《数据结构》课堂课件5

合集下载

《数据结构》课件

《数据结构》课件

查找操作
顺序查找
二分查找
链表查找
在顺序存储结构的线性表中,查找操 作需要从线性表的第一个节点开始, 逐个比较节点的数据域,直到找到目 标数据或遍历完整个线性表。时间复 杂度为O(n)。
在有序的顺序存储结构的线性表中, 查找操作可以采用二分查找算法。每 次比较目标数据与中间节点的数据域 ,如果目标数据大于中间节点,则在 右半部分继续查找;否则在左半部分 查找。时间复杂度为O(log n)。
数据结构是算法的基础。许多算法的实现需要依赖于特定的数据结构, 因此掌握常见的数据结构是编写高效算法的关键。
数据结构在解决实际问题中具有广泛应用。无论是操作系统、数据库系 统、网络通信还是人工智能等领域,数据结构都发挥着重要的作用。
数据结构的分类
根据数据的逻辑关系,数据结构可以分为线性结构和非线 性结构。线性结构如数组、链表、栈和队列等,非线性结 构如树形结构和图形结构等。
04
数据结构操作
插入操作
顺序插入
在顺序存储结构的线性表中,插入操作 需要找到插入位置的前驱节点,修改前 驱节点的指针,使其指向新节点,然后 让新节点指向后继节点。如果线性表的 第一个节点是空节点,则将新节点作为 第一个节点。
VS
链式插入
在链式存储结构的线性表中,插入操作需 要找到插入位置的前驱节点,修改前驱节 点的指针,使其指向新节点。如果线性表 的第一个节点是空节点,则将新节点作为 第一个节点。

01
02
03
04
图是一种非线性数据结构,由 节点和边组成,其中节点表示 数据元素,边表示节点之间的
关系。
图具有网络结构,节点之间的 关系可以是任意复杂的,包括
双向、单向、无向等。

(2024年)《数据结构》全套课件

(2024年)《数据结构》全套课件

30
树形数据结构的查找算法
二叉排序树的查找
从根节点开始,若查找值小于当前节点 值,则在左子树中查找;若大于当前节 点值,则在右子树中查找。
VS
平衡二叉树的查找
在保持二叉排序树特性的基础上,通过旋 转操作使树保持平衡,提高查找效率。
2024/3/26
31
散列表的查找算法
散列函数的设计
将关键字映射为散列表中位置的函数。
过指针来表示。
链式存储的特点
逻辑上相邻的元素在物理位置上 不一定相邻;每个元素都包含数
据域和指针域。
链式存储的优缺点
优点是插入和删除操作不需要移 动元素,只需修改指针;缺点是
存储密度小、空间利用率低。
2024/3/26
11
线性表的基本操作与实现
插入元素
在线性表的指定位 置插入一个元素。
查找元素
在线性表中查找指 定元素并返回其位 置。
自然语言处理的应用
在自然语言处理中,需要处理大量的文本数据,数据结构中的字符 串、链表、树等可以很好地支持文本的处理和分析。
41
数据结构在计算机网络中的应用
2024/3/26
路由算法的实现
计算机网络中的路由算法需要大量的数据结构支持,如最短路径 树、距离向量等。
网络流量的控制
在计算机网络中,需要对网络流量进行控制和管理,数据结构中的 队列、缓冲区等可以很好地支持流量的控制。
37
06
数据结构的应用与拓展
2024/3/26
38
数据结构在算法设计中的应用
01
作为算法设计的基 础
数据结构为算法提供了基本操作 和存储方式,是算法实现的重要 基础。
02
提高算法效率

数据结构第5章课件 中国石油大学(华东)

数据结构第5章课件 中国石油大学(华东)
leftChild data rightChild
二叉链表
leftChild
data rightChild
22
二叉树的链表表示(三叉链表)
每个结点增加一个指向双亲的指针parent,使 得查找双亲也很方便。
leftChild data parent rightChild
三叉链表
data
leftChild
27
BinTreeNode *LeftChild (BinTreeNode *current ) { return (current != NULL )? current->leftChild :NULL; } BinTreeNode *RightChild (BinTreeNode *current ) { return ( current!= NULL) ? current->rightChild : NULL; } int Height( ){return Height(root);} int Size( ){return Size(root);} BinTreeNode *GetRoot ( ) const { return root; } void preOrder( ) {preOrder(root);} //前序遍历 void inOrder( ) {inOrder(root);} //中序遍历 void postOrder( ) {postOrder(root);} //后序遍历 void levelOrder( ) ; // 不需要递归,所以直接对外接 口调用即可。层序遍历 28
b
f
c
d
g
6
e
a
b.嵌套集合表示法: b 根据树的集合定义,写出集合划分。 { a, {b,{e},{f}}, {c}, {d,{g}} } e c d

数据结构课件第5章-PPT文档资料

数据结构课件第5章-PPT文档资料
(a) 非紧缩方式; (b) 紧缩方式
第5章 串
5.2.2
和线性表的链式存储结构相类似,串的存储结构也可采用链 式存储结构,即用线性链表来存储串值。在这种存储结构下,存 储空间被分成一系列大小相同的结点,每个结点用data域存放字 符, link域存放指向下一个结点的指针。 这样, 一个串就可以用 一个线性链表来表示。
private { private declaration }
public { public declaration }
end;
第5章 串
这一段程序可看作一个字符串:“type private
Tstring = class
{private declaration } public {public declaration } end;
”, 其中“ ”表示换行符。Delphi的源程序编辑器提供了字符 串的查找与替换功能。 选择“Search”菜单中的“Replace”项, 在对话框中输入要查找字符串‘private’及替代串‘protected’, 如 图 5.1 所 示 , 则 执 行 命 令 后 以 上 程 序 中 的 关 键 字 ‘ private’ 被 ‘protected’替代。
第5章 串 串中任意个连续的字符组成的子序列称为该串的子串。包含 子串的串称为主串。通常称字符在序列中的序号为该字符在串中 的位置。子串在主串中的位置可以用子串的第一个字符在主串中 的位置来表示。
例如, 假设a、 b、 c、 d为如下的四个串:
a =‘Data’
b =‘Structure’
c =‘Data Structure’ d =‘Data Structure’
const maxlen = 允许的串最大长度;

数据结构ppt课件完整版

数据结构ppt课件完整版

针对有序数据集合,每次通过中间元素将 待查找区间缩小为之前的一半,直到找到 元素或区间为空。
哈希查找
树形查找
通过哈希函数将数据映射到哈希表中,实 现快速查找。
如二叉搜索树、平衡树等,通过树形结构实 现高效查找。
排序算法分类及实现原理
插入排序
将待排序元素逐个插入到已排序序列中,直到所有元素均插入完毕。
由n(n>=0)个具有相同类型 的数据元素(结点)a1,a2,
...,an组成的有序序列。
同一性
每个元素必须是同一类型的数 据。
有序性
元素之间具有一对一的前驱和 后继关系,即除首尾元素外, 每个元素都有一个前驱和一个 后继。
可变性
线性表的长度可变,即可以插 入或删除元素。
顺序存储结构与链式存储结构比较
定义
用一段连续的存储单元依次存储线性 表的数据元素。
优点
可以随机存取表中任一元素,且存取 时间复杂度为O(1)。
顺序存储结构与链式存储结构比较
• 缺点:插入和删除操作需要移动大量元素,时间 复杂度高;需要预先分配存储空间,容易造成空 间浪费。
顺序存储结构与链式存储结构比较
定义
用一组任意的存储单元存储线性 表的数据元素(这组存储单元可 以是连续的,也可以是不连续的
查找操作
查找指定元素的位置。
遍历操作
访问线性表中的每个元素。
销毁操作
释放线性表占用的存储空间。
03
栈和队列
栈定义及特点
栈(Stack)是一种特殊的线性数据结构,其数据的存 取遵循后进先出(LIFO, Last In First Out)的原则。 栈的特点
具有记忆功能,能保存数据的状态。
栈的基本操作包括入栈(push)、出栈(pop)、查 看栈顶元素(top)等。 只能在栈顶进行数据的插入和删除操作。

绪论(数据结构教程PPT课件)

绪论(数据结构教程PPT课件)
缓冲处理
在网络传输或文件读写过程中,使 用队列作为缓冲区,暂时存储待处 理的数据,以提高处理效率。
04
串、数组和广义表
串定义及基本操作
串的基本操作包括
赋值操作、连接操作、求串长、比较操作、定位操作等。
串的存储结构包括
顺序存储结构和链式存储结构。
串模式匹配算法
串模式匹配算法是指在一个主串中寻找一个子串(模式串)的位置。
函数调用
在程序执行过程中,使用 栈来保存函数调用的信息, 如函数参数、局部变量和 返回地址等。
队列定义及基本操作
01
队列(Queue)是一种特殊的线性数据结构,其操作在表 的两端进行。一端称为队头(front),另一端称为队尾 (rear)。
02
队列的基本操作包括
03
入队(enqueue):在队尾插入一个元素。
3
线性表的抽象数据类型描述
数据类型名称、数据对象集合、操作集合等
线性表顺序存储结构
01
顺序存储结构的定义
用一段地址连续的存储单元依次存储线性表的数据元素
02
顺序存储结构的基本操作实现
创建、初始化、销毁、判空、清空、求长度、获取元素、修改元素等操
作的实现方法
03
顺序存储结构的优缺点
无需为表示表中元素之间的逻辑关系而增加额外的存储空间;可以快速
线索二叉树
线索二叉树是对二叉树的每个结点增设两个标志位以及一条线索而得到的。根据线索性质的不同,线索二叉树可分为前序线 索二叉树、中序线索二叉树和后序线索二叉树三种。这里以中序线索二叉树为例来说明线索二叉树的构造方法。
中序线索二叉树的构造规则是:若将二叉树的中序遍历序列中的每个结点都看作是相应指针域为空的指针,则称这些指针为 线索,而指向其前驱或后继的指针称为线索指针。加上线索的二叉链表称为线索链表,相应的二叉树称为线索二叉树 (Threaded BinaryTree)。根据线索性质的不同,线索二叉树可分为前序线索二叉树、中序线索二叉树和后序线索二叉树三种 。

数据结构详解ppt课件

数据结构详解ppt课件

“数据结构知识导入全程目标•数据结构的基本概念–逻辑结构–物理结构–运算结构•数据结构的基本实现–堆栈–队列–链表–二叉树知识讲解数据结构的基本概念•数据结构是相互之间存在一种或多种特定关系的数据的集合•数据结构是计算机存储、组织数据的方式•数据结构的选择直接影响计算机程序的运行效率(时间复杂度)和存储效率(空间复杂度)•计算机程序设计=算法+数据结构•数据结构的三个层次–抽象层——逻辑结构–结构层——物理结构–实现层——运算结构识讲解•集合结构(集)–结构中的数据元素除了同属于一个集合外没有其它关系识讲解•线性结构(表)–结构中的数据元素具有一对一的前后关系识讲解•树型结构(树)–结构中的数据元素具有一对多的父子关系知识讲解实现双向线性链表•删除节点识讲解•树形结构的最简模型,每个节点最多有两个子节点•每个子节点有且仅有一个父节点,整棵树只有一个根节点•具有递归的结构特征,用递归的方法处理,可以简化算法•三种遍历序–前序遍历:D-L-R–中序遍历:L-D-R–后序遍历:L-R-D识讲解•二叉树的一般形式–根节点、枝节点和叶节点–父节点和子节点–左子节点和右子节点–左子树和右子树–大小和高度(深度)识讲解•满二叉树–每层节点数均达到最大值–所有枝节点均有左右子树知识讲解二叉树•完全二叉树–除最下层外,各层节点数均达到最大值–最下层的节点都连续集中在左边识讲解•顺序存储–从上到下、从左到右,依次存放–非完全二叉树需用虚节点补成完全二叉树识讲解•链式存储–二叉链表,每个节点包括三个域,一个数据域和两个分别指向其左右子节点的指针域识讲解•链式存储–三叉链表,每个节点包括四个域,一个数据域、两个分别指向其左右子节点的指针域和一个指向其父节点的指针域知识讲解实现有序二叉树•有序二叉树亦称二叉搜索树,若非空树则满足:–若左子树非空,则左子树上所有节点的值均小于等于根节点的值–若右子树非空,则右子树上所有节点的值均大于等于根节点的值–左右子树亦分别为有序二叉树•基于有序二叉树的排序和查找,可获得O(logN)级的平均时间复杂度知识讲解逻辑结构•网状结构(图)–结构中的数据元素具有多对多的交叉映射关系识讲解•顺序结构–结构中的数据元素存放在一段连续的地址空间中识讲解•顺序结构–随机访问方便,空间利用率低,插入删除不方便识讲解•链式结构–结构中的数据元素存放在彼此独立的地址空间中–每个独立的地址空间称为节点–节点除保存数据外,还需要保存相关节点的地址识讲解•链式结构–插入删除方便,空间利用率高,随机访问不方便知识讲解逻辑结构与物理结构的关系•每种逻辑结构采用何种物理结构实现,并没有一定之规,通常根据实现的难易程度,以及在时间和空间复杂度方面的要求,选择最适合的物理结构,亦不排除复合多种物理结构实现一种逻辑结构的可能知识讲解运算结构•创建与销毁–分配资源、建立结构、释放资源•插入与删除–增加、减少数据元素•获取与修改–遍历、迭代、随机访问•排序与查找–算法应用知识讲解数据结构的基本实现•堆栈–基于顺序表的实现–基于链式表的实现•队列–基于顺序表的实现–基于链式表的实现•链表–双向线性链表的实现•二叉树–有序二叉树(二叉搜索树)的实现知识讲解堆栈•后进(压入/push)先出(弹出/pop)识讲解•初始化空间、栈顶指针、判空判满识讲解•动态分配、栈顶指针、注意判空知识讲解队列•先进(压入/push)先出(弹出/pop)识讲解•初始化空间、前弹后压、循环使用、判空判满识讲解•动态分配、前后指针、注意判空知识讲解链表•地址不连续的节点序列,彼此通过指针相互连接•根据不同的结构特征,将链表分为:–单向线性链表–单向循环链表–双向线性链表–双线循环链表–数组链表–链表数组–二维链表识讲解•单向线性链表识讲解•单向循环链表识讲解•双向线性链表识讲解•双向循环链表识讲解•数组链表识讲解•链表数组识讲解•二维链表识讲解•结构模型识讲解•插入节点。

大学数据结构课件--第5章 数组和广义表

大学数据结构课件--第5章 数组和广义表

a 32 a 33 a 34 0 0
a 43 a 44 a 45 0
a 54 a 55 a 56 a 65 a 66
5.3.2 稀疏矩阵
稀疏矩阵的存储:如何表示非零元素的位置信息 1. 三元组表:每个元素用一个三元组(i,j,v)来表示。 i j v
0 1 6 1 1 6 2 3 8 12 9
2
3 4 5 6 7 8
2
5.2 数组的顺序表示和实现
a00 a00 a10 a01 存储单元是一维结构,而数组是个多维结构 , …… …… 则用一组连续存储单元存放数组的数据元素就有 am-1,0 a0,n-1 个次序约定问题。 a01 a10
a11
……
a11
……
二维数组可有两种存储方式: am-1,1 a1,n-1
……
K=
i*n-i(i-1)/2+j-i n(n+1)/2
当 i≤j 当i>j
0 a11 ... a1n-1 ... ... ... ... 0 0 0 an-1n-1
当i ≤ j时,a[i][j]是非零元素, a[i][j]前面有i行,共有n+(n-1)+(n-2)+…(n-(i-1))
=i(n+[n-(i-1)])/2=i*n-i(i-1)/2个元素,a[i][j]前面有j列,共j-i个非零元素,
A m× n
( a10 a11 … a1,n-1 )
=
注:
( … … …… ) ( am-1,0 am-1,2 … am-1,n-1 ) ( ( ( (
① 数组中的元素都具有统一的类型; ② 数组元素的下标一般都具有固定的上界和下界,即数组一旦 被定义,它的维数和维界就不再发生改变; ③ 数组的基本操作简单:初始化、销毁、存取元素和修改元素值
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


The same general method is then used for these subproblems, and so recursion continues until the size of the subproblems is reduced to some smallest, base case, where the solution is given directly without using further recursion.
5.1.3
(1) Solving problems using recursion
5.1.3
(1) Solving problems using recursion
(1) Solving problems using recursion

Recursion Versus Iteration


5.1.4
(1) Solving problems using recursion

The idea that gives a solution is to concentrate on the hardest step: moving the bottom disk.
1 2 3
We have to get to this state and then move the bottom disk

分解模式在每一层递归上都有三个步骤:
分解(Divide): 将原问题分解成一系列子问题; 解决(Conquer): 递归地解决各子问题。若子问题足够小, 则直接求解。 合并(Combine): 将子问题的结果合并成原问题的解。

5.1.4
(1) Solving problems using recursion
5.1.4
(1) Solving problems using recursion

Our goal: move(8, 1, 3, 2)
Steps to solve the problem:
move(7, 1, 2, 3); /*move 7 disks from tower 1 to 2 */ cout << “move disk 8 from tower 1 to 3.”<<endl; move(7, 2, 3, 1); /* move 7 disks from tower 2 to 3 */
1. Solving problems using recursion

In Mathematics:
Base case (递归基)
General case that reduces to simpler case (递归步)
5.1.3
The process of recursive call
5.1.3

there are no circuits, that vertex to any other is, no paths starting from a vertex and returning to the same vertex.
B E J F
C
D G H K I
(3) Tree of function calls

The tower of Hanoi (汉诺塔)



关于汉诺塔 在印度,有这么一个古老的传说:在世界中心 贝拿勒斯(在印度北部)的圣庙里,一块黄铜板上插着三根 宝石针。印度教的主神梵天在创造世界的时候,在其中一根 针上从下到上地穿好了由大到小的64片金片,这就是所谓的 汉诺塔。 不论白天黑夜,总有一个僧侣在按照下面的法则移动这些金 片:一次只移动一片,不管在哪根针上,小片必须在大片上 面。 僧侣们预言,当所有的金片都从梵天穿好的那根针上移到另 外一根针上时,世界就将在一声霹雳中消灭,而梵塔、庙宇 和众生也都将同归于尽。
Outline
Introduction to Recursion • Solving problems using recursion • Recursion trees How recursion is implemented on the machine • Stacks and recursion
(1) Solving problems using recursion

Recursive Function
The base case is count == 0
5.1.4
(2) Designing recursive algorithms
5.2.1
(3) Tree of function calls

Rules:
1. Move only one disk at one time; 2. No larger disk can be placed on a smaller disk. Write a computer program that will type out a list of instructions

The Solution
典故:
古印度有一個傳說,婆羅賀摩(Brahma,眾生地方的廟宇安置了一個 含有64個金盤的婆羅賀摩塔,婆羅門教的憎侶們,奉命依遊戲規則 要不停移動這些金盤,傳說中還說,當重排完成時,就是世界末日 的到來,而經過計算,這64個金盤的遊戲至少要經過 264-1次才會 完成,如果移動一次以1秒鐘計算,還要經過 184467440737095551615天才能完成,照這樣看來,這世界還算 蠻安全的。 Our goal: move(8, 1, 3, 2)



There are similarities between recursion and iteration In iteration, a loop repetition condition determines whether to repeat the loop body or exit from the loop In recursion, the condition usually tests for a base case An iterative solution exists to a problem that is solvable by recursion Recursive code may be simpler than an iterative algorithm and thus easier to write, read, and debug
一年大约有
31536926 秒,计算表明移完这些金片需
要5800多亿年,比地球寿命还要长
5.1.4
(1) Solving problems using recursion

Task:
move
64 disks from the tower 1 to tower 3 using tower 2 as temporary storage.
(1) Solving problems using recursion

To obtain the answer to a large problem, a general method is used that reduces the large problem to one or more problems of a similar nature but a smaller size.
5.1.3
(1) Solving problems using recursion
Every recursive process consists of two parts:
1. A smallest, base case that gives a solution; 2. A general method that reduces a particular case to one or more of the smaller cases, reducing the problem all the way to the base case eventually.
5.1.4
(1) Solving problems using recursion

The tower of Hanoi (汉诺塔)
不管这个传说的可信度有多大,如果考虑一下把64
片金片,由一根针上移到另一根针上,并且始终保
持上小下大的顺序。这需要多少次移动呢?
264-1=18446744073709551615 假如每秒钟一次,共需多长时间呢?
CHAPTER 5 RECURSION
Vocabulary

Recursion Factorial Suspend Stack frame
递归 阶乘 中止,挂起 堆栈结构,栈帧
The towers of hanoi
汉诺塔
Chapter Objectives

To understand how to think recursively To learn how to trace a recursive method To learn how to write recursive algorithms To understand how to use recursion to solve the Towers of Hanoi problem
Tree of function calls (函数调用树) is a tool to analyzing the process of function calls. A node(结点) denotes a function call with the function name; A function may invokes other functions, which are denoted as children; Different recursive calls appear as different vertices with the same name; Recursion tree: the recursive part of the tree of function calls.
相关文档
最新文档