三角形,连接OB,OC.假设∠BAC与∠BOC互补,则弦BC的长为.18.如图,在矩形ABCD中,AB=8,BC=5,P是矩形部一动点,且满足∠PAB=∠PBC,则线段CP的最小值是.19.如图,AD为△ABC的外接圆⊙O的直径,假设∠BAD=50°,则∠ACB=°.20.如图,在平面直角坐标系中,A〔4,0〕、B〔0,﹣3〕,以点B为圆心、2为半径的⊙B上有一动点P.连接AP,假设点C为AP的中点,连接OC,则OC的最小值为.21.如图,△ABC中,假设AC=4,BC=3,AB=5,则△ABC的切圆半径R=.22.如图,直线PA是⊙O的切线,AB是过切点A的直径,连接PO交⊙O于点C,连接BC,假设∠ABC=25°,则∠P的度数为.23.如图,PA、PB是⊙O的切线,A、B分别为切点,∠OAB=30°.〔1〕∠APB=;〔2〕当OA=2时,AP=.24.如图,AB是⊙O的直径,CD切⊙O于点D,假设∠A=25°,则∠C=°.25.如图,⊙O是△ABC的切圆,切点为D,E,F,假设AD、BE的长为方程*2﹣17*+60=0的两个根,则△ABC的周长为.26.如图,在圆O中,AB为直径,AD为弦,过点B的切线与AD的延长线交于点C,AD=DC,则∠C=度.27.如图,⊙O与△ABC的三边相切,假设∠A=40°,则∠BOC=.28.如图,AB是⊙O的直径,PA切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=8,∠P=30°,则AC的长度是.29.如图,在⊙O的接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为30.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D是AB的中点,以CD为直径作⊙O,⊙O分别与AC,BC交于点E,F,过点F作⊙O的切线FG,交AB于点G,则FG的长为.31.如图,BD是⊙O的直径,BA是⊙O的弦,过点A的切线交BD延长线于点C,OE⊥AB于E,且AB=AC,假设CD=2,则OE的长为.三.解答题〔共9小题〕32.如图,A是⊙O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=OB.〔1〕求证:AB是⊙O的切线;〔2〕假设∠ACD=45°,OC=2,求弦CD的长.33.如图,AB是⊙O的直径,AC为弦,∠BAC的平分线交⊙O于点D,过点D 的切线交AC的延长线于点E.求证:〔1〕DE⊥AE;〔2〕AE+CE=AB.34.如图△ABC接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上一点,且AP=AC.〔1〕求证:PA是⊙O的切线;〔2〕假设PD=,求⊙O的直径.35.如图,AB为⊙O直径,E为⊙O上一点,∠EAB的平分线AC交⊙O于C点,过C点作CD⊥AE的延长线于D点,直线CD与射线AB交于P点.〔1〕判断直线DP与⊙O的位置关系,并说明理由;〔2〕假设DC=4,⊙O的半径为5,求PB的长.36.如图,AB为⊙O的直径,AD,BD是⊙O的弦,BC是⊙O的切线,切点为B,OC∥AD,BA,CD的延长线相交于点E.〔1〕求证:DC是⊙O的切线;〔2〕假设⊙O半径为4,∠OCE=30°,求△OCE的面积.37.如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O 为圆心,OB为半径的圆经过点D,交BC于点E.〔1〕求证:AC是⊙O的切线;〔2〕假设OB=5,CD=4,求BE的长.38.如图,AB是⊙O的直径,弦CD⊥AB于点E,过点C的切线交AB的延长线于点F,连接DF.〔1〕求证:DF是⊙O的切线;〔2〕连接BC,假设∠BCF=30°,BF=2,求CD的长.39.如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE 交AC于点E.〔1〕求证:∠A=∠ADE;〔2〕假设AD=8,DE=5,求BC的长.40.如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE ⊥PO交PO延长线于点E,连接PB,∠EDB=∠EPB.〔1〕求证:PB是⊙O的切线.〔2〕假设PB=6,DB=8,求⊙O的半径.2021年11月07日189****3288的初中数学组卷参考答案与试题解析一.选择题〔共9小题〕1.以下语句中,正确的选项是〔 〕A.同一平面上三点确定一个圆B.能够重合的弧是等弧C.三角形的外心到三角形三边的距离相等D.菱形的四个顶点在同一个圆上【解答】解:A、同一平面上三点必须不在同一直线上才可以确定一个圆,故本选项错误;B、能够重合的弧是等弧,正确;C、三角形的外心到三角形三个定点的距离相等,到三边的距离不一定相等,故本选项错误;D、菱形的对角相等,但不一定互补,所以四个顶点不一定在同一个圆上,故本选项错误.应选:B.2.在平面直角坐标系中,圆心为坐标原点,⊙O的半径为5,则点P〔﹣3,4〕与⊙O的位置关系是〔 〕A.点P在⊙O外B.点P在⊙O上C.点P在⊙OD.无法确定【解答】解:∵圆心P的坐标为〔﹣3,4〕,∴OP==5.∵⊙O的半径为5,∴点P在⊙O上.3.以下说法:①过三点可以作圆;②同弧所对的圆周角度数相等;③一条对角线平分一组对角的平行四边形是菱形;④三角形的外心到三角形的三个顶点的距离相等.其中正确的有〔 〕A.1 个B.2 个C.3 个D.4 个【解答】解:①过三点可以作圆;错误,应该是过不在同一直线上的三点可以作圆;②同弧所对的圆周角度数相等;正确;③一条对角线平分一组对角的平行四边形是菱形;正确;④三角形的外心到三角形的三个顶点的距离相等.正确;应选:C.4.如图,△ABC为⊙O的接三角形,假设∠AOC=160°,则∠ADC的度数是〔 〕A.80°B.160°C.100°D.80°或100°【解答】解:∵∠AOC=2∠B,∠AOC=160°,∴∠B=80°,∵∠ADC+∠B=180°,∴∠ADC=100°,应选:C.5.圆O的直径为10,OP=6,则点P的位置是〔 〕A.点P在圆O外B.点P在圆OC.点P在圆O上D.无法确定【解答】解:圆O的直径为10,OP=6,∴该圆的半径为5,∴点P在圆O外,应选:A.6.如图,⊙O的半径为3,△ABC接于⊙O,∠ACB=135°,则AB的长为〔 〕A.3B.C.D.4【解答】解:连接AD、AE、OA、OB,∵⊙O的半径为2,△ABC接于⊙O,∠ACB=135°,∴∠ADB=45°,∴∠AOB=90°,∵OA=OB=3,∴AB=3,应选:B.7.如图,⊙O是△ABC的外接圆,⊙O的半径为4,AB=4,则∠C为〔 〕A.60°B.30°C.45°D.90°【解答】解:连接AO和BO,∵⊙O是△ABC的外接圆,⊙O的半径为4,AB=4,∴△AOB是等边三角形,∴∠AOB=60°,∴∠C=∠AOB=×60°=30°,应选:B.8.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为*的圆,假设要求另外三个顶点A、B、C中至少有一个点在圆,且至少有一个点在圆外,则r的取值围是〔 〕A.3<r<4B.3<r<5C.3≤r≤5D.r>4【解答】解:在直角△ABD中,CD=AB=4,AD=3,则BD==5.由图可知3<r<5.应选:B.9.如图,AB是半圆O的直径,点D在半圆O上,AB=2,AD=10,C是弧BD上的一个动点,连接AC,过D点作DH⊥AC于H,连接BH,在点C 移动的过程中,BH的最小值是〔 〕A.5B.6C.7D.8【解答】解:如图,取AD的中点M,连接BD,HM,BM.∵DH⊥AC,∴∠AHD=90°,∴点H在以M为圆心,MD为半径的⊙M上,∴当M、H、B共线时,BH的值最小,∵AB是直径,∴∠ADB=90°,∴BD==12,BM===13,∴BH的最小值为BM﹣MH=13﹣5=8.应选:D.二.填空题〔共22小题〕10.如图,△ABC为⊙O的接三角形,O为圆心,OD⊥AB于点D,OE⊥AC于点E,假设DE=2,则BC= 4 .【解答】解:∵OD⊥AB,∴AD=DB,∵OE⊥AC,∴AE=CE,∴DE为△ABC的中位线,∴DE=BC,∴BC=2DE=2×2=4.故答案为:411.如图△ABC是坐标纸上的格点三角形,试写出△ABC外接圆的圆心坐标 〔5,2〕 .【解答】解:由图象可知B〔1,4〕,C〔1,0〕,根据△ABC的外接圆的定义,圆心的纵坐标是y=2,设D〔a,2〕,根据勾股定理得:DA=DC〔1﹣a〕2+22=42+〔3﹣a〕2解得:a=5,∴D〔5,2〕.故答案为:〔5,2〕.12.如图,Rt△ABC是圆O的接三角形,过O作OD⊥BC于D,其中∠BAC=60°,半径OB=2,则弦BC= 2.【解答】解:连接OC∵∠BAC=60°∴∠BOC=120°∵OB=OC,OD⊥BC∴BD=CD,∠BOD=∠COD=60°∵BO=2,∠BOD=60°,OD⊥BC∴OD=1,BD=OD=∴BC=2故答案为213.如图,在Rt△ABC中,∠ACB=90°,BC=5,AC=12,点D是边BC上的一动点,连接AD,作CE⊥AD于点E,连接BE,则BE的最小值为﹣6 .【解答】解:∵CE⊥AD,∴∠AEC=90°,∴点E在以AC为直径的圆上,取AC的中点O,以AC为直径作⊙O,当O、E、B共线时,BE的长最小,Rt△OCB中,OC=OE=6,BC=5,∴OB==,∴BE=OB﹣OE=﹣6,则BE的最小值为:﹣6,故答案为:﹣6.14.如图,点O为△ABC的外接圆圆心,点E为圆上一点,BC、OE互相平分,CF⊥AE于F,连接DF.假设OE=2,DF=1,则△ABC的周长为 6+2.【解答】解:延长CF交AB于点G,过C作CH⊥AB于H,连BO.∵BC、OE互相平分∴四边形BECO为平行四边形∵OB=OC∴四边形BECO为菱形∴=∵OE=2∴Rt△BOD中,tan∠BOD=∴∠BOD=60°∴∠BAE=∠EAC=30°∵CF⊥AE∴F为GC中点,△AGC为等边三角形∴BG=2DF=2在Rt△BCH中BH2+HC2=BC2∴〔2+GH〕2+〔〕2=62解得GH=〔舍去〕或GH=,∴AG=AC=﹣1+,∴△ABC的周长为6+2.故答案为:6+2.15.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC部的一个动点,且满足∠PAB+∠PBA=90°,则线段CP长的最小值为 2 .【解答】解:∵∠PAB+∠PBA=90°,∴∠APB=90°,∴P在以AB为直径的圆周上〔P在△ACB部〕,连接OC,交⊙O于P,此时CP的值最小,如图,∵AB=6,∴OB=3,∵BC=4,∴由勾股定理得:OC=5,∴CP=5﹣3=2,故答案为:2.16.如图,△ABC是⊙O的接三角形,∠C=30°,⊙O的半径为5,假设点P是⊙O上的一点,在△ABP中,PB=AB,则PA的长为 5.【解答】解:连接OA、OP,连接OB交AP于H,由圆周角定理得,∠AOB=2∠C=60°,∵PB=AB,∴∠POB=60°,OB⊥AP,则AH=PH=OP×sin∠POH=,∴AP=2AH=5,故答案为:5.17.如图,⊙O的半径为10,△ABC是⊙O的接三角形,连接OB,OC.假设∠BAC与∠BOC互补,则弦BC的长为 10.【解答】解:作OH⊥BC于H,则BH=HC,由圆周角定理得,∠BAC=∠BOC,∵∠BAC+∠BOC=180°,∴∠BOC=120°,∴∠OBC=30°,∴BH=OB×cos∠OBH=5,∴BC=2BH=10,故答案为:10.18.如图,在矩形ABCD中,AB=8,BC=5,P是矩形部一动点,且满足∠PAB=∠PBC,则线段CP的最小值是﹣4 .【解答】解:∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴OP=OA=OB〔直角三角形斜边中线等于斜边一半〕,∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,∵在矩形ABCD中,AB=8,BC=5,在RT△BCO中,∵∠OBC=90°,BC=5,OB=4,∴OC=,∴PC=OC﹣OP=﹣4.∴PC最小值为﹣4.故答案为:﹣4.19.如图,AD为△ABC的外接圆⊙O的直径,假设∠BAD=50°,则∠ACB= 40 °.【解答】解:连接BD,如图,∵AD为△ABC的外接圆⊙O的直径,∴∠ABD=90°,∴∠D=90°﹣∠BAD=90°﹣50°=40°,∴∠ACB=∠D=40°.故答案为40.20.如图,在平面直角坐标系中,A〔4,0〕、B〔0,﹣3〕,以点B为圆心、2为半径的⊙B上有一动点P.连接AP,假设点C为AP的中点,连接OC,则OC的最小值为 1.5 .【解答】解:当点P运动到AB的延长线上时,即如图中点P1,C1是AP1的中点,当点P在线段AB上时,C2是中点,取C1C2的中点为D,点C的运动路径是以D为圆心,以DC1为半径的圆,当O、C、D共线时,OC 的长最小,设线段AB交⊙B于Q,Rt△AOB中,OA=4,OB=3,∴AB=5,∵⊙B的半径为2,∴BP1=2,AP1=5+2=7,∵C1是AP1的中点,∴AC1=3.5,AQ=5﹣2=3,∵C2是AQ的中点,∴AC2=C2Q=1.5,C1C2=3.5﹣1.5=2,即⊙D的半径为1,∵AD=1.5+1=2.5=AB,∴OD=AB=2.5,∴OC=2.5﹣1=1.5,故答案为:1.5.21.如图,△ABC中,假设AC=4,BC=3,AB=5,则△ABC的切圆半径R= 1 .【解答】解:∵AC=4,BC=3,AB=5,∴AC2+BC2=AB2,∴△ABC为直角三角形,∠ACB=90°,∴△ABC的切圆半径R===1.故答案为1.22.如图,直线PA是⊙O的切线,AB是过切点A的直径,连接PO交⊙O于点C,连接BC,假设∠ABC=25°,则∠P的度数为 40° .【解答】解:由圆周角定理得,∠AOP=2∠ABC=50°,∵PA是⊙O的切线,AB是过切点A的直径,∴∠PAO=90°,∴∠P=90°﹣∠AOP=40°,故答案为:40°.23.如图,PA、PB是⊙O的切线,A、B分别为切点,∠OAB=30°.〔1〕∠APB= 60° ;〔2〕当OA=2时,AP= 2.【解答】解:〔1〕∵在△ABO中,OA=OB,∠OAB=30°,∴∠AOB=180°﹣2×30°=120°,∵PA、PB是⊙O的切线,∴OA⊥PA,OB⊥PB,即∠OAP=∠OBP=90°,∴在四边形OAPB中,∠APB=360°﹣120°﹣90°﹣90°=60°,故答案为:60°.〔2〕如图,连接OP;∵PA、PB是⊙O的切线,∴PO平分∠APB,即∠APO=∠APB=30°,又∵在Rt△OAP中,OA=3,∠APO=30°,∴AP===2,故答案为:2.24.如图,AB是⊙O的直径,CD切⊙O于点D,假设∠A=25°,则∠C= 40 °.【解答】解:连接OD,∵CD与圆O相切,∴OD⊥DC,∵OA=OD,∴∠A=∠ODA=25°,∵∠COD为△AOD的外角,∴∠COD=50°,∴∠C=90°﹣50°=40°.故答案为:40.25.如图,⊙O是△ABC的切圆,切点为D,E,F,假设AD、BE的长为方程*2﹣17*+60=0的两个根,则△ABC的周长为 40 .【解答】解:∵*2﹣17*+60=0,∴*=5或*=12∴AD=5,BE=12,∵⊙O是△ABC的切圆,∴AD=AF=5,BE=BF=12,又设⊙O的半径为r,∴AC=5+r,BC=12+r,AB=17∴由勾股定理可知:〔5+r〕2+〔12+r〕2=172,∴解得:r=3或r=﹣20〔舍去〕∴AC=8,BC=15,∴△ABC的周长为:8+15+17=40故答案为:40;26.如图,在圆O中,AB为直径,AD为弦,过点B的切线与AD的延长线交于点C,AD=DC,则∠C= 45 度.【解答】解:∵AB为直径,∴∠ADB=90°,∵BC为切线,∴AB⊥BC,∴∠ABC=90°,∵AD=CD,∴△ABC为等腰直角三角形,∴∠C=45°.故答案为45.27.如图,⊙O与△ABC的三边相切,假设∠A=40°,则∠BOC= 110° .【解答】解:∵∠A=40°,∴∠ABC+∠ACB=140°,∵⊙O与△ABC的三边相切,∴点O是△ABC的心,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=〔∠ABC+∠ACB〕=70°,∴∠BOC=180°﹣〔∠OBC+∠OCB〕=110°,故答案为:110°.28.如图,AB是⊙O的直径,PA切⊙O于点A,连结PO并延长交⊙O于点C,连结AC,AB=8,∠P=30°,则AC的长度是 4.【解答】解:∵PA切⊙O于点A,∴OA⊥PA,∴∠OAP=90°,在Rt△OAP中,∵∠P=30°,∴∠AOP=60°,AP=OA=4,∵∠AOP=∠C+∠OAC=60°,而∠C=∠OAC,∴∠C=30°,∴AC=AP=4.故答案为4.29.如图,在⊙O的接四边形ABCD中,AB是直径,∠BCD=120°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为 30° 【解答】解:连接OD,如图,∵∠BAD+∠BCD=180°,∴∠BAD=180°﹣120°=60°,∵OA=OD,∴∠ODA=∠OAD=60°,∵PD为切线,∴OD⊥PD,∴∠ODP=90°,∴∠ADP=90°﹣60°=30°.故答案为30°.30.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D是AB的中点,以CD为直径作⊙O,⊙O分别与AC,BC交于点E,F,过点F作⊙O的切线FG,交AB于点G,则FG的长为.【解答】解:如图,在Rt△ABC中,根据勾股定理得,AB=10,∴点D是AB中点,∴CD=BD=AB=5,连接DF,∵CD是⊙O的直径,∴∠CFD=90°,∴BF=CF=BC=4,∴DF==3,连接OF,∵OC=OD,CF=BF,∴OF∥AB,∴∠OFC=∠B,∵FG是⊙O的切线,∴∠OFG=90°,∴∠OFC+∠BFG=90°,∴∠BFG+∠B=90°,∴FG⊥AB,∴S△BDF=DF×BF=BD×FG,∴FG===,故答案为.31.如图,BD是⊙O的直径,BA是⊙O的弦,过点A的切线交BD延长线于点C,OE⊥AB于E,且AB=AC,假设CD=2,则OE的长为.【解答】解:连接OA、AD,如右图所示,∵BD是⊙O的直径,BA是⊙O的弦,过点A的切线交BD延长线于点C,OE⊥AB于E,∴∠DAB=90°,∠OAC=90°,∵AB=AC,∴∠B=∠C,在△ACO和△BAD中,,∴△ACO≌△BAD〔ASA〕,∴AO=AD,∵AO=OD,∴AO=OD=AD,∴△AOD是等边三角形,∴∠ADO=∠DAO=60°,∴∠B=∠C=30°,∠OAE=30°,∠DAC=30°,∴AD=DC,∵CD=2,∴AD=2,∴点O为AD的中点,OE∥AD,OE⊥AB,∴OE=,故答案为:.三.解答题〔共9小题〕32.如图,A是⊙O上一点,半径OC的延长线与过点A的直线交于点B,OC=BC,AC=OB.〔1〕求证:AB是⊙O的切线;〔2〕假设∠ACD=45°,OC=2,求弦CD的长.【解答】解:〔1〕如图,连接OA;∵OC=BC,AC=OB,∴OC=BC=AC=OA.∴△ACO是等边三角形.∴∠O=∠OCA=60°,∵AC=BC,∴∠CAB=∠B,又∠OCA为△ACB的外角,∴∠OCA=∠CAB+∠B=2∠B,∴∠B=30°,又∠OAC=60°,∴∠OAB=90°,∴AB是⊙O的切线;〔2〕解:作AE⊥CD于点E,∵∠O=60°,∴∠D=30°.∵∠ACD=45°,AC=OC=2,∴在Rt△ACE中,CE=AE=;∵∠D=30°,∴AD=2,∴DE=AE=,∴CD=DE+CE=+.33.如图,AB是⊙O的直径,AC为弦,∠BAC的平分线交⊙O于点D,过点D 的切线交AC的延长线于点E.求证:〔1〕DE⊥AE;〔2〕AE+CE=AB.【解答】证明:〔1〕连接OD,如图1所示.∵OA=OD,AD平分∠BAC,∴∠OAD=∠ODA,∠CAD=∠OAD,∴∠CAD=∠ODA,∴AE∥OD.∵DE是⊙O的切线,∴∠ODE=90°,∴OD⊥DE,∴DE⊥AE.〔2〕过点D作DM⊥AB于点M,连接CD、DB,如图2所示.∵AD平分∠BAC,DE⊥AE,DM⊥AB,∴DE=DM.在△DAE和△DAM中,,∴△DAE≌△DAM〔SAS〕,∴AE=AM.∵∠EAD=∠MAD,∴=,∴CD=BD.在Rt△DEC和Rt△DMB中,,∴Rt△DEC≌Rt△DMB〔HL〕,∴CE=BM,∴AE+CE=AM+BM=AB.34.如图△ABC接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上一点,且AP=AC.〔1〕求证:PA是⊙O的切线;〔2〕假设PD=,求⊙O的直径.【解答】解:〔1〕证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥PA,∴PA是⊙O的切线.〔2〕在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD,又∵OA=OD,∴PD=OA,∵PD=,∴2OA=2PD=2.∴⊙O的直径为2.35.如图,AB为⊙O直径,E为⊙O上一点,∠EAB的平分线AC交⊙O于C点,过C点作CD⊥AE的延长线于D点,直线CD与射线AB交于P点.〔1〕判断直线DP与⊙O的位置关系,并说明理由;〔2〕假设DC=4,⊙O的半径为5,求PB的长.【解答】解:〔1〕直线DP与⊙O相切.理由如下:连接OC,如图,∵AC是∠EAB的平分线,∴∠EAC=∠OAC∵OA=OC,∴∠ACO=∠OAC,∴∠ACO=∠DAC,∴OC∥AD,∵CD⊥AE,∴OC⊥CD,∴DP是⊙O的切线;〔2〕作CH⊥AB于H,如图,∵AC是∠EAB的平分线,CD⊥AD,CH⊥AB,∴CH=CD=4,∴OH==3,∵OC⊥CP,∴∠OCP=∠CHO=90°,而∠COP=∠POC,∴△OCH∽△OPC,∴OC:OP=OH:OC,∴OP==,∴PB=OP﹣OB=﹣5=.36.如图,AB为⊙O的直径,AD,BD是⊙O的弦,BC是⊙O的切线,切点为B,OC∥AD,BA,CD的延长线相交于点E.〔1〕求证:DC是⊙O的切线;〔2〕假设⊙O半径为4,∠OCE=30°,求△OCE的面积.【解答】〔1〕证明:连接DO,如图,∵AD∥OC,∴∠DAO=∠COB,∠ADO=∠COD,又∵OA=OD,∴∠DAO=∠ADO,∴∠COD=∠COB.在△COD和△COB中∴△COD≌△COB〔SAS〕,∴∠CDO=∠CBO.∵BC是⊙O的切线,∴∠CBO=90°,∴∠CDO=90°,∴OD⊥CE,又∵点D在⊙O上,∴CD是⊙O的切线;〔2〕解:由〔1〕可知∠OCB=∠OCD=30°,∴∠DCB=60°,又BC⊥BE,∴∠E=30°,在Rt△ODE中,∵tan∠E=,∴DE==4,同理DC=OD=4,∴S △OCE=•OD•CE=×4×8=16.37.如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O 为圆心,OB为半径的圆经过点D,交BC于点E.〔1〕求证:AC是⊙O的切线;〔2〕假设OB=5,CD=4,求BE的长.【解答】〔1〕证明:连接OD.∵OD=OB,∴∠OBD=∠ODB∵BD是∠ABC的角平分线,∴∠OBD=∠CBD∵∠CBD=∠ODB,∴OD∥BC∵∠C=90°,∴∠ODC=90°∴OD⊥AC∵点D在⊙O上,∴AC是⊙O的切线〔2〕过圆心O作OM⊥BC交BC于M.∵BE为⊙O 的弦,且OM⊥BE∴BM=EM∵∠ODC=∠C=∠OMC=90°∴四边形ODCH为矩形,则OM=DC=4∵OB=5∴BM==3=EM∴BE=BM+EM=6.38.如图,AB是⊙O的直径,弦CD⊥AB于点E,过点C的切线交AB的延长线于点F,连接DF.〔1〕求证:DF是⊙O的切线;〔2〕连接BC,假设∠BCF=30°,BF=2,求CD的长.【解答】〔1〕证明:连接OD,如图,∵CF是⊙O的切线∴∠OCF=90°,∴∠OCD+∠DCF=90°∵直径AB⊥弦CD,∴CE=ED,即OF为CD的垂直平分线∴CF=DF,∴∠CDF=∠DCF,∵OC=OD,∴∠CDO=∠OCD∴∠CDO+∠CDB=∠OCD+∠DCF=90°,∴OD⊥DF,∴DF是⊙O的切线;〔2〕解:∵∠OCF=90°,∠BCF=30°,∴∠OCB=60°,∵OC=OB,∴△OCB为等边三角形,∴∠CFO=30°∴FO=2OC=2OB,∴FB=OB=OC=2,在Rt△OCE中,∵∠COE=60°,∴OE=OC=1,∴CE=OE=,∴CD=2CE=.39.如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,切线DE 交AC于点E.〔1〕求证:∠A=∠ADE;〔2〕假设AD=8,DE=5,求BC的长.【解答】〔1〕证明:连接OD,∵DE是切线,∴∠ODE=90°,∴∠ADE+∠BDO=90°,∵∠ACB=90°,∴∠A+∠B=90°,∵OD=OB,∴∠B=∠BDO,∴∠ADE=∠A.〔2〕解:连接CD.∴AE=DE,∵BC是⊙O的直径,∠ACB=90°,∴EC是⊙O的切线,∴ED=EC,∴AE=EC,∵DE=5,∴AC=2DE=10,在Rt△ADC中,DC=6,设BD=*,在Rt△BDC中,BC2=*2+62,在Rt△ABC中,BC2=〔*+8〕2﹣102,∴*2+62=〔*+8〕2﹣102,解得*=,∴BC==.40.如图,AB为⊙O的直径,PD切⊙O于点C,与BA的延长线交于点D,DE ⊥PO交PO延长线于点E,连接PB,∠EDB=∠EPB.〔1〕求证:PB是⊙O的切线.〔2〕假设PB=6,DB=8,求⊙O的半径.【解答】解:〔1〕∵DE⊥PE,∴∠E=90°,∵∠EDB=∠EPB,∠DOE=∠POB,∴∠EDB+∠DOE=∠EPB+∠POB,即∠OBP=∠E=90°,∵OB为圆的半径,∴PB为圆O的切线;〔2〕在Rt△PBD中,PB=6,DB=8,根据勾股定理得:PD==10,∵PD与PB都为圆的切线,∴PC=PB=6,∴DC=PD﹣PC=10﹣6=4.在Rt△CDO中,设OC=r,则有DO=8﹣r,根据勾股定理得:〔8﹣r〕2=r2+42,解得:r=3,则圆的半径为3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专项训练:直线与圆的位置关系一、单选题1.直线截圆所得的弦长为A.B.C.D.2.直线与圆的位置关系是A.相切B.相交但不过圆心C.相交且过圆心D.相离3.已知圆x2+y2+2x-4y+1=0关于直线2ax-by+2=0(a,b∈R)对称,则ab的取值范围是A.B.C.D.4.若直线:与圆:相切,则直线与圆:的位置关系是A.相交B.相切C.相离D.不确定5.若圆x2+y2-4x-4y-10=0上至少有三个不同点到直线l:ax+by=0的距离为,则直线l的倾斜角的取值范围是( )A.,B.,C.,D.,6.“”是直线与圆相切的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.已知集合,集合,若的概率为1,则的取值范围是()A.B.C.D.8.已知圆,直线,在上随机选取一个数,则直线与圆有公共点的概率为A.B.C.D.9.已知直线l:y=x+m与曲线y=有两个公共点,则实数m的取值范围是A.(-2,2)B.(-1,1)C.[1,)D.(-,)10.设圆x2+y2+2x+2y-5=0与x轴交于A,B两点,则|AB|的长是A.B.2C.2D.311.圆与圆都关于直线对称,则圆C与y轴交点坐标为A.B.C.D.12.(贵州省凯里市第一中学2018届高三下学期《黄金卷》第二套模拟考试)直线和圆的位置关系是A.相交且过圆心B.相交但不过圆心C.相离D.相切13.若过点A(4,0)的直线l与曲线(x-2)2+y2=1有公共点,则直线l的斜率的取值范围为A.(-,)B.[-,]C.(-,)D.[-,]14.(陕西省西安市八校2018届高三上学期第一次联考)若过点的直线与曲线有公共点,则直线斜率的取值范围为A.B.C.D.15.(题文)若在区间上随机取一个数,则“直线与圆相交”的概率为A.B.C.D.16.动圆C经过点,并且与直线相切,若动圆C与直线总有公共点,则圆C的面积为()A.有最大值B.有最小值C.有最小值D.有最小值17.已知直线:与圆相交于,两点,是线段的中点,则点到直线的距离的最大值为A.2B.3C.4D.518.直线y=kx+3与圆(x-3)2+(y-2)2=4相交于M,N两点,若,则k的取值范围是( ).C .D .19.已知直线0x y m -+=与圆22:1O x y +=相交于,A B 两点,且OAB ∆为正三角形,则实数m 的值为( )A . 2B . 2C . 2或2-D . 2或2- 20.设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是( )A . []0,1B . []1,1-C . ,22⎡-⎢⎣⎦ D . ⎡⎢⎣⎦21.从直线30x y -+=上的点向圆224470x y x y +--+=引切线,则切线长的最小值( )A . 2B . 2C . 4D . 12-22.已知圆22()4x a y -+=截直线4y x =-所得的弦的长度为,则a 等于A .2B .6C .2或6D .23.直线 被圆 所截得的最短弦长等于( )A .B .C .D .24.过原点且倾斜角为60°的直线被圆2240x y y +-=所截得的弦长为( )A .B . 2C .D . 25.过点 且被圆 截得弦长最长的直线 的方程为( ).A .B .C .D .26.已知圆(x -2)2+(y +1)2=16的一条直径通过直线x -2y +3=0被圆所截弦的中点,则该直径所在的直线方程为( )A . 3x +y -5=0B . x -2y =0C . x -2y +4=0D . 2x +y -3=027.已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则直线l 的方程为( )A . x +y -2=0B . x -y +2=0C . x +y -3=0D . x -y +3=028.经过圆22220x y x y +-+=的圆心且与直线20x y -=平行的直线方程是( ) A .230x y --= B .210x y --= C .230x y -+=D .210x y ++=二、填空题29.经过A (0,-1)和直线x +y =1相切,且圆心在直线y =-2x 上的圆的方程是______.30.圆心为()1,0,且与直线1y x =+相切的圆的方程是____.31.设(x -3)2+(y -3)2=6,则y x 的最大值为________. 32.若圆(x -3)2+(y +5)2=r 2上有且只有两个点到直线4x -3y =2的距离等于1,则半径r 的取值范围是________.三、解答题33.已知圆C :x 2+y 2+2x -4y +3=0,(1)若圆C 的切线l 在x 轴、y 轴上的截距相等,求切线l 的方程;(2)若点 是圆C 上的动点,求 的取值范围.34.已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点()4,2P -,求直线l 与圆M 的方程.参考答案1.D【解析】【分析】由题意,求得圆的圆心坐标和半径,利用圆的弦长公式,即可求解.【详解】由题意圆的方程,可知圆心,半径,则圆心到直线的距离为,所以弦长为,故选D.【点睛】本题主要考查了圆的弦长公式应用,其中解答中熟记直线与圆的位置关系和直线与圆的弦长公式是解答的关键,着重考查了推理与运算能力,属于基础题.2.B【解析】【分析】由条件求得圆心到直线2x+y-5=0的距离小于半径,可得直线和圆相交.【详解】圆(x-1)2+(y+2)2=6的圆心为(1,-2)、半径为,圆心到直线2x+y-5=0的距离为,小于半径,故直线和圆相交,故答案为:相交.【点睛】本题主要考查直线和圆的位置关系的判断方法,点到直线的距离公式的应用,属于基础题.3.A【解析】【分析】把圆的方程化为标准方程,找出圆心坐标和半径,由已知圆关于直线2ax-by+2=0对称,得到圆心在直线上,故把圆心坐标代入已知直线方程得到a与b的关系式,由a表示出b,设m=ab,将表示出的b代入ab中,得到m关于a的二次函数关系式,由二次函数求最大值的方法即可求出m的最大值,即为ab的最大值,即可写出ab的取值范围.【详解】把圆的方程化为标准方程得:(x+1)2+(y-2)2=4,∴圆心坐标为(-1,2),半径r=2,根据题意可知:圆心在已知直线2ax-by+2=0上,把圆心坐标代入直线方程得:-2a-2b+2=0,即b=1-a,则设m=ab=a(1-a)=-a2+a,∴当时,m有最大值,最大值为,即ab的最大值为,则ab的取值范围是.故选:A.【点睛】此题考查了直线与圆相交的性质,以及二次函数的性质.根据题意得到圆心在已知直线上是解本题的关键.4.A【解析】【分析】直线与圆相切转化为圆心到直线的距离等于半径,求出斜率,再根据圆的圆心到直线的距离,判断其与直线的关系.【详解】因为直线:与圆:相切,所以,解得,因为,所以,所以的直线方程为,圆D的圆心到直线的距离,所以直线与圆相交,故选A.【点睛】本题考查了直线与圆的位置关系及点到直线的距离,属于中档题. 判定直线与圆的位置关系可以联立方程组,利用方程组的解的个数判断位置关系,也可以转化为判断圆心到直线的距离与半径的大小关系来确定直线与圆位置关系.5.B【解析】【分析】先求出圆心和半径,比较半径和;要求圆上至少有三个不同的点到直线l:ax+by=0的距离为,则圆心到直线的距离应小于等于,用圆心到直线的距离公式,可求得结果.【详解】圆x2+y2﹣4x﹣4y﹣10=0整理为,∴圆心坐标为(2,2),半径为3,要求圆上至少有三个不同的点到直线l:ax+by=0的距离为,则圆心到直线的距离应小于等于,∴,∴,∴,,∴,直线l的倾斜角的取值范围是,,故选:B.【点睛】本题考查直线和圆的位置关系,圆心到直线的距离等知识,是中档题.6.C【解析】【分析】由圆的方程得到圆心坐标和半径,使得圆心到直线的距离等于圆的半径,得到的值,即可得到结论.【详解】由圆,可得圆心为,,半径.∵直线与圆相切,∴,∴,∴“”是直线与圆相切的充要条件,故选C.【点睛】本题主要考查了充要条件的判定及应用,其中解答中涉及到直线与圆的位置关系的判定及应用,以及充要条件的判定,其中熟记直线与圆的位置关系的判定方法是解答的关键,着重考查了分析问题和解答问题的能力.7.B【解析】【分析】A表示圆上的点,B表示直线直线上的点,要使A∩B≠Φ的概率为1,则直线与圆必然有交点,利用圆心到直线的距离小于或等于半径即可求得a的取值范围【详解】A表示圆x2+y2=1上的点,圆心为(0,0),半径为1,B表示直线x+y+a=0上的点要使A∩B≠Φ的概率为1,则直线与圆必然相交,即圆心到直线的距离小于等于圆的半径:故有:d=≤1,解得:,故选:B.【点睛】本题考查了集合中的一种类型——点集,通常与平面几何相联系,从集合间的关系转化为直线与圆的位置关系,关键是理解A∩B≠Φ的概率为1与直线与圆必然相交的关系.8.C【解析】【分析】由有公共点这一条件,判断出直线和圆的位置关系,进而求得k的取值范围;由几何概型概率求解方法,可求得有公共点的概率值。

【详解】因为直线与圆有公共点,所以圆心到直线距离小于等于半径直线,圆心,所以解得根据几何概型概率的求法,所以【点睛】本题考查了直线与圆位置关系的判定,几何概型概率的简单应用,属于基础题。

9.C【解析】【分析】画出图象,当直线l经过点A,C时,求出m的值;当直线l与曲线相切时,求出m.即可.【详解】画出图象,当直线l经过点A,C时,m=1,此时直线l与曲线y=有两个公共点;当直线l与曲线相切时,m=.因此当<时,直线l:y=x+m与曲线y=有两个公共点.故选:C.【点睛】正确求出直线与切线相切时的m的值及其数形结合等是解题的关键.10.B【解析】【分析】令y=0可得x2+2x﹣5=0,利用弦长公式,即可得出结论.【详解】令y=0可得x2+2x﹣5=0,所以|AB|==2.故选:B.【点睛】本题主要考查了直线与圆相交的性质.考查了学生数形结合的数学思想的运用.【解析】【分析】由圆与圆都关于直线对称,则两圆圆心,,都在直线上,从而得到结果.【详解】圆与圆都关于直线对称,则两圆圆心,,都在直线上,所以,,所以圆C方程为:,令x=0 得y=2,所以圆C与y轴交点坐标为故选:B【点睛】本题考查了圆的对称性,考查了直线与圆相交的位置关系,属于基础题.12.A【解析】将化简为,易知圆心为,,半径,将,代入到中,得,即满足直线方程,故直线与圆相交且过圆心.故选A.13.D【解析】如图,BC=1,AC=2,∴∠BAC=30°,∴-≤k≤.选D.点睛:与圆有关的最值或值域问题的常见类型及解题策略(1)与圆有关的长度或距离的最值或值域问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.(2)与圆上点有关代数式的最值或值域的常见类型及解法.①形如型的最值问题,可转化为过点和点的直线的斜率的最值问题;②形如型的最值问题,可转化为动直线的截距的最值问题;③形如型的最值问题,可转化为动点到定点的距离平方的最值问题.14.D【解析】设直线的方程为,代入圆的方程中,整理得,,解得,故选D.15.C【解析】若直线与圆相交,,解得或,又所求概率,故选C.16.D【解析】【分析】设出动圆圆心坐标与半径,根据条件找出半径与圆心满足的关系式,再利用动圆C与直线总有公共点,列出某个量的不等式,求出其取值范围,从而求出圆的半径的取值范围,作出正确选择.设圆心为,半径为,,即,即,∴圆心为,,圆心到直线的距离为,∴或,当时,,∴.【点评】本题主要考查直线与圆的位置关系、转化与化归思想及运算求解能力,转化与化归思想是解题的关键.17.C【解析】设,直线与圆组方程组,()消y得,所以为参 ,消参得 ,圆心N(-3,0)到直线的距离,所以最大值为d+r=4,选C.【点睛】解析几何问题,看是否能转化为几何问题,如本题先求出点M 的轨迹方程,注意参数方程变普通方程的消参过程及x,y 范围。

相关文档
最新文档