江苏省海安中学2020高三数学上学期阶段测试试题三(含解析)

合集下载

江苏省南通海安市2020届高三数学学年初学业质量检测试题(含解析)

江苏省南通海安市2020届高三数学学年初学业质量检测试题(含解析)

江苏省南通海安市2020届高三数学学年初学业质量检测试题(含解析)参考公式: 锥体的体积公式13V Sh =,其中S 为锥体的底面积,h 为高. 一、填空题:请把答案填写在答题卡相应位置上.1.已知集合{}0,2,6,8A =,{}2,4,6B =-,则A B =I ______. 【答案】{}6 【解析】 【分析】利用集合交集的定义可求出集合A B I .【详解】因为集合{}0,2,6,8A =,{}2,4,6B =-, 所以{}6A B =I ,故答案为:{}6.【点睛】本题考查集合的交集运算,考查计算能力,属于基础题.2.已知复数()12z i i =-⋅,其中i 为虚数单位,则z 的模为______.【解析】 【分析】利用复数的乘法法则将复数z 表示为一般形式,然后利用复数的求模公式可计算出复数z 的模.【详解】()21222z i i i i i =-⋅=-=+Q ,因此,复数z 的模为z ==,故答案【点睛】本题考查复数模的计算,对于复数问题,一般利用复数四则运算法则将复数表示为一般形式,再结合相关公式或知识求解,考查计算能力,属于基础题.3.某厂生产A 、B 、C 三种不同型号的产品,产品数量之比依次为2:3:5,现用分层抽样的方法抽取一个容量为n 的样本,其中A 型号产品有18件,则n 的值为_____. 【答案】90 【解析】 【分析】根据分层抽样总体和样本中,A 型号的产品所占的比例相等列等式求出n 的值. 【详解】由于在总体和样本中,A 型号的产品所占的比例相等,则有182235n =++,解得90n =,故答案为:90.【点睛】本题考查分层抽样中的计算,解题时要根据分层抽样的特点列等式进行计算,考查运算求解能力,属于基础题.4.函数y =的定义域是_____________ 【答案】[]2,3 【解析】 【分析】根据偶次方根被开方数为非负数列不等式,解不等式求得函数的定义域.【详解】依题意2560x x -+-≥,即()()256320x x x x -+=--≤,解得[]2,3x ∈.【点睛】本小题主要考查具体函数定义域的求法,主要是偶次方根的被开方数为非负数,考查一元二次不等式的解法,属于基础题.5.已知长方体1111ABCD A B C D -的体积为72,则三棱锥1A BCD -的体积为______. 【答案】12 【解析】 【分析】设长方体1111ABCD A B C D -的底面积为S ,高为h ,可得出72Sh =,则三棱锥1A BCD -的底面积为12S ,高为h ,再利用锥体的体积公式可计算出三棱锥1A BCD -的体积. 【详解】设长方体1111ABCD A B C D -的底面积为S ,高为h ,则长方体1111ABCD A B C D -的体积为72Sh =, 由题意可知,三棱锥1A BCD -的底面积为12S ,高为h , 因此,三棱锥1A BCD -的体积为1111172123266A BCDV S h Sh -=⨯⨯==⨯=,故答案为:12. 【点睛】本题考查锥体体积的计算,解题的关键就是弄清楚锥体和长方体底面积以及高之间的等量关系,考查计算能力,属于基础题.6.如图是一个算法流程图,则输出的n 的值为______.【答案】9 【解析】 【分析】根据框图列出算法步骤,可得出输出结果. 【详解】由题意可得1024n =为偶数,则10245122n ==,922log 512log 29n ===,输出n 的值为9,故答案为:9.【点睛】本题考查利用程序框图计算输出结果,考查条件结构框图的应用,一般根据算法框图列举出算法步骤,即可计算出输出结果,考查计算能力,属于中等题.7.在平面直角坐标系xOy 中,已知双曲线()222:10x C y a a-=>的右焦点的坐标为)3,0,则该双曲线的两条渐近线方程为______.【答案】y x = 【解析】 【分析】根据题意求出a 的值,即可得出双曲线的渐近线方程.【详解】由题意可得2212a =-=,则双曲线的方程为2212x y -=,因此,双曲线的渐近线方程为2y x x ==±,故答案为:2y x =±.【点睛】本题考查双曲线渐近线方程的求解,解题的关键就是求出双曲线的方程,考查运算求解能力,属于基础题.8.某饮品店提供A 、B 两种口味的饮料,且每种饮料均有大杯、中杯、小杯三种容量.甲、乙二人各随机点一杯饮料,且甲只点大杯,乙点中杯或小杯,则甲、乙所点饮料的口味相同的概率为______. 【答案】12【解析】 【分析】记A 种口味饮料大杯、中杯、小杯分别记为1A 、2A 、3A ,B 种口味饮料大杯、中杯、小杯分别记为1B 、2B 、3B ,用列举法列出所有的基本事件,并确定事件“甲、乙所点饮料的口味相同”所包含的基本事件,然后利用古典概型的概率公式可求出所求事件的概率. 【详解】记A 种口味饮料大杯、中杯、小杯分别记为1A 、2A 、3A ,B 种口味饮料大杯、中杯、小杯分别记为1B 、2B 、3B ,事件“甲只点大杯,乙点中杯或小杯”所包含的基本事件有:()12,A A 、()13,A A 、()12,A B 、()13,A B 、()12,B A 、()13,B A 、()12,B B 、()13,B B ,共8个,其中事件“甲、乙所点饮料的口味相同”所包含的基本事件有:()12,A A 、()13,A A 、()12,B B 、()13,B B ,共4个,因此,所求事件的概率为4182=,故答案为:12. 【点睛】本题考查利用古典概型概率公式计算事件的概率,解题的关键就是利用列举法列举出基本事件,并确定基本事件数目,考查计算能力,属于中等题.9.已知函数()()sin 202f x x πϕϕ⎛⎫=+<< ⎪⎝⎭图象的一条对称轴方程为6x π=,则ϕ的值为______. 【答案】6π【解析】 【分析】 由题意得出()262k k Z ππϕπ⨯+=+∈,求出ϕ的表达式,再结合ϕ的取值范围,可得出ϕ的值.【详解】由题意得出()262k k Z ππϕπ⨯+=+∈,()6k k Z πϕπ∴=+∈,02πϕ<<Q ,0k ∴=且6π=ϕ,故答案为:6π.【点睛】本题考查利用正弦型函数对称轴方程求参数的值,解题时要结合正弦型函数的对称轴方程得出参数的表达式,并结合参数的取值范围得出参数的值,考查运算求解能力,属于中等题.10.设等比数列{}n a 的公比为()1q q >,前n 项和为n S .若存在m N *∈,使得2152m m m a a a +++=,且29m m S S =,则正整数m 的值为______. 【答案】3 【解析】 分析】先利用条件2152m m m a a a +++=求出公比q 的值,然后利用等比数列求和公式以及29m m S S =可求出正整数m 的值. 【详解】2152m m m a a a +++=Q ,252m m m a a q a q ∴+=,得25102q q -+=,1q >Q ,解得2q =.由29m m S S =,可得()()211121291212m m a a --=⨯--,所以,()212912mm -=-,即()()()1212912mmm-+=-,m N*∈Q ,120m ∴-≠,129m ∴+=,解得3m =,故答案为:3.【点睛】本题考查等比数列基本量的计算,同时也考查了等比数列求和公式,对于等比数列问题,通常利用首项和公比将等比数列中相关量表示出来,考查计算能力,属于中等题.11.如图,在平面直角坐标系xOy 中,已知正方形OABC ,其中()1OA a a =>,函数23y x =交BC 于点P ,函数12y x-=交AB 于点Q ,则当AQ CP +最小时,a 的值为______.3【解析】 【分析】由题意得出直线AB 的方程为x a =,直线BC 的方程为y a =,求出点P 、Q 的坐标,可得出AQ 、CP 关于a 的表达式,然后利用基本不等式求出AQ CP +的最小值,并利用等号成立的条件求出对应的a 的值.【详解】由题意得出直线AB 的方程为x a =,直线BC 的方程为y a =,联立直线AB 的方程与函数12y x -=的解析式12x a y x -=⎧⎪⎨⎪=⎩,得1x a y a =⎧⎪⎨=⎪⎩, 所以点Q 的坐标为a a ⎛ ⎝,则AQ a =联立直线BC 的方程与函数23y x =的解析式()230y a y x x =⎧⎨=>⎩,得3ax y a⎧=⎪⎨⎪=⎩,所以点P 的坐标为,3a a ⎛⎫ ⎪ ⎪⎝⎭,则3aCP =. 由基本不等式得412333aa AQ CP a a +=+≥⋅=, 当且仅当3aa =,即当3a =时,等号成立,因此,3a =,故答案为:3. 【点睛】本题考查利用基本不等式求最值,解题的关键就是结合条件建立关于a 的代数式,并结合基本不等式进行求解,考查分析问题和解决问题的能力,属于中等题.12.如图,在平面四边形ABCD 中,3AB =,1AD =,CB CD =,2ADB BCD π∠=∠=,则AC BD ⋅uuu r uu u r的值为______.【答案】4- 【解析】 【分析】以点D 为坐标原点,DB 、AD 所在直线分别为x 轴、y 轴建立平面直角坐标系,写出A 、B 、C 、D 四点的坐标,并求出向量AC u u u r 、BD u u u r的坐标,利用坐标法来计算出AC BD ⋅uuu r uu u r 的值.【详解】如下图所示,以点D 为坐标原点,DB 、AD 所在直线分别为x 轴、y 轴建立平面直角坐标系,3AB =Q ,1AD =,2ADB π∠=,2222BD AB AD ∴=-=又CB CD =,且2BCD π∠=,BCD ∴∆是等腰直角三角形,则点()0,1A -、()22,0B 、2,2C、()0,0D ,)2,21AC =uuu r,()22,0BD =-uu u r,因此,(()2222104AC BD ⋅=-+⨯=-uuu r uu u r ,故答案为:4-.【点睛】本题考查图形中向量数量积的计算,常利用基底向量法与坐标法来进行求解,考查数形结合思想的应用,属于中等题.13.在ABC ∆中,已知AB 边上的中线1CM =,且1tan A ,1tan C ,1tan B成等差数列,则AB 的长为________. 23【解析】 【分析】 先由1tan A ,1tan C ,1tan B成等差数列,结合正弦定理与余弦定理,得到2222a b c +=,再由AB 边上的中线1CM =,()12CM CA CB =+u u u u r u u u r u u u r ,得到22224232c b a ab c ab=++⋅=,进而可求出结果.【详解】因为1tan A ,1tan C ,1tan B 成等差数列, 所以211tan tan tan C A B =+,即2cos cos cos sin()sin sin sin sin sin sin sin sin C A B A B CC A B A B A B+=+==, 所以2sin 2cos sin sin C C A B =,由正弦定理可得2cos 2c C ab=,又由余弦定理可得222cos 2a b c C ab +-=,所以222222a b c c ab ab+-=,故2222a b c +=, 又因为AB 边上的中线1CM =,所以1CM =u u u u r ,因为()12CM CA CB =+u u u u r u u u r u u u r, 所以22222422cos CM CA CB CA CB CA CB CA CB C =++⋅=++u u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r,即22224232c b a ab c ab =++⋅=,解3c =.即AB 的长为3.【点睛】本题主要考查解三角形与平面向量的应用,熟记正弦定理与余弦定理,以及向量数量积的运算即可,属于常考题型.14.在平面直角坐标系xOy 中,已知直线1:20l x y -+=与x 轴交于点A ,点B 在直线1l 上,直线2:310l x y +-=上有且仅有一点C 满足:AC BC ⊥(A 、B 、C 两两互不相同),则点B 的横坐标的所有可能值之积为______.【答案】19 【解析】 【分析】设点B 的坐标为(),2t t +,设点(),C x y ,根据AC BC ⊥转化为0AC BC ⋅=u u u r u u u r,可得出点C 的轨迹为圆,由题意得出点C 的轨迹圆与直线2l 相切,将直线2l 的方程与点C 的轨迹方程联立,利用0∆=得出关于t 的二次方程,利用韦达定理求出两根之积12t t 可得出结果. 【详解】设点B 的坐标为(),2t t +,直线1l 与x 轴的交点为点()2,0A -,设点(),C x y ,()2,AC x y =+uu u r ,(),2BC x t y t =---uu u r, AC BC ⊥Q ,()()()220AC BC x x t y y t ∴⋅=+-+--=uu u r uu u r,联立()()()310220x y x x t y y t +-=⎧⎨+-+--=⎩,消去x 得()210214330y t y t +-+-=,()()2214410330t t ∆=--⨯⨯-=,化简得216190t t ++=,由韦达定理得1219t t =.当点B 为直线1l 与2l 的交点时5434x y ⎧=-⎪⎪⎨⎪=⎪⎩,要使0AC BC ⋅=u u u r u u u r ,点C 与点B 重合,不合题意.因此,点B 的横坐标的所有可能值之积为1219t t =,故答案为:19.【点睛】本题考查两直线垂直、直线与圆的位置关系的综合应用,解题的关键在于将点的个数问题转化为直线与圆的位置关系,并利用韦达定理进行求解,考查转化与化归思想以及方程思想,考查运算求解能力,属于难题.二、解答题:请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤. 15.在ABC ∆中,已知3BC =,2AC AB -=,1cos 2B =-. (1)求AB 、AC 的值; (2)求()sin B C -的值.【答案】(1)5AB =,7AC =;(2. 【解析】 【分析】(1)设角A 、B 、C 的对边依次为a 、b 、c ,由2b c -=,可得出2b c =+,利用余弦定理结合条件1cos 2B =-可解出c ,从而可得出AB 、AC 的值; (2)求出23B π=,利用余弦定理求出cos C 的值,再利用同角三角函数可求出sin C 的值,然后利用两角差的正弦公式可求出()sin B C -的值.【详解】(1)设角A 、B 、C 的对边依次为a 、b 、c ,由余弦定理得222cos 2a c bB ac+-=,又因为1cos 2B =-,3a =,2b c -=,所以()222321232c c c +-+=-⨯,解得5c =.因此,5AB =,7AC =;(2)在ABC ∆中,0B π<<,又1cos 2B =-,故23B π=. 由余弦定理得222cos 2a b cC ab +-=,结合(1)知,22237511cos 23714C +-==⨯⨯,又0C π<<,故221153sin 1cos 11414C C ⎛⎫=-=-= ⎪⎝⎭,()22231115343sin sin sin cos cos sin 3332142147B C C C C πππ⎛⎫-=-=-=⨯+⨯=⎪⎝⎭. 【点睛】本题考查利用余弦定理解三角形,以及利用两角差的正弦公式求值,在求解三角形的问题时,要结合三角形已知元素类型合理选择正弦、余弦定理进行计算,考查运算求解能力,属于中等题.16.如图,在直三棱柱111ABC A B C -中,AB BC ⊥,点D 为棱1C C 的中点,1AC 与1A D 交于点E ,1BC 与1B D 交于点F ,连结EF .求证:(1)//AB EF ;(2)平面11A B D ⊥平面11B BCC .【答案】(1)证明见解析;(2)证明见解析. 【解析】 【分析】(1)先证明出//AB 平面11A B D ,然后利用直线与平面平行的性质定理可得出//AB EF ; (2)由题意得出1111A B B C ⊥,由1BB ⊥平面111A B C ,可得出111A B BB ⊥,利用直线与平面垂直的判定定理证明出11A B ⊥平面11BB C C ,再利用平面与平面垂直的判定定理可证明出平面11A B D ⊥平面11B BCC .【详解】(1)在直三棱柱111ABC A B C -中,11//AB A B ,又AB ⊄平面11A B D ,11A B ⊂平面11A B D ,所以//AB 平面11A B D . 又AB Ì平面1ABC ,平面11A B D I 平面1ABC EF =,所以//AB EF ; (2)在直三棱柱111ABC A B C -中,1B B ⊥平面111A B C , 又11A B ⊂平面111A B C ,故111B B A B ⊥ 又AB BC ⊥,故1111A B B C ⊥.又因为1111B B B C B =I ,1B B ⊂平面11B BCC ,11B C ⊂平面11B BCC ,所以11A B ⊥平面11B BCC ,又11A B ⊂平面11A B D ,所以平面11A B D ⊥平面11B BCC .【点睛】本题考查直线与直线平行以及平面与平面垂直的证明,考查直线与平面平行的性质定理以及平面与平面垂直判定定理的应用,考查推理能力,属于中等题.17.现有一张半径为1m 的圆形铁皮,从中裁剪出一块扇形铁皮(如图1阴影部分),并卷成一个深度为hm 的圆锥筒,如图2.(1)若所裁剪的扇形铁皮的圆心角为23rad π,求圆锥筒的容积; (2)当h 为多少时,圆锥筒的容积最大?并求出容积的最大值. 【答案】(1)32281m π;(2)当3h 时,圆锥筒的容积的最大值为32327m π. 【解析】 【分析】(1)计算出扇形的弧长,利用扇形的弧长等于圆锥底面圆的周长可求出圆锥底面圆的半径,利用勾股定理计算出圆锥的高,再利用圆锥的体积公式可计算出圆锥的容积;(201h <<,利用圆锥的体积公式计算出圆锥的容积V 关于h 的函数,再利用导数可求出V 的最大值,并求出对应的h 的值. 【详解】设圆锥筒的半径为r ,容积为V .(1)由223r ππ=,得13r =,从而3h ==,所以()23111333381V Sh m π⎛⎫==⨯⨯= ⎪⎝⎭.答:圆锥筒的容积为381m ;(2)因为r 01h <<. 所以()()223111113333V Sh r h h h h h πππ===-⋅=-,即()313V h h π=-,01h <<.因为()21133V h π'=-,令0V '=得,3h =±(舍负值),列表如下:所以,当h 时,V 取极大值即最大值,且V .答:当h 3. 【点睛】本题考查圆锥体积的计算,同时也考查利用导数求函数的最值,解题的关键就是要结合题意求出函数解析式,考查分析问题和解决问题的能力,属于中等题.18.如图,在平面直角坐标系xOy 中,已知椭圆()2222:10x y C a b a b+=>>的右焦点为F ,左、右顶点分别为1A 、2A ,上、下顶点分别为1B 、2B ,连结2B F 并延长交椭圆于点P ,连结2PA ,12A B ,记椭圆C 的离心率为e .(1)若12e =,127A B =①求椭圆C 的标准方程;②求21B A F ∆和2PA F ∆的面积之比. (2)若直线2PB 和直线2PA 的斜率之积为92-,求e 的值.【答案】(1)①22143x y +=.②5 ;(2)12e =. 【解析】 【分析】(1)①设椭圆的焦距为2c ,根据题意列出有关a 、b 、c 的方程组,求出a 、b 的值,可得出椭圆的标准方程;②求出直线2B F 的方程,将该直线方程与椭圆C 的标准方程联立,求出点P 的坐标,再利用三角形的面积公式可求出21B A F ∆和2PA F ∆的面积之比; (2)先利用截距式得出直线2PB 的方程为1x y c b+=-,将该直线方程与椭圆C 的方程联立,求出点P 的坐标,利用斜率公式计算出直线2PA 和2PB 的斜率,然后由这两条直线的斜率之积为92-,得出关于a 、c 的齐次方程,由此可解出椭圆C 的离心率e 的值.【详解】(1)①设椭圆的焦距为2c,由题意,得22212c e a a b c ⎧==⎪==+⎪⎪⎩2243a b ⎧=⎨=⎩,所以椭圆的标准方程为22143x y +=;②由①知,()12,0A -、()22,0A ,()1,0F,(20,B , 所以直线2B F的方程为)1y x =-,将其代入椭圆的方程,得()22114x x +-=,即2580x x -=,所以0x =或85x =,所以点P的坐标为8,55⎛⎫ ⎪ ⎪⎝⎭. 从而21B A F ∆和2PA F ∆的面积之比:212135B A F PA FS S ∆∆⨯==; (2)因为2B 、F 在直线2PB 上,所以直线2PB 的方程为1x yc b+=-. 解方程组22221,1,x yc bx y a b ⎧+=⎪⎪-⎨⎪+=⎪⎩,得()2122221222a c x a c b a c y a c ⎧=⎪+⎪⎨-⎪=⎪+⎩或220x y b =⎧⎨=-⎩, 所以点P 的坐标为()22222222,b a c a c a c a c ⎛⎫- ⎪ ⎪++⎝⎭. 因为直线2PB 的斜率()200PB b bk c c--==-,直线2PA 的斜率()()()()()222222222222222PA b a c b a c b a c a c k a c a a c a c a a c a a c ---++===---+-+, 又因为直线2PB 和直线2PA 斜率之积为92-,所以()()()()()()()()222292a c a cb ac b a c a c b a a c c ac a c ac a c ac -++++-⨯=-=-=-=----,即1922e e ++=,化简得22520e e -+=,01e <<Q ,解得12e =. 因此,椭圆C 的离心率为12e =.【点睛】本题考查椭圆标准方程的求解、三角形面积的比值,以及椭圆离心率的求解,同时也考查了直线与椭圆交点坐标的求解,考查方程思想的应用,属于中等题.19.已知函数()2xx bx c f x e++=(e为自然对数的底数),()f x '为()f x 的导函数,且()10f '=.(1)求实数c 的值;(2)若函数()f x 在0x =处的切线经过点()1,0-,求函数()f x 的极值;(3)若关于x 的不等式()2f x ≤对于任意的[]0,2x ∈恒成立,求实数b 的取值范围. 【答案】(1)1;(2)函数()y f x =的极小值为0,极大值为4e;(3)(],22e -∞-. 【解析】 【分析】(1)求出函数()y f x =的导数()f x ',由()10f '=,可求出实数c 的值;(2)利用导数求出函数()y f x =在0x =处的切线方程,将点()1,0-代入切线方程,可求出实数b 的值,然后利用导数求出函数()y f x =的极值点,并列表分析函数()y f x =的单调性,由此可得出函数()y f x =的极小值和极大值;(3)方法1:由()2f x ≤,得()221xbx e x ≤-+,[]0,2x ∈,然后分0x =和02x <≤两种情况讨论,在0x =时可验证不等式成立,在(]0,2x ∈时,由参变量分离法得21x e b x x x ⎛⎫≤-+ ⎪⎝⎭,并构造函数()21x e g x x x x ⎛⎫=-+ ⎪⎝⎭,并利用导数求出函数()y g x =在区间(]0,2上的最小值,由此可得出实数b 的取值范围;方法2:解导数方程()0f x '=,得出11x b =-,21x =,然后分11b -=,10b -≤,011b <-<,12b -≥和112b <-<五种情况讨论,分析函数()y f x =在区间[]0,2上的单调性,求出函数()y f x =的最大值()max f x ,再解不等式()max 2f x ≤可得出实数b 的取值范围.【详解】(1)因为()2x x bx cf x e ++=,所以()()22xx b x b c f x e -+-+-'=,又因为()10f '=,所以()120b b ce-+-+-=,解得1c =.(2)因为()2xx bx cf x e ++=,所以()01f =. 因为()()22xx b x b cf x e-+-+-'=,所以()01f b '=-. 因为,函数()y f x =在0x =处的切线方程为()11y b x -=-且过点()1,0-, 即()11b -=--,解得2b =. 因为()()()11xx x f x e -+'=-,令()0f x '=,得1x =±,列表如下:所以当1x =-时,函数()y f x =取得极小值()10f -=, 当1x =时,函数()y f x =取得极大值为()41f e=; (3)方法1:因为()212xx bx f x e++=≤在[]0,2x ∈上恒成立,所以()221xbx e x ≤-+在[]0,2x ∈上恒成立. 当0x =时,01≤成立;当(]0,2x ∈时,21x e b x x x ⎛⎫≤-+ ⎪⎝⎭恒成立,记()21x e g x x x x ⎛⎫=-+ ⎪⎝⎭,(]0,2x ∈, 则()()()()221212111xx x e x e x g x x x x ----⎛⎫'=--= ⎪⎝⎭. 令()21x h x e x =--,(]0,2x ∈,则()0212110xh x e e '=->-=>,所以函数()y h x =在区间(]0,2上单调递增,所以()()0020110h x h e >=--=>,即210x e x -->在区间(]0,2上恒成立.当(]0,2x ∈,令()0g x '=,得1x =,所以,函数()y g x =在区间()0,1上单调递减,在区间()1,2上单调递增, 所以()()min 122g x g e ==-,所以,22b e ≤-, 因此,实数b 的取值范围是(],22e -∞-;方法2:由(1)知,()21xx bx f x e++=, 所以()()()()22111x xx b x b x x b f x e e -+-+--+-'==-.令()0f x '=,得11x b =-,21x =.①当11b =-时,即0b =时,函数()y f x =在区间[]0,2上单调递减, 由题意可知()012f =≤,满足条件;②当10b -≤时,即1b ≥时,函数()y f x =在区间[]0,1上单调递增,在区间[]1,2上单调递减,由题意可知()212b f e+=≤,解得122b e ≤≤-; ③当011b <-<时,即01b <<时,函数()y f x =在[]0,1b -上单调递减,在[]1,1b -上单调递增,在[]1,2上单调递减,由题意可知()212b f e+=≤,解得22b e ≤-,所以01b <<; ④当12b -≥时,即1b ≤-时,函数()y f x =在区间[]0,1上单调递减,在区间[]1,2上单调递增,由题意可知()22522b f e +=≤,解得252b e ≤-. 又因为1b ≤-,所以1b ≤-; ⑤当112b <-<时,即10b -<<时,函数()y f x =在[]0,1上单调递减,[]1,1b -上单调递增,在[]1,2b -上单调递减, 由题意可知()1212bbf b e---=≤,即()12110b e b ---+≥. 令1t b =-,则12t <<,设()2121tty e t e t =-+=--,则210ty e '=->,所以,函数21ty e t =--在区间()1,2上单调递增,又因为1t =时,220y e =->,所以0y ≥在区间()1,2上恒成立,所以10b -<<. 综上,22b e ≤-,因此,实数b 的取值范围是(],22e -∞-.【点睛】本题考查导数的计算、导数的几何意义、利用导数求函数的极值以及利用导数研究不等式恒成立问题,对于不等式恒成立问题,可以利用参变量分离法,也可以采用分类讨论法,转化为函数的最值来求解,考查分类讨论数学思想的应用,属于难题.20.若无穷数列{}n a 满足:只要p q a a =(p 、q N *∈),必有11p q a a ++=,则称{}n a 具有性质P .(1)若数列{}n a 具有性质P ,且11a =,22a =,43a =,52a =,67821a a a ++=,求3a ; (2)若无穷数列{}n b 是等差数列,无穷数列{}n c 是公比大于1的等比数列,15b c =,51b c =,n n n a b c =+,判断{}n a 是否具有性质P ,并说明理由;(3)设{}n b 是无穷数列,已知()1sin n n n a b a n N *+=+∈,求证:“对任意的1a ,{}na 具有性质P ”的充要条件为“{}n b 是常数列”.【答案】(1)316a =;(2)不具有性质P ,证明见解析;(3)证明见解析.【解析】 【分析】(1)根据题中条件得出25a a =,结合性质P 可得出36a a =,47a a =,58a a =,再利用条件67821a a a ++=,可得出3a 的值;(2)假设数列{}n a 是具有性质P ,根据题中条件得出15a a =,根据性质P 得出26a a =,将两等式作差得出关于q 的方程,解出q 的值,不满足1q >,说明数列{}n a 不具备性质P ; (3)充分性:由数列{}n b 是常数列,可得1n b b =,通过11sin n n a b a +=+,证明11p q a a ++=,可得出数列{}n a 具有性质P ;必要性:对任意的1a ,{}n a 具有性质P ,得到211sin a b a =+,构造函数()1f x x b =-,()sin g x x =,证明出1n n b b +=,可证明出数列{}n b 是常数项.【详解】(1)因为22a =,52a =,所以25a a =.因为数列{}n a 具有性质P ,所以36a a =,47a a =,58a a =,从而34567821a a a a a a ++=++=,又43a =,52a =,所以316a =; (2)假设{}n a 是具有性质P ,等比数列{}n c 的公比为()1q q >. 因为n n n a b c =+,所以111a b c =+,555a b c =+.因为15b c =,51b c =,所以1155b c b c +=+①,从而15a a =. 又因为{}n a 具有性质P ,所以26a a =,即2266b c b c +=+②. ②-①,得21216565b b c c b b c c -+-=-+-.因为{}n b 是等差数列,所以2165b b b b -=-,从而2165c c c c -=-.因为数列{}n c 是等比数列,所以10c ≠,从而541q q q -=-,而()()4110q q --=.因为1q >,所以不存在这样的q ,所以假设不成立. 所以{}n a 不具有性质P ;(3)1︒充分性:若{}n b 是常数列,则1n b b =,从而11sin sin n n n n a b a b a +=+=+.若存在p 、q N *∈,使得p q a a =,则由11sin p p a b a +=+,11sin q q a b a +=+得,11p q a a ++=,所以对任意的1a ,{}n a 具有性质P ;2︒必要性:若对任意的1a ,{}n a 具有性质P .先证明:对于给定的1b ,存在t R ∈,使得1sin 0t t b --=. 证明:记函数()1sin f t t t b =--,则()()1122sin 20f b b +=-+>,()()1122sin 20f b b -=---<, 又函数()y f t =的图象不间断,所以存在()112,2t b b ∈-+,使得()0f t =. 取1a t =,则111sin 0a a b --=,即111sin a b a =+, 又由1sin n n n a b a +=+得,211sin a b a =+,所以12a a =. 由{}n a 具有性质P ,得23a a =,34a a =,L ,1n n a a +=,所以{}n a 为常数列,从而1sin n n n b a a +=-为常数,所以{}n b 是常数列.【点睛】本题考查等差数列和等比数列的综合问题,同时也考查了充分必要条件的证明,本题的难点在于构造新函数,利用函数的零点存在定理来证明常数列,考查分析问题和解决问题的能力,属于难题.21.已知矩阵32x A y ⎡⎤=⎢⎥⎣⎦,41α⎡⎤=⎢⎥-⎣⎦,且94A α⎡⎤=⎢⎥⎣⎦.(1)求实数x 、y 的值; (2)求矩阵A 的特征值.【答案】(1)3x =,4y =;(2)特征值为1、6. 【解析】 【分析】(1)根据题中矩阵运算列出关于x 、y 的方程组,可解出x 、y 的值; (2)求出矩阵A特征方程,解出该方程可得出矩阵A 的特征值.【详解】(1)因为32x A y ⎡⎤=⎢⎥⎣⎦,41α⎡⎤=⎢⎥-⎣⎦,94A α⎡⎤=⎢⎥⎣⎦,所以349214x y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦.所以43984x y -=⎧⎨-=⎩,解得34x y =⎧⎨=⎩;(2)由(1)知,3324A ⎡⎤=⎢⎥⎣⎦, 则矩阵A 的特征多项式()()()()()333461624fλλλλλλλ--==---=----,令()0f λ=,得1λ=,6λ=,因此,矩阵A 的特征值为1、6.【点睛】本题以矩阵计算以及矩阵特征值的计算,解题的关键在于写出矩阵的特征方程,并进行求和,考查方程思想的应用,属于中等题.22.在极坐标系中,O 为极点,点()00,M ρθ在曲线:4sin C ρθ=上,直线l 过点()4,0A 且与OM 垂直,若03πθ=,求0ρ及l 的极坐标方程.【答案】0ρ=l 的极坐标方程为sin 26πρθ⎛⎫+= ⎪⎝⎭. 【解析】 【分析】 将点0,3M πρ⎛⎫⎪⎝⎭代入曲线C 的极坐标方程可得出0ρ的值,求出直线OM 的斜率,根据l OM ⊥求出直线l 的斜率,利用点斜式写出直线l 的方程,再将直线l 的普通方程化为极坐标方程.【详解】因为点()00,M ρθ在曲线:4sin C ρθ=上,所以004sin ρθ=.又03πθ=,故04sin3πρ==OM 的斜率为tan3π=l OM ⊥Q ,设直线l 的斜率为k 1=-,解得k =.所以,直线l 的方程为)4y x =-,即40x +-=,所以,直线l 的极坐标方程为cos sin 40ρθθ+-=,即2sin 46πρθ⎛⎫+= ⎪⎝⎭,因此,直线l 的极坐标方程为sin 26πρθ⎛⎫+= ⎪⎝⎭. 【点睛】本题考查极径的计算以及直线的极坐标方程的求解,一般要结合题意先写出直线的普通方程,再转化为极坐标方程,考查运算求解能力,属于中等题.23.对于正实数x 、y 满足11x -≤,21y -≤,求证:12x y -+≤. 【答案】证明见解析 【解析】 【分析】将代数式表示为()()112x y x y -+=---,再利用绝对值三角不等式可证出所证不等式成立.【详解】由绝对值三角不等式得()()112122x y x y x y -+=---≤-+-≤, 因此,原不等式成立.【点睛】本题考查利用绝对值三角不等式证明不等式成立,证明的关键在于对代数式进行配凑,考查推理能力,属于中等题.24.如图,在空间之间坐标系O xyz -中,四棱锥P ABCD -的底面ABCD 在平面xOy 上,其中点A 与坐标原点O 重合,点D 在y 轴上,CD AD ⊥,//BC AD ,顶点P 在z 轴上,且2PA AD CD ===,3BC =.(1)求直线PB 与平面PCD 所成角的大小; (2)设E 为PD 的中点,点F 在PC 上,且13PF PC =,求二面角F AE P --的正弦值. 【答案】(1)45o ;(26.【解析】 【分析】(1)列出A 、B 、C 、D 、P 的坐标,计算出平面PCD 的一个法向量u r,利用空间向量法计算出直线PB 与平面PCD 所成角的正弦值,即可得出直线PB 与平面PCD 所成角的大小;(2)求出点E 、F 的坐标,计算出平面AEF 和AEP 的法向量m u r 、n r,利用空间向量法求出二面角F AE P --的余弦值的绝对值,由此可得出二面角F AE P --的正弦值. 【详解】因为四棱锥P ABCD -的底面ABCD 在平面xOy 上, 其中点A 与坐标原点O 重合,点D 在y 轴上,CD AD ⊥,//BC AD , 顶点P 在z 轴上,且2PA AD CD ===,3BC =, 所以()0,0,0A ,()2,1,0B -,()2,2,0C ,()0,2,0D,()002P ,,.(1)()2,1,2PB =--u u u r ,()2,2,2PC =-u u u r ,()0,2,2PD =-u u u r,设平面PCD 的一个法向量为(),,u x y z =r,则00u PC u PD ⎧⋅=⎨⋅=⎩u u u v v u u u v v ,即2220220x y z y z +-=⎧⎨-=⎩,取1z =,则0x =,1y =,得()0,1,1u =r .所以cos ,2u PB u PB u PB ⋅===-⋅r uu rr uu r r uu r .所以直线PB 与平面PCD 所成角的大小为45o ; (2)因为E 为PD 的中点,点F 在PC 上,且13PF PC =,所以()0,1,1E ,224,,333F ⎛⎫⎪⎝⎭. 设平面AEF 的一个法向量为(),,m a b c =u r,则00m AE m AF ⎧⋅=⎨⋅=⎩u u u v v u u u v v ,即02240333b c a b c +=⎧⎪⎨++=⎪⎩,取1b =,则1a =,1c =-,得()1,1,1m =-u r . 又平面AEP 的一个法向量为()1,0,0n =r,所以cos ,m n m n m n⋅===⋅u r ru r r u r r .所以二面角F AE P --的正弦值为3.【点睛】本题考查利用空间向量法求直线与平面所成的角和二面角,解题的关键就是要列出问题所涉及的点的坐标,并计算出平面的法向量,考查运算求解能力,属于中等题.25.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A、B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A、B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:(1)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;(2)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.【答案】(1)X的分布列见解析,数学期望为1;(2)无法确定是否有变化,理由见解析. 【解析】【分析】(1)根据表格中的数据确定仅使用A支付方法或B支付方法中,金额不大于1000和大于1000的人所占的频率,由题意得出随机变量X的可能取值有0、1、2,再利用独立事件的概率乘法公式计算出随机变量X在对应取值的概率,可列出随机变量X的分布列,并利用数学期望公式可求出其数学期望;(2)计算出事件“从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元”的概率,根据概率的意义得出结论.【详解】(1)仅使用A支付方法的30名学生中,金额不大于1000的人数占35,金额大于1000的人数占25,仅使用B支付方法的学生中,金额不大于1000的人数占25,金额大于1000的人数占35,且X 的所有可能值为0、1、2.则()32605525P X ==⨯=,()22321315525P X ⎛⎫⎛⎫==+= ⎪ ⎪⎝⎭⎝⎭,()32625525P X ==⨯=,所以X 分布列为:数学期望()61360121252525E X =⨯+⨯+⨯=; (2)无法确定是否有变化,理由如下:记事件:E “从样本仅使用A 的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.”假设样本仅使用A 的学生中,本月支付金额大于2000元的人数没有变化,则由上个月数据得,()3333014060C P E C ==.我们知道“小概率事件”的概率虽小,但还是有可能发生的,因此无法确定是否有变化. 【点睛】本题考查离散型随机变量分布列与数学期望,考查古典概型概率的计算以及概率的意义,解时要弄清事件的基本类型,结合相关公式计算事件的概率,考查推理能力与计算能力,属于中等题.。

2020届江苏省南通市海安高级中学高三阶段测试三数学试题(解析版)

2020届江苏省南通市海安高级中学高三阶段测试三数学试题(解析版)

2020届江苏省南通市海安高级中学高三阶段测试三数学试题一、填空题1.设全集{1,2,3,4,5}U =,若{1,2,4}U A =ð,则集合A =_________. 【答案】{3,5}.【解析】直接求根据{1,2,4}U A =ð求出集合A 即可. 【详解】解:因为全集{1,2,3,4,5}U =若{1,2,4}U A =ð, 则集合A ={3,5}. 故答案为:{3,5}. 【点睛】本题考查补集的运算,是基础题.2.已经复数z 满足(2)1z i i -=+(i 是虚数单位),则复数z 的模是________. 10 【解析】【详解】(2)1z i i -=+Q ,11323,i iz i i i++∴=+==- 10z =10.3.已知一组数据123,,a a a ,…,n a 的平均数为a ,极差为d ,方差为2S ,则数据121,a +221,a +321a +,…,21n a +的方差为___________.【答案】24S【解析】根据在一组数据的所有数字上都乘以同一个数字,得到的新数据的方差是原来数据的平方倍,得到结果. 【详解】解: ∵数据123,,a a a ,…,n a 的方差为2S ,∴数据121,a +221,a +321a +,…,21n a +的方差是22224S S ⨯=, 故答案为:24S . 【点睛】此题主要考查了方差,关键是掌握方差与数据的变化之间的关系. 4.如图是一个算法的伪代码,其输出的结果为_______.【答案】1011【解析】由题设提供的算法流程图可知:1111101122310111111S =++⋅⋅⋅+=-=⨯⨯⨯,应填答案1011. 5.从0,2 中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,其中奇数的个数为______。

【答案】18【解析】试题分析:分类讨论:从0、2中选一个数字0,则0只能排在十位;从0、2中选一个数字2,则2排在十位或百位,由此可得结论.解:从0、2中选一个数字0,则0只能排在十位,从1、3、5中选两个数字排在个位与百位,共有23A =6种;从0、2中选一个数字2,则2排在十位,从1、3、5中选两个数字排在个位与百位,共有23A =6种; 2排在百位,从1、3、5中选两个数字排在个位与十位,共有23A =6种;故共有323A =18种,故答案为18. 【考点】计数原理点评:本题考查计数原理的运用,考查分类讨论的数学思想,正确分类是关键6.在平面直角坐标系xOy 中,若双曲线()2222:10,0x y C a b a b-=>>10,则双曲线C 的渐近线方程为_______. 【答案】3y x =±【解析】10,可以得到10ca=222a b c +=求出,a b 的关系,从而得出渐近线的方程. 【详解】解:因为双曲线()2222:10,0x y C a b a b-=>>10,所以10ca= 故2210c a=, 又因为222a b c +=,所以22210a b a +=,即229b a=,即3=b a , 所以双曲线的渐近线3y x =±. 【点睛】本题考查了双曲线渐近线的问题,解题的关键是由题意解析出,a b 的关系,从而解决问题. 7.将函数f(x)的图象向右平移π6个单位后得到函数()π4sin 23y x =-的图象,则()π4f 为 .【答案】4【解析】试题分析:将函数f(x)的图象向右平移π6个单位后得到函数()π4sin 23y x =-的图象,即将函数()π4sin 23y x =-的图象向左平移π6个单位得y=4sin[2(x+π6)π3-]=4sin2x ,所以()π4f =4sin 42π=. 故答案为:4.【考点】三角函数的图象平移.8.设定义在R 上的奇函数()f x 在区间[0,)+∞上是单调减函数,且()23(2)0f x x f -+>,则实数x的取值范围是_________ 【答案】(1,2)【解析】根据题意,由函数的奇偶性和单调性分析可得函数()f x 在R 上为减函数,则()23(2)0f x x f -+>可以转化为232x x -<-,解可得x 的取值范围,即可得答案.【详解】解:根据题意,()f x 是在R 上的奇函数,且在区间[0,)+∞上是单调减函数, 则其在区间(,0)-∞上递减, 则函数()f x 在R 上为减函数,()()22223(2)03(2)(3)(2)32f x x f f x x f f x x f x x -+>⇒->-⇒->-⇒-<-,解得:12x <<;即实数x 的取值范围是(1,2); 故答案为:(1,2). 【点睛】本题考查函数的单调性与奇偶性的综合应用,关键是分析函数在整个定义域上的单调性. 9.在锐角三角形ABC 中3sin 5A =,1tan()3A B -=-,则3tan C 的值为_________.【答案】79【解析】由题意可得tan A ,进而可得tan B ,而tan tan()C A B =-+,由两角和与差的正切公式可得. 【详解】解:∵在锐角三角形ABC 中3sin 5A =, 24cos 1sin 5A A ∴=-=, sin 3tan cos 4A A A ∴==, 31tan tan()1343tan tan[()]311tan tan()9143A A B B A A B A A B +--∴=--===+--⨯, 313tan tan 7949tan tan()3131tan tan 3149A B C A B A B ++∴=-+=-=-=--⨯, 3tan 79C ∴=故答案为:79. 【点睛】本题考查两角和与差的正切公式,属中档题.10.已知n S 为数列{}n a 的前n 项和3(1)(*)n n S na n n n N =--∈且211a =.则1a 的值________ 【答案】5【解析】由3(1)(*)n n S na n n n N =--∈,且211a =.取2n =即可得出. 【详解】解:∵3(1)(*)n n S na n n n N =--∈,且211a =.12226a a a ∴+=-,即1265a a =-=.故答案为:5. 【点睛】本题考查了递推式的简单应用,是基础题. 11.设正实数x ,y 满足x yxy x y+=-,则实数x 的最小值为______. 21.【解析】由正实数x ,y 满足x y xy x y +=-,化为()2210xy x y x +-+=,可得()222212121401010x x x y y x y y ⎧∆=--≥⎪⎪-⎪+=>⎨⎪=>⎪⎪⎩,计算即可. 【详解】解:由正实数x ,y 满足x yxy x y+=-, 化为()2210xy xy x +-+=,∴()222212121401010x x x y y x y y ⎧∆=--≥⎪⎪-⎪+=>⎨⎪=>⎪⎪⎩,化为426101x x x ⎧-+≥⎨>⎩, 解得21x ≥.因此实数x 21.故答案为:21+. 【点睛】本题考查了一元二次方程的实数根与判别式、根与系数的关系、一元二次不等式的解法,考查了推理能力和计算能力,属于中档题.12.如图正四棱柱1111ABCD A B C D -的体积为27,点E ,F 分别为棱11,B B C C 上的点(异于端点)且//EF BC ,则四棱锥1A AEFD -的体积为___________.【答案】9【解析】由11113A AED E A AD A AD V V S AB --∆==⋅,由此能求出四棱锥1A AEFD -的体积. 【详解】 解:连接DE ,∵正四棱柱1111ABCD A B C D -的体积为27,点E ,F 分别为棱11,B B C C 上的点(异于端点),且//EF BC ,11A AED A FED V V --∴=,1111111111193662A AED E A AD A AD A ADD ABCD A C D V V S AB S AB V --∆-∴==⋅=⋅==,∴四棱锥1A AEFD -的体积19A AEFD V -=.故答案为:9. 【点睛】本题考查四棱锥的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力、运算求解能力,是中档题.13.已知向量,,a b c r r r 满足0a b c ++=r r r 且a r 与b r 的夹角的正切为12-,b r 与c r 的夹角的正切为13-,||2b =r ,则a c ⋅r r的值为___________.【答案】45【解析】可设,,AB a BC b CA c ===u u u r u u u r u u u r r r r ,由题意可得11tan ,tan 23B C ==,由两角和的正切公式,可得tan A ,再由同角的基本关系式可得sin ,sin B C ,再由正弦定理可得AB ,AC ,由数量积的定义即可得到所求值. 【详解】解:可设,,AB a BC b CA c ===u u u r u u u r u u u r r r r,由题意可得11tan ,tan 23B C ==, 则11tan tan 23tan tan()1111tan tan 123B C A B C B C ++=-+=-=-=---⨯, 即为135A ︒=,又,B C 为锐角,22sin 1sin cos 1,cos 2B B B B +==, 可得5sin 5B =, 同理可得10sin C =, 由正弦定理可得2sin135510︒==r r,即有2102555c a ==r r ,则2102524||||cos 4525a c c a ︒⋅=⋅⋅==u u rr r r .故答案为:45. 【点睛】本题考查向量的数量积的定义,考查正弦定理和三角函数的化简和求值,以及运算求解能力,属于中档题.14.已知()(2)(3),()22x f x m x m x m g x =-++=-,若同时满足条件:①,()0x R f x ∀∈<或()0<g x ;②(,4),()()0x f x g x ∃∈-∞-<.则m 的取值范围是________________.【答案】()4,2m ∈--【解析】根据()220xg x =-<可解得x<1,由于题目中第一个条件的限制,导致f(x)在1x ≥是必须是()0f x <,当m=0时,()0f x =不能做到f(x)在1x ≥时()0f x <,所以舍掉,因此,f(x)作为二次函数开口只能向下,故m<0,且此时2个根为122,3x m x m ==--,为保证条件成立,只需1221{31x m x m =<=--<1{24m m <⇒>-,和大前提m<0取交集结果为40m -<<;又由于条件2的限制,可分析得出在(,4),()x f x ∃∈-∞-恒负,因此就需要在这个范围内g(x)有得正数的可能,即-4应该比12x x 两个根中较小的来的大,当(1,0)m ∈-时,34m --<-,解得交集为空,舍.当m=-1时,两个根同为24->-,舍.当(4,1)m ∈--时,24m <-,解得2m <-,综上所述,(4,2)m ∈--.【考点定位】本题考查学生函数的综合能力,涉及到二次函数的图像开口,根大小,涉及到指数函数的单调性,还涉及到简易逻辑中的“或”,还考查了分类讨论思想.二、解答题15.已知ABC ∆的面积为3()18AC AB CB ⋅-=u u u r u u u r u u u r ,向量(tan tan ,sin 2)m A B C =+u r和向量(1,cos cos )n A B =r是共线向量.(1)求角C ;(2)求ABC ∆的边长c .【答案】(1) 3C π=(2) 36【解析】(1)利用向量共线的条件,建立等式,再利用和角的正弦公式化简等式,即可求得角C ;(2)由()18AC AB CB ⋅-=u u u r u u u r u u u r 得:2()18AC AB BC AC ⋅+==u u u r u u u r u u u r u u u r ,进而利用ABC ∆的面积为93,及余弦定理可求ABC ∆的边长c . 【详解】(1)因为向量(tan tan ,sin 2)m A B C =+r 和(1,cos cos )n A B =r是共线向量, 所以cos cos (tan tan )sin 20A B A B C +-=, 即sin cos cos sin 2sin cos 0A B A B C C +-=, 化简sin 2sin cos 0C C C -=, 即sin (12cos )0C C -=.因为0C π<<,所以sin 0C >,从而1cos ,2C =3C π=.(2)()18AC AB CB ⋅-=u u u r u u u r u u u r Q ,18()AC AB CB ∴=⋅-u u u r u u u r u u u r 2||AC AC AC =⋅=u u u r u u u r u u u r 则||1832AC ==u u u r32AC =因为ABC V 的面积为93, 所以1sin 932CA CB C ⋅= 即132sin 9323CB π⨯=解得62CB =在ABC V 中,由余弦定理得2222cos AB CA CB CA CB C =+-⋅221(32)(62)232622=+-⨯54=,所以5436AB ==【点睛】本题重点考查正弦、余弦定理的运用,考查向量知识的运用,解题的关键是正确运用正弦、余弦定理求出三角形的边.16.如图,四棱锥P-ABCD的底面为矩形,且AB=2,BC=1,E,F分别为AB,PC中点.(1)求证:EF∥平面PAD;(2)若平面PAC⊥平面ABCD,求证:平面PAC⊥平面PDE.【答案】证明:(1)方法一:取线段PD的中点M,连结FM,AM.因为F为PC的中点,所以FM∥CD,且FM=12 CD.因为四边形ABCD为矩形,E为AB的中点,所以EA∥CD,且EA=12 CD.所以FM∥EA,且FM=EA.所以四边形AEFM为平行四边形.所以EF∥AM.……………………… 5分又AM⊂平面PAD,EF⊄平面PAD,所以EF∥平面PAD.………7分方法二:连结CE并延长交DA的延长线于N,连结PN.因为四边形ABCD为矩形,所以AD∥BC,所以∠BCE=∠ANE,∠CBE=∠NAE.又AE=EB,所以△CEB≌△NEA.所以CE=NE.又F为PC的中点,所以EF∥NP.………… 5分又NP⊂平面PAD,EF⊄平面PAD,所以EF∥平面PAD.……………7分方法三:取CD的中点Q,连结FQ,EQ.在矩形ABCD中,E为AB的中点,所以AE=DQ,且AE∥DQ.所以四边形AEQD为平行四边形,所以EQ∥AD.又AD⊂平面PAD,EQ⊄平面PAD,所以EQ∥平面PAD.………………2分因为Q,F分别为CD,CP的中点,所以FQ∥PD.又PD⊂平面PAD,FQ⊄平面PAD,所以FQ∥平面PAD.又FQ,EQ⊂平面EQF,FQ∩EQ=Q,所以平面EQF∥平面PAD.…………… 5分因为EF⊂平面EQF,所以EF∥平面PAD.……………………………… 7分(2)设AC,DE相交于G.在矩形ABCD中,因为AB=2BC,E为AB的中点.所以DAAE=CDDA=2.又∠DAE=∠CDA,所以△DAE∽△CDA,所以∠ADE=∠DCA.又∠ADE+∠CDE=∠ADC=90°,所以∠DCA+∠CDE=90°.由△DGC的内角和为180°,得∠DGC=90°.即DE⊥AC.……………………… 10分因为平面PAC⊥平面ABCD 因为DE⊂平面ABCD,所以DE⊥平面PAC,又DE⊂平面PDE,所以平面PAC⊥平面PDE.………………………… 14分【解析】略17.如图,OM,ON是两条海岸线,Q为海中一个小岛,A为海岸线OM上的一个码头.已知,,Q到海岸线OM,ON的距离分别为3 km,km.现要在海岸线ON上再建一个码头,使得在水上旅游直线AB经过小岛Q.(1)求水上旅游线AB的长;(2)若小岛正北方向距离小岛6 km处的海中有一个圆形强水波P,从水波生成t h时的半径为(a 为大于零的常数).强水波开始生成时,一游轮以km/h的速度自码头A开往码头B,问实数a在什么范围取值时,强水波不会波及游轮的航行.【答案】(1)(2)【解析】试题分析:(1)由条件建立直角坐标系较为方便表示:,直线的方程为.由Q到海岸线ON的距离为km,得,解得,再由两直线交点得,利用两点间距离公式得(2)由题意是一个不等式恒成立问题:设小时时,游轮在线段上的点处,而不等式恒成立问题往往利用变量分离将其转化为对应函数最值问题:试题解析:(1)以点为坐标原点,直线为轴,建立直角坐标系如图所示.则由题设得:,直线的方程为.由,及得,∴.∴直线的方程为,即,由得即,∴,即水上旅游线的长为.(2)设试验产生的强水波圆,由题意可得P(3,9),生成小时时,游轮在线段上的点处,则,∴.强水波不会波及游轮的航行即,当时 ,当.,,当且仅当时等号成立,所以,在时恒成立,亦即强水波不会波及游轮的航行.【考点】函数实际应用,不等式恒成立18.在平面直角坐标系xOy 中已知椭圆222:1(0)3x y E a b a +=>>过点61,2⎛ ⎝⎭,其左、右焦点分别为12F F 、,离心率为22.(1)求椭圆E 的方程;(2)若A ,B 分别为椭圆E 的左、右顶点,动点M 满足MB AB ⊥,且MA 交椭圆E 于点P . (i )求证:OP OM ⋅uu u r uuu r为定值;(ii )设PB 与以PM 为直径的圆的另一交点为Q ,问:直线MQ 是否过定点,并说明理由.【答案】(1) 22142x y += (2) (i )证明见解析,定值为4 (ii )直线MQ 过定点(0,0)O .【解析】(1)由题意得离心率公式和点满足的方程,结合椭圆的,,a b c 的关系,可得,a b ,进而得到椭圆方程;(2)(i )设()02,,M y ()11,P x y ,求得直线MA 的方程,代入椭圆方程,解得点P 的坐标,再由向量的数量积的坐标表示,计算即可得证;(ii )直线MQ 过定点O (0,0).先求得PB 的斜率,再由圆的性质可得MQ ⊥PB ,求出MQ 的斜率,再求直线MQ 的方程,即可得到定点. 【详解】解:(1)易得22312122a b c a⎧⎪+=⎪⎨⎪=⎪⎩,且222c a b =-, 解得2242a b ⎧=⎨=⎩,,所以椭圆E 的方程为22142x y +=(2)设()02,,M y ()11,P x y , ①易得直线MA 的方程为:0042y yy x =+, 代入椭圆22142x y +=得,2222000140822y y y x x ⎛⎫+++-= ⎪⎝⎭, 由()201204828y x y --=+得,()20120288y x y --=+,从而012088y y y =+, 所以示()()20002200288,2,88y y OP OM y y y ⎛⎫-- ⎪⋅=⋅ ⎪++⎝⎭u u u r u u u u r ()22002200488488y y y y --=+=++, ②直线MQ 过定点(0,0)O ,理由如下:依题意,()2020020882288PBy y k y y y +==---+, 由MQ PB ⊥得,02MQ y k =, 则MQ 的方程为:00(2)2y y y x -=-,即02yy x =,所以直线MQ 过定点(0,0)O . 【点睛】本题考查椭圆的方程和性质,主要考查椭圆的离心率公式和方程的运用,注意联立直线方程和椭圆方程,运用韦达定理,同时考查向量的数量积的坐标表示和直线和圆的位置关系,属于中档题. 19.已知数列{}n a 满足:123a a a k ===(常数0k >),111n n n n K a a a a -+-+=()*3,n n N ≥∈.数列{}n b 满足:21n n n n a a b a +++=()*n N ∈. (1)求1,b 2,b 3,b 4b 的值; (2)求出数列{}n b 的通项公式;(3)问:数列{}n a 的每一项能否均为整数?若能,求出k 的所有可能值;若不能,请说明理由.【答案】(1) 132b b ==,2421k b b k +==;(2) 41122nn k b k k+-=+(); (3) k 为1,2时数列{}n a 是整数列.【解析】(1)经过计算可知:45621,2,4a k a k a k k=+=+=++,由数列{}n b 满足:21n n n n a a b a +++=(n=1,2,3,4…),从而可求1,b 2,b 3,b 4b ;(2)由条件可知121n n n n a a k a a +--=+.得211n n n n a a k a a +-+=+,两式相减整理得2n n b b -=,从而可求数列{}n b 的通项公式;(3)假设存在正数k ,使得数列{}n a 的每一项均为整数,则由(2)可知:2122122222211n n n n n n a a a k a a a k +-+=-⎧⎪+⎨=+-⎪⎩,由1a k Z =∈,624Z a k k =++∈,可求得1,2k =.证明1,2k =时,满足题意,说明1,2k =时,数列{}n a 是整数列. 【详解】(1)由已知可知:45621,2,4a k a k a k k=+=+=++, 把数列{}n a 的项代入21n n n n b a a a =+++求得132b b ==,2421k b b k+==; (2)由121n n n n k a a a a --++=3,n n N ≥∈*() 可知:121n n n n a a k a a +--=+① 则:211n n n n a a k a a +-+=+② ①−②有:2211n n n nn n a a a a a a +-+-++=,即:2n n b b -=2123n n b b --∴==…13122a a b a +===,222n n b b -== (242321)a a kb a k++===,41122nn k b k k+-∴=+(); (3)假设存在正数k 使得数列{}n a 的每一项均为整数,则由(2)可知:2122122222211n n n n n n a a a k a a a k +-+=-⎧⎪+⎨=+-⎪⎩③, 由1a k Z =∈,624Z a k k=++∈,可知1k =,2. 当1k =时,213k k+=为整数,利用123,,a a a Z ∈结合③式可知{}n a 的每一项均为整数; 当2k =时,③变为2122122222512n n n n n n a a a a a a +-+=-⎧⎪⎨=+-⎪⎩④ 用数学归纳法证明21n a -为偶数,2n a 为整数.1n =时结论显然成立,假设n k =时结论成立,这时21n a -为偶数,2n a 为整数,故212212n n n a a a +-=-为偶数,22n a +为整数,1n k ∴=+时,命题成立.故数列{}n a 是整数列.综上所述k 为1,2时数列{}n a 是整数列. 【点睛】本题考查了等差数列的基本性质和数列的递推公式,考查了学生的计算能力和对数列的综合掌握,注意分类讨论思想和转化思想的运用,属于难题. 20.设函数()()ln ,f x x a x x a =--+a R ∈. (1)若0a =求函数()f x 的单调区间;(2)若0a <试判断函数()f x 在区间()22,e e -内的极值点的个数,并说明理由;(3)求证:对任意的正数a 都存在实数t 满足:对任意的(,)x t t a ∈+,()1f x a <-. 【答案】(1) 单调递减区间为(0,1)单调递增区间为(1,)+∞. (2) 见解析 (3)证明见解析【解析】(1)求解()ln f x x '=,利用()0,()0f x f x ''><,解不等式求解单调递增区间,单调递减区间;(2)'()ln af x x x=-,其中0x >, 再次构造函数令()ln g x x x a =-,分析()g x 的零点情况.()ln 1g x x '=+,令1()0,g x x e'==,列表分析得出()g x 单调性,求其最小值, 分类讨论求解①若1a e≤-,②若212a e e -<<-,③若220,()a f x e -≤<的单调性,()f x 最大值,最小值,确定有无零点问题;(3)先猜想(1,1),()1x a f x a ∈+<-恒成立.再运用导数判断证明.令'1()ln 1,1,()10G x x x x G x x=-+≥=-≤,求解最大值,得出()(1)0G x G <=即可. 【详解】(1)当0a =时,()ln f x x x x =-,()ln f x x '=, 令()0f x '=,1x =,列表分析x (0,1)1(1,)+∞()f x '− 0 + ()f x单调递减单调递增故()f x 的单调递减区间为(0,1)单调递增区间为(1,)+∞.(2)()()ln f x x a x x a =--+,()ln f x x ax '=-,其中0x >, 令()ln g x x x a =-,分析()g x 的零点情况.()ln 1g x x '=+ 令()0g x '=,1x e=,列表分析 x(0,1e)1e(1,)e +∞()g x '− 0 +()g x单调递减 单调递增min 11()()g x g a e e ==--,而11()1n 1f ae ae e e'=-=--,222()2(2)f e ae ae -'=--=-+22221()2(2)a f e e a e e '=-=-,①若1a e≤-则()ln 0af x x x '=-≥,故()f x 在22(,)e e -内没有极值点;②若212a e e -<<-,则11()1n 0f ae e e '=-<,22()(2)0f e ae -'=-+> 2221()(2)0f e e a e'=->因此()f x '在22(,)e e -有两个零点,()f x 在22(,)e e -内有两个极值点;③若220a e -≤<则11()10f n ae e e '=-<,22()(2)0f e ae -'=-+≤,2221()(2)0f e e a e'=->, 因此()f x '在22(,)e e -有一个零点,()f x 在22(,)e e -内有一个极值点;综上所述当1(,]a e∈-∞-时,()f x 在22(,)e e -内没有极值点;当212,a e e ⎛⎫∈--⎪⎝⎭时,()f x 在22(,)e e -内有两个极值点; 当22,0a e ⎡⎫∈-⎪⎢⎣⎭时,()f x 在22(,)e e -内有一个极值点. (3)猜想:(1,1)x a ∈+,()1f x a <-恒成立. 证明如下:由(2)得()g x 在1(,)e+∞上单调递增,且(1)0g a =-<,(1)(1)ln(1)g a a a a +=++-. 因为当1x >时,1ln 1(*)x x>-,所以1(1)(1)(1)01g a a a a +>+--=+ 故()g x 在(1,1)a +上存在唯一的零点,设为0x .由x 0(1,)x0x0(,1)x a +()f x '− 0 + ()f x单调递减单调递增知(1,1)x a ∈+,()max{(1),(1)}f x f f a <+.又(1)ln(1)1f a a +=+-,而1x >时,ln 1(**)x x <-, 所以(1)(1)111(1)f a a a f +<+--=-=. 即(1,1)x a ∈+,()1f x a <-.所以对任意的正数a ,都存在实数1t =, 使对任意的(,)x t t ∈+∞, 使()1f x a <-. 补充证明(*): 令1()1n 1F x x x =+-,1x ≥.22111()0x F x x x x-'=-=≥, 所以()F x 在[1,)+∞上单调递增.所以1x >时,()(1)0F x F >=,即1ln 1x x>-. 补充证明(**)令()ln 1G x x x =-+,1x ≥.1()10G x x'=-≤, 所以()G x 在[1,)+∞上单调递减.所以1x >时,()(1)0G x G <=,即ln 1x x <-. 【点睛】本题主要考查导数与函数单调性的关系,会熟练运用导数解决函数的极值与最值问题.求函数的单调区间,应该先求出函数的导函数,令导函数大于0得到函数的递增区间,令导函数小于0得到函数的递减区间,考查了不等式与导数的结合,难度较大. 21.已知二阶矩阵,矩阵属于特征值的一个特征向量为,属于特征值的一个特征向量为.求矩阵.【答案】【解析】运用矩阵定义列出方程组求解矩阵 【详解】由特征值、特征向量定义可知,,即,得 同理可得解得,,,.因此矩阵【点睛】本题考查了由矩阵特征值和特征向量求矩阵,只需运用定义得出方程组即可求出结果,较为简单 22.在极坐标系中,已知1,,9,33A B ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,线段AB 的垂直平分线l 与极轴交于点C ,求l 的极坐标方程及ABC ∆的面积.【答案】l 的极坐标方程及cos 53πρθ⎛⎫-= ⎪⎝⎭,203ABC ∆的面积. 【解析】将1,,9,33A B ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭转化为直角坐标系下的坐标形式,然后求出线段AB 的中点与直线AB 的斜率,进而求出直线l 在直角坐标系下的方程,再转化为极坐标方程;在直角坐标系下,求出点C 到直线AB 的距离、线段AB 的长度,从而得出ABC ∆的面积. 【详解】解:以极点为原点,极轴为x 轴的正半轴,建立平面直角坐标系xoy 在平面直角坐标系xoy 中,1,,9,33A B ππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭ 的坐标为13993(),(22A B线段AB 的中点为553(2A ,3AB k =故线段AB 中垂线的斜率为133AB k k --==, 所以AB 的中垂线方程为:5335)2y x --=- 化简得:3100x +-=, 所以极坐标方程为cos 3sin 100ρθρθ+-=, 即cos()53πρθ-=,令0y =,则10x =,故在平面直角坐标系xoy 中,C (10,0)点C 到直线AB :3y x =的距离为1035331d ==+ 线段8AB =,故ABC ∆的面积为15382032S =⨯=【点睛】本题考查了直线的极坐标方程问题,解题时可以将极坐标系下的问题转化为平面直角坐标系下的问题,从而转化为熟悉的问题.23.已知实数,a b 满足2a b +≤,求证:22224(2)a a b b a +-+≤+.【答案】证明见解析【解析】对2222a a b b +-+进行转化,转化为含有2a b +≤形式,然后通过不等关系得证.【详解】 解:因为2a b +≤, 所以2222a a b b +-+ 2222a b a b =-++()()()2a b a b a b =-+++2a b a b=+-+()22a b a a b=+-++22a b a a b≤++++()22222244242a a a a≤++=+=+≤+,得证.【点睛】本题考查了绝对值不等式问题,解决问题的关键是要将要证的形式转化为已知的条件,考查了学生转化与化归的能力.24.如图,在四棱锥P ABCD-中,已知棱AB,AD,AP两两垂直,长度分别为1,2,2.若DC ABλ=u u u r u u u r (Rλ∈),且向量PCuuu r与BDu u u r夹角的余弦值为1515.(1)求λ的值;(2)求直线PB与平面PCD所成角的正弦值.【答案】(1)2λ=;(210.【解析】试题分析:(1)以A为坐标原点,AB、AD、AP分别为x、y、z轴建立空间直角坐标系A xyz-,写出,PCu u u r,BDu u u r的坐标,根据空间向量夹角余弦公式列出关于λ的方程可求;(2)设岀平面PCD的法向量为(),,n x y z=r,根据n PCn DC⎧⊥⎪⎨⊥⎪⎩r u rr u r,进而得到⎧⋅=⎪⎨⋅=⎪⎩r u rr u rn PCn DC,从而求出nr,向量PBu r的坐标可以求出,从而可根据向量夹角余弦的公式求出cos,n PB<>r u r,从而得PB和平面PCD所成角的正弦值.试题解析:(1)依题意,以A为坐标原点,AB、AD、AP分别为x、y、z轴建立空间直角坐标系A xyz-(1,0,0),(0,2,0),(0,0,2)B D P,因为DC ABλ=u u u r u u u r,所以(,2,0)Cλ,从而(,2,2)PCλ=-u u u r,则由15cos,15PC BD=u u u r u u u r,解得10λ=(舍去)或2λ=.(2)易得(2,2,2)PC=-u u u r,(0,2,2)PD=-u u u r,设平面PCD的法向量(,,)n x y z=r,则0⋅=r u u u rn PC,0⋅=r u u u rn PD,即0x y z+-=,且0y z-=,所以0x=,不妨取1y z==,则平面PCD 的一个法向量(0,1,1)n=r,又易得(1,0,2)PB=-u u u r,故10cos,5=⋅=-u u u r rPB n PB n,所以直线PB与平面PCD所成角的正弦值为105.考点: 1、空间两向量夹角余弦公式;2、利用向量求直线和平面说成角的正弦.25.已知数列{}n a的通项公式为1515225n nna⎡⎤⎛⎫⎛⎥=-⎪⎪ ⎥⎝⎭⎝⎭⎦,n N∈,记1212n n nS C a C a=++…nn nC a+.(1)求1,S2S的值;(2)求所有正整数n,使得n S能被8整除.【答案】(1) 11S=;23S=;(2) {}*|3,n n k k N=∈【解析】(1)运用二项式定理,化简整理,再代入计算即可得到所求值;(2)通过化简得到213n n nS S S++=-,再由不完全归纳找规律得到结论,即可得到所求结论.【详解】解:(1)1212n n n n n n S C a C a C a =++⋯+2121515225n n C C ⎡⎛⎛+ =⋅+⋅+ ⎝⎭⎝…212151515n n n n n C C C ⎫⎛+--⎪ +⋅-⋅+⎪ ⎝⎭⎝⎭⎭⎝…15n n n C ⎤⎫-⎥⎪+⋅⎥⎪⎝⎭⎭⎦1515115n n ⎡⎤⎛⎛+-⎥=-+ ⎥⎝⎭⎝⎭⎦ 3535225n n ⎡⎤⎛⎛+⎢⎥=- ⎢⎥⎝⎭⎝⎭⎣⎦, 即有1S 515==; 2S 3535==; (2)35355n n S n ⎡⎤+-⎢⎥=-⎢⎥⎝⎭⎝⎭⎣⎦, 23535225n S n n +⎡⎤+-=+-+⎥⎥⎝⎭⎝⎭⎦ 3535353535352222225n n n n ⎡⎤⎡⎤⎛⎛⎫⎛⎫⎛⎫⎛+⎢⎥⎢⎥-⋅+-- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎢⎥⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦13n n S S +=-,即213n n n S S S ++=-,*n N ∈,因此2n S +除以8的余数,完全由1,n n S S +除以8的余数确定,因为11,a =21a =,所以11111S C a ==,12221223S C a C a =+=,3213918S S S =-=-=,432324321,S S S =-=-=543363855S S S =-=-=,654316521144,S S S =-=-=7535643255377S S =-=-=,87631131144987,S S S =-=-=987329613772584S S S =-=-= 由以上计算及213n n n S S S ++=-可知,数列{}n S 各项除以8的余数依次是: 1,3,0,5,7,0,1,3,0,5,7,0,…,它是一个以6为周期的数列,从而n S 除以8的余数等价于n 除以3的余数, 所以3,n k =*k N ∈,即所求集合为:{}*|3,n n k k N=∈.【点睛】本题考查数列通项的运用,解决问题的关键是运用二项式定理,本题属于难题.。

江苏省南通市海安市实验中学2020-2021学年高三上学期第三次学情检测数学试题

江苏省南通市海安市实验中学2020-2021学年高三上学期第三次学情检测数学试题

江苏省南通市海安市实验中学2020-2021学年高三上学期第三次学情检测数学试题学校_________ 班级__________ 姓名__________ 学号__________一、单选题1. 已知全集为集合,则()A.B.C.或D.或2. 若(是虚数单位),则的共轭复数为()A.B.C.D.3. 设,则“”是“”的_______条件.()A.充分不必要B.必要不充分C.充要D.既不充分也不必要4. 声音大小(单位为分贝)取决于声波通过介质时,所产生的压力变化(简称声压,单位为).已知声压与声音大小的关系式为,且根据我国《工业企业噪声卫生标准》规定,新建企业工作地点噪声容许标准为85分贝.若某新建企业运行时测得的声音为80分贝,则该企业的声压为()A.B.C.D.5. 已知过点的直线l与圆交于、两点,则的最小值为()A.B.2 C.D.46. 已知,不等式①;②;③中正确的个数是()A.3个B.2个C.1个D.0个7. 如图所示,在正方体中,E,F分别是的中点,则异面直线EF与所成的角为()A.B.C.D.8. 我国古代人民早在几千年以前就已经发现并应用勾股定理了,勾股定理最早的证明是东汉数学家赵爽在为《周髀算经》作注时给出的,被后人称为“赵爽弦图”.“赵爽弦图”是数形结合思想的体现,是中国古代数学的图腾,还被用作第24届国际数学家大会的会徽.如图,大正方形是由4个全等的直角三角形和中间的小正方形组成的,若,,为的中点,则()A.B.C.D.二、多选题9. 已知的最小正周期为,则下列说法正确的有()A.B.函数在上为增函数C.直线是函数图象的一条对称轴D.是函数图象的一个对称中心10. 2020年初,突如其来的疫情改变了人们的消费方式,在目前疫情防控常态化背景下,某大型超市为了解人们以后消费方式的变化情况,更好的提高服务质量,收集并整理了本超市2020年1月份到8月份的人们线上收入和线下收入的数据,并绘制如下的折线图.根据折线图,下列结论正确的是()A.该超市这8个月中,线上收入的平均值高于线下收入的平均值B.该超市这8个月中,线上收入与线下收入相差最小的月份是7月C.该超市这8个月中,每月总收入与时间呈现负相关D.从这8个月的线上收入与线下收入对比来看,在疫情逐步得到有效控制后,人们比较愿意线下消费11. 己知双曲线的一条渐近线过点,点为双曲线的右焦点,则下列结论正确的是()A.双曲线的离心率为B.双曲线的渐近线方程为C.若点到双曲线的渐近线的距离为,则双曲线的方程为D.设为坐标原点,若,则的面积为12. 设函数,其中表示中的最小者.下列正确的有()A.函数为偶函数B.C.当时,D.当时,三、填空题13. 数列是公比为2的等比数列,其前项和为,若,则______.14. 的展开式中的常数项是_______.15. 若函数满足当时,,当时,,则_______.四、双空题16. 某同学在参加《通用技术》实践课时,制作了一个实心工艺品(如图所示).该工艺品可以看成一是个球体被一个棱长为的正方体的个面所截后剩余的部分(球心与正方体的中心重合).若其中一个截面圆的周长为,则该球的半径为___;现给出定义:球面被平面所截得的一部分叫做球冠.截得的圆叫做球冠的底,垂直于截面的直径被截得的一段叫做球冠的高.如果球面的半径是,球冠的高是,那么球冠的表面积计算公式是 . 由此可知,该实心工艺品的表面积是____.五、解答题17. 在①,②,③三个条件中任选一个,补充在下面的问题中,并解答.在中,内角的对边分别是,若_______,.求的取值范围.18. 已知数列的前项和,满足.(1)求数列的通项公式;(2)记,求数列的前项和.19. 如图,四边形与均为菱形,,,且.(1)求证:;(2)求二面角的余弦值.20. 2020年8月,体育总局和教育部联合提出了《关于深化体教融合,促进青少年健康发展的意见》.某地区为落实该意见,初中毕业生升学体育考试规定,考生必须参加立定跳远?掷实心球?1分钟跳绳三项测试,三项考试满分为50分,其中立定跳远15分,掷实心球15分,1分钟跳绳20分.某学校在初三上学期开始时要掌握全年级学生每分钟跳绳的情况,随机抽取了100名学生进行测试,得到频率分布直方图(如图所示),且规定计分规则如下表:每分钟跳绳个数得分17 18 19 2035分的概率;(2)若该校初三年级所有学生的跳绳个数,用样本数据的平均值和方差估计总体的期望和方差.已知样本方差(各组数据用中点值代替).根据往年经验,该校初三年级学生经过训练,正式测试时跳绳个数都有明显进步.假设中考正式测试时每人每分钟跳绳个数比初三上学期开始时个数增加10个,现利用所得正态分布模型:①全年级有1000名学生,预估正式测试每分钟跳182个以上人数;(结果四舍五入到整数)②若在全年级所有学生中任意选取3人,记正式测试时每分钟跳195个以上的人数为,求随机变量的分布列和期望.附:若,则.21. 在平面直角坐标系中,已知椭圆过点,顺次连接椭圆的四个顶点得到的四边形的面积为4,点是椭圆上的两点.(1)若,且为等边三角形,求的边长;(2)若,是否存在点,使为等边三角形,若存在,求点,若不存在,说明理由.22. 已知函数,其中.(1)当时,求曲线在点的切线方程;(2)求证:若有极值,则极大值必大于0.。

江苏省海安高级中学2020届高三3月线上考试 数学试题(word含答案版)

江苏省海安高级中学2020届高三3月线上考试 数学试题(word含答案版)

+(xn - x +xn)B =β = nβ = n江苏省海安中学高三数学模拟考试数学试卷方差公式s2 = 1[(x- x)2 + (x- x)2 +数学1)2 ],其中x =1(x + x +.n 1 2 n 1 2一、填空题:本大题共14 小题,每小题5 分,共70 分.不需要写出解答过程,请把答案直接填在答.题.卡.相.应.位.置.上..1.已知集合A ={x 0 < x < 2} ,B ={x x >1} ,则A ▲.2.复数z = i(1- i) 的共轭复数在复平面内对应的点位于第▲象限.3.为了解某一段公路汽车通过时的车速情况,现随机抽测了通过这段公路的200 辆汽车的时速,所得数据均在区间[40,80]中,其频率分布直方图如图所示,则在抽测的200 辆汽车中,时速在区间[40,60]内的汽车有▲辆.4.袋中装有5 个大小相同的球,其中3 个黑球,2 个白球,从中一次摸出2 个球,则摸出1 个黑球和1 个白球的概率等于▲.5.在一次知识竞赛中,抽取5 名选手,答对的题数分布情况如下表,则这组样本的方差为▲.(第3 题图)答对题数 4 8 9 10人数分布 1 1 2 1(第5 题表)6.如右图所示的算法流程图中,最后输出值为▲.7.已知m ,n 是两条不同的直线,α ,β 是两个不同的平面.①若m⊂α,m⊥β,则α⊥β;②若m⊂α,α第6 题图,α⊥β,则m⊥n;③若m⊂α,n⊂β,α//β,则m//n;④若m//α,m⊂β,α,则m//n.上述命题中为真命题的是▲.(填写所有真命题的序号).FED8.公元五世纪张丘建所著《张丘建算经》卷 22 题为:“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈,问日益几何”.题目的意思是:有个女子善于织布,一天比一天 织得快(每天增加的数量相同),已知第一天织布 5 尺,一个月(30 天)共织布 9 匹 3 丈,则该女子每天织尺布的增加量为▲尺.(1 匹=4 丈,1 丈=10 尺) 9.若cos α = 2cos(α + π) ,则 tan(α + π) = ▲ .C4810.如图,已知 O 为矩形 ABCD 内的一点,且 OA = 2 , OC = 4 , AC = 5 ,则OOB ⋅ OD = ▲ .A B11.已知关于 x 的方程 x (x - a ) =1 在 (-2, +∞) 上有三个相异实根,则实数 a 的取值范围是 ▲ .12.已知 a > 0,b > 0 ,且 1 + 1 = 1 ,则 3a + 2b + b 的最小值等于▲ .(第 10 题图)a b a13.如图,已知 AC = 8 ,B 为 AC 的中点,分别以 AB, AC 为直径在 AC 的同侧作半圆, M, N 分别为两半圆上的动点(不含端点 A ,B ,C ),且BM ⊥ BN ,则 AM ⋅CN 的最大值为 ▲ .14.若关于 x 的不等式 x 3 - 3x 2 +ax + b < 0 对任意的实数 x ∈[1,3] 及任意的实数 b ∈[2, 4] 恒成立,则实数 a 的取值范围是 ▲ .二、解答题:本大题共 6 小题,共 90 分.请在答.题.卡.指.定.区.域.内作答,解答时应写出文字 说明、证明过程或演算步骤.15.已知△ABC 内接于单位圆(半径为 1 个单位长度的圆),且 (1+ tan A )(1+ tan B ) = 2 .(1)求角 C 的大小;(2)求△ABC 面积的最大值.16.如图,在四面体 ABCD 中, AB = AC = DB = DC ,点 E 是 BC 的中点,点 F 在线段 AC 上,且 A F = λ .AC(1)若 EF //平面 ABD ,求实数 λ 的值; B(2)求证:平面 BCD ⊥ 平面 AED .ADC(第 16 题图)3 θ P17. 如图,长方形材料 ABCD 中,已知 AB = 2 , AD = 4 .点 P 为材料 ABCD 内部一点,PE ⊥ AB 于 E , PF ⊥ AD 于 F ,且 PE =1,PF = .现要在长方形材料 ABCD 中裁剪出四边形材料 AMPN ,满足 ∠MPN =150︒ ,点 M ,N 分别在边 AB ,AD 上. (1)设 ∠FPN = θ ,试将四边形材料 AMPN 的面积 S 表示为 θ 的函数,并指明 θ 的取 值范围;(2)试确定点 N 在 AD 上的位置,使得四边形材料 AMPN 的面积 S 最小,并求出其最 小值.DCN F AB(第 17 题图)18.已知椭圆 E : x 2+ 9y 2= m 2( m > 0 ),直线 l 不过原点 O 且不平行于坐标轴, l 与 E有两个交点 A , B ,线段 AB 的中点为 M .(1)若 m = 3 ,点 K 在椭圆 E 上,F 1 、F 2 分别为椭圆的两个焦点,求 KF 1 ⋅ KF 2 的范围; (2)证明:直线 OM 的斜率与 l 的斜率的乘积为定值;(3)若 l 过点 (m , m ) ,射线 OM 与椭圆 E 交于点 P ,四边形 OAPB 能否为平行四边形?3若能,求此时直线 l 斜率;若不能,说明理由.3+ a n b 1 = n n n nn3 19.已知函数 f (x ) = a e x ,g (x ) = ln x -ln a ,其中 a 为常数,且曲线 y= f (x ) 在其与 y轴的交点处的切线记为l 1 ,曲线 y= g (x ) 在其与 x 轴的交点处的切线记为 l 2 ,且 l 1 / / l 2 .(1)求l 1,l 2 之间的距离;(2)若存在x 使不等式 x - m > f (x )成立,求实数 m 的取值范围;(3)对于函数 f (x ) 和g (x ) 的公共定义域中的任意实数 x 0 ,称 |f (x 0 ) - g (x 0 )| 的值为 两函数在x 0 处的偏差.求证:函数 f (x ) 和 g (x ) 在其公共定义域内的所有偏差都大于 2.20.设数列 {a }的前 n 项和为 S , 2S +a = 3 , n ∈ N * . (1)求数列 {a n }的通项公式;(2)设数列 {b }满足:对于任意的 n ∈ N *,都有a b + a b+ a b +⎛ 1 ⎫ n -1+ 3n - 3 成立.1 n2 n -13 n -2⎪⎝ ⎭①求数列 {b n }的通项公式;②设数列 c n = a n ⋅b n ,问:数列{c n }中是否存在三项,使得它们构成等差数列?若存在, 求出这三项;若不存在,请说明理由.x2 22数学(理科)附加题说明:1.以下题目的答案请直接填写在答卷上.2.本卷总分 40 分,考试时间 30 分钟.21.【选做题】本题包括 A 、B 、C 、D 四小题,请.选.定.其.中.两.小.题.,并.在.相.应.的.答.题.区.域. 内.作.答.,若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算 步骤.A .[选修 4—1:几何证明选讲](本小题满分10 分)如图,四边形 ABCD 内接于圆 O ,弧 AB 与弧 AD 长度相等,过 A 点的切线交 CB 的延长线于 E 点.求证: AB 2=BE ⋅CD .EAB· ODC(第 21-A 题)B .[选修 4-2:矩阵与变换](本小题满分 10 分)⎡2 1⎤ ⎡ x ⎤ ⎡4⎤已知矩阵 A = ⎢ ⎥ ,列向量X = ⎢ y ⎥ , B = ⎢7⎥ ,且 AX = B . ⎣3 2⎦⎣ ⎦ ⎣ ⎦(1)求矩阵 A 的逆矩阵 A -1; (2)求 x , y 的值.C .[选修 4-4:坐标系与参数方程](本小题满分 10 分)⎪⎧x =4cos θ⎧x =3+ t , 已知点 P 在曲线 C :⎨ ⎩⎪y =3sin θ (θ为参数)上,直线 l :⎨ ⎩y =-3+ 2 (t 为参数), t求 P 到直线 l 距离的最小值.D .[选修 4—5:不等式选讲](本小题满分 10 分)已知 x ,y ,z 均为正数.求证: x + y + z ≥ 1 + 1 + 1 .yz zx xy x y z22.如图所示,在直三棱柱ABC-A1B1C1 中,CA=4,CB=4,CC1=2,∠ACB=90°,点2M 在线段A1B1 上.(1)若A1M=3MB1,求异面直线AM 和A1C 所成角的余弦值;(2)若直线AM 与平面ABC1所成角为30°,试确定点M 的位置.23.在平面直角坐标系xOy 中,已知焦点为F 的抛物线x2 = 4 y上有两个动点A 、B ,且满足AF = λ FB , 过A 、B 两点分别作抛物线的切线,设两切线的交点为M .--→ --→(1)求:OA ⋅ OB 的值;(2)证明:FM ⋅ AB 为定值.44答案一、填空题:1. (1, 2)2.四; 3.80 4. 355.22 56.257.①④ 16 8.299.2 +1 ;3 10. - 5211. (- 5, -2)212.11 13. 4 14. (-∞, -2)二、解答题:本大题共 6 小题,共 90 分.请在答.题.卡.指.定.区.域.内作答,解答时应写出文字 说明、证明过程或演算步骤. 15.命题立意:本题主要考查两角和与差的正切公式与正、余弦定理等基础知识,考查运算 求解能力.(1)由 (1 + tan A )(1 + tan B ) = 2 得 tan A + tan B =1- tan A tan B ,所以 tan( A + B ) = tan A + tan B = 1 ,(4 分)1 - tan A tan B故△ABC 中, A + B = π , C = 3π (6 分)2 2 2 2DE = E 3 (2)由正弦定理得 c = 2 ,即 c = ,(8 分) sin 3π 4由余弦定理得 2 = a 2 + b 2 - 2ab c os 3π ,即 2 = a 2 + b 2 + 4ab ,(10 分)由 2 = a 2 + b 2 + ab ≥2ab + ab 得 ab ≤2 - ,(当且仅当 a = b 时取等号)(12分)所以 S = 1 ab sin 3π≤ 2 -1 .(14 分)2 4 216.命题立意:本题主要考查直线与平面、平面与平面的位置关系,考查空间想象与推理论 证能力.解:(1)因为 EF ∥平面 ABD ,易得 EF ⊂ 平面 ABC ,平面 ABC 平面 ABD = AB , 所以 EF // AB ,(5 分) 又点 E 是 BC 的中点,点 F 在线段 AC 上, 所以点 F 为 AC 的中点, 由 AF = λ 得 λ = 1 ;(7 分) AC 2(2)因为 AB = AC = DB = DC ,点 E 是 BC 的中点,所以 BC ⊥ AE , BC ⊥ DE ,(9 分) 又 AE , AE 、DE ⊂ 平面 AED , 所以 BC ⊥ 平面 AED ,(12 分) 而 BC ⊂ 平面BCD , 所以平面 BCD ⊥ 平面 AED .(14 分)17.解:(1)在直角△ NFP 中,因为 PF = , ∠FPN = θ ,所以NF = 所以 S ∆NAP tan θ , = 1 NA ⨯ PF = 1 (1 + 2 2 tan θ ) ⨯ . ……………………………2 分在直角△ MEP 中,因为 PE = 1 , ∠EPM = π- θ ,3所以 ME = tan( π- θ ) ,32 3 3 392 3 3 - tan θ 2(1 + 3 tan θ )32 3tt ⨯ 43t 所以 S= 1 AM ⨯ PE = 1 [+ tan( π- θ )]⨯1 . ………………………………4 分∆AMP22 3所以 S = S∆NAP+ S ∆AMP= 3 tan θ + 1 tan( π - θ ) + 2 2 3 ,θ ∈[0, π]. 3……………………………………………………………………………………6 分 (注:定义域错误扣 1 分)(2)因为 S = 3 tan θ + 1 tan( π - θ ) + 2 2 3 = 3 tan θ + + 2 . …8 分令t = 1 + tan θ ,由θ ∈[0, π] ,得 t ∈[1, 4] , 33t 2 - 4t + 4 所以 S = + = (t + 4 ) +≥ 3 ⨯ 2 ⨯ 2 3t+ 3 = 2 + 33.………………12 分2 3 3当且仅当 t =2 3 时,即 tan θ = 2 - 3 时等号成立. ………………13 分 3 3 此时, AN = 2 3 , S = 2 + 3.3 min 3答:当 AN = 2 3 时,四边形材料 AMPN 的面积 S 最小,最小值为 2 + 3.3 3……………………………………………………………………………………14 分18.解:(Ⅰ) m = 3 ,椭圆 E : x + y 2 = 1,两个焦点 F (-2, 0) , F (2 , 0) 设 K (x , y ), F 1K = (x + 2 9, y ) ,F 2 K = (x - 2 12, y ) , 222KF 1 ⨯ KF 2 = FK 1 ⨯ F 2 K =(x + 2 , y ) ⨯ (x - 2 , y ) = x + y - 8= - 8y +1, ∵-1 ≤ y ≤ 1,∴ KF 1 ⨯ KF 2 的范围是 [-7,1] (4 分) ⎧x 2 + 9 y 2 = m 2,⎪ 1 1( 2 ) 设 A , B 的 坐 标 分 别 为 (x 1 , y 1 ) , (x 2 , y 2 ) , 则 ⎨ 两 式 相 减 , 得 x 2 + 9 y 2 = m 2 . ⎩⎪ 2 2 1+ 9 ( y 1 + y 2 )( y 1 - y 2 ) = 0 (x 1 + x 2 )(x 1 - x 2 ) + 9( y 1 + y 2 )( y 1 - y 2 ) = 0, (x + x )(x , 即- x )11+ 9k OM ⨯ k l = 0 ,故 k OM ⨯ k l = - ;(8 分) 12122 2 2 2 23 3 33 33 24 ± 7 2 x x x 2 ⎝ x x 2 x x 2 2 ⎝ x 2 ⎝ x P ÷ ÷÷ (3)∵直线 l 过点(m , m) , 3∴直线 l 不过原点且与椭圆 E 有两个交点的充要条件是k > 0 且 k ≠ 1. 3m m 设P (x P , y P ) ,设直线 l : y = k (x - m ) + 31( m ≠ 0, k ≠ 0 ),即l : y = kx - km + ,39m 2k 2由(2)的结论可 知O M : y = - 9k x , 代入椭圆方程得, x 2 =9k 2 +1, (10 分)⎛k 2m - km km - m ⎫ 由 y = k (x - m ) + m 与 y = - 1 9 3 x ,联立得 M , - 3 ÷ .(12 分)3 9k 9k 2+19k 2 +1 ÷ ⎝ ⎭若四边形 OAPB 为平行四边形,那么M 也是 OP 的中点,所以 2x 0 = x P ,⎛ 9k 2 m - 3km ⎫ 即 4 ÷ =9m 2 k 2,整理得 9k 2 - 8k +1 = 0 解得, k = . ⎝ 9k 2 +1 ⎭ 9k 2+19 所以当 k =4 ± 97时,四边形 OAPB 为平行四边形.(16 分) 19. 解:(1)f ' (x ) = ae x ,g '(x ) = 1, y = f (x ) 的图像与坐标轴的交点为 (0 , a ) ,y = g (x ) x的图像与坐标轴的交点为 (a , 0) ,由题意得f '(0) =g '(a ) ,即 a = 1a 又∵ a > 0 ,∴ a = 1 . (2 分)∴ f ( x ) = e x , g (x ) = ln x ,∴函数 y = f (x ) 和 y = g (x ) 的图像在其坐标轴的交点处的切线方程分别为: x - y + 1 = 0 , x - y - 1 = 0 ∴两平行切线间的距离为 (4 分)(2)由 x - m > f (x ) 得 x - m > e x,故 m < x - e x 在 x ∈[0 , + ∞) 有解,令 h (x ) = x - e x ,则 m < hmax (x )。

江苏省海安高级中学2020届高三阶段测试数学试题含答案

江苏省海安高级中学2020届高三阶段测试数学试题含答案

江苏省海安高级中学2020届高三阶段性测试(三)数学Ⅰ参考公式:样本数据1x ,2x ,…,n x 的方差2211()ni i s x x n ==-∑,其中11ni i x x n ==∑.锥体的体积13V Sh =,其中S 为底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位......置上... 1. 设全集U ={1,2,3,4,5}.若UA ={1,2,5},则集合A = ▲ .2. 已知复数z 满足(z 2)i 1i -=+(i 为虚数单位),则复数z 的实部是 ▲ .3. 已知样本数据1234a a a a ,,,的方差为2,则数据123421212121a a a a ++++,,,的方差为 ▲ .4. 右图是一个算法的伪代码,其输出的结果为 ▲ .5. 从0,2中选一个数字,从1,3,5中选两个数字,组成无重复数字的三位数,则该三位数为奇数的概率为 ▲ .6. 在平面直角坐标系xOy 中,若双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为10,则双曲线C 的渐近线方程为 ▲ .7. 将函数f (x )的图象向右平移π6个单位后得到函数()π4sin 23y x =-的图象,则()π4f 的值为 ▲ .8. 设定义在R 上的奇函数()f x 在区间[0 )+∞,上是单调减函数,且2(3)f x x -(2)f +0>,则实数x 的取值范围是 ▲ .9. 在锐角三角形ABC 中,若3sin 5A =,1tan()3A B -=-,则3tan C 的值为 ▲ .(第4题)10. 设S n 为数列{}n a 的前n 项和.若S n =na n -3n (n -1)(n ∈N *),且211a =,则S 20的值为 ▲ . 11. 设正实数x ,y 满足x yxy x y+=-,则实数x 的最小值为 ▲ . 12. 如图,正四棱柱1111ABCD A B C D -的体积为27,点E ,F分别为棱1B B ,1C C 上的点(异于端点),且//EF BC , 则四棱锥1A AEFD -的体积为 ▲ .13.已知向量a ,b ,c 满足++=0a b c ,且a 与b 的夹角的正切为12-,b 与c 的夹角的正切为13-,2=b ,则⋅a c 的值为 ▲ .14.已知()()()23f x m x m x m =-++,()22x g x =-,若同时满足条件:①x ∀∈R ,()0f x <或()0g x <;②()4x ∃∈-∞-,,()()0f x g x ⋅<,则实数m 的取值范围是 ▲ . 二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本题满分14分)已知△ABC的面积为18AC AB CB ,向量(tan tan sin 2)A B C ,m 和(1cos cos )A B ,n是共线向量.(1)求角C 的大小; (2)求△ABC 的三边长.16.(本题满分14分)如图,在四棱锥P -ABCD 中,已知底面ABCD 为矩形,且 AB =2,BC =1,E ,F 分别是AB ,PC 的中点,P A ⊥DE . (1)求证:EF ∥平面P AD ; (2)求证:平面P AC ⊥平面PDE .C1(第12题)C(第16题)AOBPQMN (第17题)17.(本题满分14分)如图,OM ,ON 是某景区的两条道路(宽度忽略不计,OM 为东西方向),Q 为景区内一景点,A 为道路OM 上一游客休息区.已知tan ∠MON =-3,OA =6(百米),Q 到直线OM ,ON 的距离分别为3(百米),6105(百米).现新修一条自A 经过Q 的有轨观光直路并延伸至道路ON 于点B ,并在B 处修建一游客休息区. (1)求有轨观光直路AB 的长;(2)已知在景点Q 的正北方6 百米的P 处有一大型组合音乐喷泉,喷泉表演一次的时长为9 分钟.表演时,喷泉喷洒区域以P 为圆心,r 为半径变化,且t分钟时,r =百米)(0≤t ≤9,0<a <1).当喷泉表演开始时,一观光车S (大小忽略不计)正从休息区B 沿(1)中的轨道BA 以2(百米/分钟)的速度开往休息区A ,问:观光车在行驶途中是否会被喷泉喷洒到,并说明理由.18.(本题满分16分)在平面直角坐标系xOy 中,已知椭圆E :22221(0)x y abab 过点(1,其离心率.(1)求椭圆E 的标准方程;(2)若A ,B 分别是椭圆E 的左,右顶点,动点M 满足MB AB ⊥,且MA 交椭圆E 于点P .①求证:OP OM ⋅为定值;②设PB 与以PM 为直径的圆的另一交点为Q ,求证:直线MQ 经过定点.19.(本题满分16分)已知数列{}n a 满足:123a a a k ===(常数k >0),112n n n n k a a a a -+-+=(n ≥3,*n ∈N ).数列{}n b 满足:21n n n n a a b a +++=(*n ∈N ). (1)求b 1,b 2的值; (2)求数列{}n b 的通项公式;(3)是否存在k ,使得数列{}n a 的每一项均为整数? 若存在,求出k 的所有可能值;若不存在,请说明理由.20.(本题满分16分)设函数f (x )=(x -a )ln x -x +a ,a ∈R . (1)若a =0,求函数f (x )的单调区间;(2)若a <0,且函数f (x )在区间()22e e -,内有两个极值点,求实数a 的取值范围; (3)求证:对任意的正数a ,都存在实数t ,满足:对任意的x ∈(t ,t +a ), f (x )<a -1.数学Ⅰ参考答案一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位......置上... 1. 【答案】{3,5}2. 【答案】33. 【答案】84. 【答案】10115. 【答案】35 6. 【答案】y =±3x 7. 【答案】48. 【答案】(1,2)9. 【答案】7910. 【答案】1 24011. 【答案112. 【答案】913.【答案】4514.【答案】()42--,二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本题满分14分)解:(1)因为向量(tan tan sin 2)AB C ,m和(1cos cos )A B ,n 是共线向量, 所以cos cos tan tan sin 20A B ABC, ……2分即sin A cos B +cos A sin B -2sin C cos C =0,化简得sin C -2sin C cos C =0,即sin C (1-2cos C )=0. ……4分 因为0πC ,所以sin C >0,从而1cos 2C,π.3C……6分 (2)218AC AB CB AC BCBAAC ,于是AC 32. ……8分因为△ABC 的面积为1sin 2CA CB C ,即1π32sin 23CB ,解得6 2.CB …… 11分在△ABC 中,由余弦定理得2222212cos 32622326254.2AB CA CB CA CB C所以3 6.AB…… 14分16.(本题满分14分)证明:(1)取PD 中点G ,连AG ,FG , 因为F ,G 分别为PC ,PD 的中点,所以FG ∥CD ,且FG =12C D . ……2分又因为E 为AB 中点,所以AE //CD ,且AE =12C D . ……4分所以AE //FG ,AE =FG .故四边形AEFG 为平行四边形. 所以EF //AG ,又EF ⊄平面P AD ,AG ⊂平面P AD ,故EF //平面P A D . ……6分(2)设AC ∩DE =H ,由△AEH ∽△CDH 及E 为AB 中点得AG CG =AE CD =12,又因为AB =2,BC =1,所以AC =3,AG =13AC =33.所以AG AE =AB AC =23,又∠BAD 为公共角,所以△GAE ∽△BA C .所以∠AGE =∠ABC =90︒,即DE ⊥A C . ……10分 又DE ⊥P A ,P A ∩AC =A ,所以DE ⊥平面P A C . ……12分 又DE ⊂平面PDE ,所以平面P AC ⊥平面PDE . ……14分17.(本题满分14分)解:(1)以点O 为坐标原点,直线OM 为x 轴,建立平面直角坐标系,如图所示.则由题设得:A (6,0),直线ON 的方程为()()003 30y x Q x x =->,,.03x =,所以()3 3Q ,. ……2分 故直线AQ 的方程为()6y x =--,由360y x x y =-⎧⎨+-=⎩,得39x y =-⎧⎨=⎩,,即()3 9B -,,故AB == …… 5分答:水上旅游线AB 的长为. ……6分 (2)将喷泉记为圆P ,由题意可得P (3,9),生成t 分钟时,观光车在线段AB 上的点C 处, 则BC =2t ,0≤t ≤9,所以C (-3+t ,9-t ).若喷泉不会洒到观光车上,则PC 2>r 2对t ∈[0,9]恒成立,即PC 2=(6-t )2+t 2=2t 2-12t +36>4at , ……10分 当t =0时,上式成立,当t ∈(0,9]时,2a <t +18t -6,(t +18t -6)min =62-6,当且仅当t =32时取等号,因为a ∈(0,1),所以r <PC 恒成立,即喷泉的水流不会洒到观光车上.……13分 答:喷泉的水流不会洒到观光车上. ……14分18.解:(1)设椭圆焦距为2c,所以223121 a b c a ⎧⎪+=⎪⎨⎪=⎪⎩,且222c a b =-, 解得224 2 a b ⎧=⎪⎨=⎪⎩,,所以椭圆E 的方程为22142x y ; ……4分(2)设0(2 )M y ,,11( )P x y ,, ①易得直线MA 的方程为:0042y y y x =+, 代入椭圆22142x y 得,()2222000140822y y y x x +++-=, 由()201204828y x y --=+得,()20120288y x y --=+,从而012088y y y =+, ……8分所以()20002200288 (2 )88y y OP OM y y y --⎛⎫⋅=⋅ ⎪++⎝⎭,, ()22002200488488y y y y --=+=++. ……10分 ②直线MQ 过定点(0 0)O ,,理由如下:依题意,()02020208822828PB y y k y y y +==----+,由MQ PB ⊥得,02MQ y k =, 则MQ 的方程为:00(2)2y y y x -=-,即02y y x =,所以直线MQ 过定点(0 0)O ,. ……16分 19.(本题满分16分)解:(1)由已知得,41a k =+,所以1312=2a a b a +=,2423121a a k k kb a k k ++++===. ……2分 (2)由条件可知:()1213n n n n a a k a a n +--=+≥,①所以()21+12n n n n a a k a a n +-=+≥.② ……4分 ①-②得122111n n n n n n n n a a a a a a a a +-+--+-=-. 即:121121n n n n n n n n a a a a a a a a +-+-+-+=+. 因此:2211n n n nn n a a a a a a +-+-++=, ……6分故()23n n b b n -=≥,又因为12b =,221k b k+=,所以221n n b k n k⎧⎪=⎨+⎪⎩,为奇数,为偶数. ……8分(3)假设存在k ,使得数列{}n a 的每一项均为整数,则k 为正整数. ……10分由(2)知21221222122(123)21n n n n n n a a a n k a a a k +-++=-⎧⎪=⎨+=-⎪⎩,,③ 由162Z 4Z a k a k k=∈=++∈,,所以k =1或2, ……12分检验:当1k =时,312=+kk 为整数, 利用123Z a a a ∈,,结合③,{a n }各项均为整数; ……14分 当2k =时③变为21221222122(123)52n n n n n n a a a n a a a +-++=-⎧⎪=⎨=-⎪⎩,, 消去2121n n a a +-,得:222223(2)n n n a a a n +-=-≥ 由24Z a a ∈,,所以偶数项均为整数,而2221252n n n a a a ++=-,所以21n a +为偶数,故12a k ==,故数列{}n a 是整数列. 综上所述,k 的取值集合是{}12,. ……16分 20.(本题满分16分)解:(1)当a =0时,f (x )=x ln x -x ,f’(x )=ln x ,令f’(x )=0,x =1,列表分析x(0,1)1(1,+∞)故f (x )的单调递减区间为(0,1),单调递增区间为(1,+∞). ……3分(2)f (x )=(x -a )ln x -x +a ,f’(x )=ln x -ax,其中x >0,令g (x )=x ln x -a ,分析g (x )的零点情况.g ’(x )=ln x +1,令g ’(x )=0,x =1e,列表分析g (x )min =g (1e )=-1e -a , ……5分而f’(1e )=ln 1e-a e =-1-a e ,()2e f -'=-2-a e 2=-(2+a e 2),f’(e 2)=2-a e 2=1e2(2e 2-a ),①若a ≤-1e ,则f’(x )=ln x -ax ≥0,故f (x )在()22e e -,内没有极值点,舍;②若-1e <a <-2e 2,则f’(1e )=ln 1e-a e <0,f’(e -2)=-(2+a e 2)>0,f’(e 2)=1e2(2e 2-a )>0,因此f’(x )在()22e e -,有两个零点,设为1x ,2x ,所以当()21e x x -∈,时,f (x )单调递增,当()12x x x ∈,时,f (x )单调递减, 当()22e x x ∈,时,f (x )单调递增,此时f (x )在()22e e -,内有两个极值点;③若-2e 2≤a <0,则f’(1e )=ln 1e -a e <0,f’(e -2)=-(2+a e 2)≤0,f ’(e 2)=1e2(2e 2-a )>0,因此f’(x )在()22e e -,有一个零点,f (x )在()22e e -,内有一个极值点;综上所述,实数a 的取值范围为(-1e ,-2e 2). ……10分(3)存在1t =:x ∈(1,1+a ),f (x )<a -1恒成立. ……11分证明如下:由(2)得g (x )在(1e ,+∞)上单调递增,且g (1)=-a <0,g(1+a )=(1+a )ln(1+a )-a .因为当x >1时,ln x >1-1x (*),所以g(1+a )>(1+a )(1-1a +1)-a =0.故g (x )在(1,1+a )上存在唯一的零点,设为x 0.由知,x ∈(1,1+a ),f (x )<max{f (1),f (1+a )}. ……13分又f (1+a )=ln(1+a )-1,而x >1时,ln x <x -1(**), 所以f (1+a )<(a +1)-1-1=a -1=f (1). 即x ∈(1,1+a ),f (x )<a -1.所以对任意的正数a ,都存在实数t =1,使对任意的x ∈(t ,t +a ),使 f (x )<a -1. ……15分补充证明(*):令F (x )=ln x +1x -1,x ≥1.F ’(x )=1x -1x 2=x -1x 2≥0,所以F (x )在[1,+∞)上单调递增.所以x >1时,F (x )>F (1)=0,即ln x >1-1x .补充证明(**)令G (x )=ln x -x +1,x ≥1.G ’(x )=1x -1≤0,所以G (x )在[1,+∞)上单调递减.所以x >1时,G (x )<G (1)=0,即ln x <x -1.……16分。

江苏省海安高级中学2020学年高三数学综合检测试题 人教版

江苏省海安高级中学2020学年高三数学综合检测试题 人教版

江苏省海安高级中学2020学年高三数学综合检测试题本试卷分第Ⅰ卷(选择题)和第lI 卷(非选择题)两部分,共150分.考试用时120分钟. 注意事项:答题前考生务必将学校、姓名、班级、学号写在答卷纸的密封线内.每题答案写在答卷纸上对应题目的答案空格里,答案不写在试卷上.考试结束,将答卷纸交回. 参考公式:如果事件A 、B 互斥,那么 正棱锥、圆锥的侧面积公式 P (A +B )=P (A )+P (B )S 锥侧=21cl 如果事件A 、B 相独立,那么 其中c 表示底面周长,l 表 P (A·B )=P (A )·P (B )示斜高或母线长 如果事件A 在一次试验中发生的概率是P ,那 球的表面积公式 么n 次独立重复试验中恰好发生k 次的概率S 24R π= P n (k )=C kn P k (1-P )kn -其中R 表示球的半径第Ⅰ卷(选择题 共50分)一、择题题:本大题共10小题;每小题5分,共50分.在每小题给出的四个选顶中,有且只有一项是符合题目要求的.1.已知全集U ={1,2,3, 4,5,6},集合P ={1,2,3,4},Q ={3,4,5,6},则P )(Q C U IA .{1,2}B .{3,4}C .23D .12.已知a =(cos40°,sin40°),b +(sin20°,cos20°),则a ·b 的值为A .22B .21 C .23 D .13.将函数y =sin2x 的图象按向量a =(-,06π)平移后的图象的函数解析式为A .y =sin (2x +3π) B . y =sin (2x -3π) C . y =sin (2x +6π) D . y =sin (2x -6π) 4.已知双曲线191622=-y x ,双曲线上的点P 到左焦点的距离与点P 到左准线的距离之比等于A .54 B .34 C .47 D .45 5.(2x +x )4的展开式中的x 3系数是A .6B .12C .24D .486.下列函数中,在其定义域内既是奇函数又是减函数的是A .y =x1B .y =2x -C .y =lgxx+-11D .||x y -=7.将棱长相等的正方体按右图所示的形状摆放,从上往下依次为第一层,第二层,第三层…,则第6层正方体的个数是A .28B .21C .15D .118.设γβα,,为两两不重合的平面,n m ,为两条不重合的直线,给出下列四个命题:①若βγα,⊥∥γ,则βα⊥; ②若βγα,⊥∥γ,则α∥β; ③若,,a n a m ∥∥;∥则n m④若βγα,⊥⊥γ,γβ⊥=m m a ,则I . 其中真命题的个数是 A .1B .2C .3D .49.若的是,则:q p x xq x x p 0|1|1,02:2>-+<--A .充分不必要条件B .必要不充分C .充要条件D .既不充分也不必要条件10.如果一条直线与一个平面平行,那么,称此直线与平构成一个“平行线面线”.在一个平行六面体中,由两个顶点确定的直线与含有四个顶点的平面构成的“平行线面线”的个数是A .60B .48C .36D .24第Ⅱ卷(非选择题 共100分)二、填空题:本大题共6小题;每小题5分,共30分.把答案填在题中的横线上.11.一个电视台在因特网上就观众对其某一节止的喜爱程度进行调查,参加调查的总人数为15000人,其中持各种态度的人数如下表所示:电视台为了了解观众的具体想法和意见,打算从中抽取选出150人进行更为详细的调查,为此要进行分层抽样,那么在“喜爱”这类态度的观众中抽取的人数为_____________ 12.已知=)(x f log )2(2+x ,函数g (x )的图象与函数f (x )的图象关于直线y=x 对称,则g (1)=____________13.已知圆044222=+-++y x y x 关于直线y=2x+b 成轴对称,则b=_________. 14.函数x x x f cos sin )(=的最小正周期是______________.15.一个正四棱柱的顶点都在球面上,底面边长为1,高为2,则此球的表面积为________. 16.已知抛物线)1,0(,22P y x 过点=的直线与抛物线相交于),(),(221,1y x B y x A 两点,则21y y +的最小值是___________.三、解答题:本大题5小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分,第一小问满分6分,第二小问满分6分)已知数列(n a )是等差数列,(n b )是等比数列,且a 1=b 1=2,b 4=54,a 1+a 3=b 2+b 3. (1)求数列{n b }的通项公式 (2)求数列{n a }的前10项和S 10.18.(本小题满分14分,第一小问满分6分,第二小问满分8分)一个口袋内装有大小相同且已编有不同号码的4个黑球和3个红球,某人一次从中摸出2个球。

江苏省海安中学2020届高三阶段测试三数学试题含附加题解析版

江苏省海安中学2020届高三阶段测试三数学试题含附加题解析版

海安中学2020届高三阶段测试三数 学 试 卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.设全集{1U =,2,3,4,5},若{1UA =,2,4},则集合A = .解:全集{1U =,2,3,4,5}, 若{1UA =,2,4},则集合{3A =,5}. 故答案为:{3,5}.2.已知复数z 满足(2)1(z i i i -=+为虚数单位),则z 的模为 . 解:复数z 满足(2)1(z i i i -=+为虚数单位),21()(1)22i i i z i i +-+∴=+=+-213i i =+-=-,||z ∴=,3.已知一组数据123,,,n a a a a 的平均数为a ,极差为d ,方差为2S ,则数据12+1a ,22+1a ,32+1a ,2+1n a 的方差为_____.故答案为:24S4.如图是一个算法的伪代码,其输出的结果为 .解:模拟执行伪代码,可得:111111111100(1)()()11223101122310111111S =+++⋯+=-+-+⋯+-=-=⨯⨯⨯.故答案为:1011. 5.从0、2中选一个数字.从1、3、5中选两个数字,组成无重复数字的三位数.其中无重复的个数为 .解:从0、2中选一个数字0,则0不只能排在百位,从1、3、5中选两个数字之一排在百位,共有122312A A =种; 从0、2中选一个数字2,从1、3、5中选两个数字全排列,共有233318C A =种; 故共有121830+=种. 故答案为:30.6.在平面直角坐标系xoy 中,若双曲线2222:1(0,0)x y C a b a b-=>>线C 的渐近线方程为 .解:因为22()1()10c b a a =+=,所以3ba =,所以渐近线方程为3y x =±.故答案为:3y x =±. 7.将函数()f x 的图象向右平移6π个单位后得到函数4sin(2)3y x π=-的图象,则()4f π的值为 .解:由将函数()f x 的图象向右平移6π个单位后得到函数4sin(2)3y x π=-的图象, 可得把函数4sin(2)3y x π=-的图象向左平移6π个单位后得函数()f x 的图象,故()4sin(2)4sin 233f x x x ππ=+-=,则()4sin 442f ππ==,故答案为:4.8.设定义在R 上的奇函数()f x 在区间[0,)+∞上是单调减函数,且2(3)f x x f -+(2)0>,则实数x 的取值范围是 .解:根据题意,()f x 是在R 上的奇函数()f x ,且在区间[0,)+∞上是单调减函数, 则其在区间(,0])-∞上递减, 则函数()f x 在R 上为减函数,2(3)f x x f -+(2)20(3)f x x f >⇒->-(2)22(3)(2)32f x x f x x ⇒->-⇒-<-,解可得:12x <<;即实数x 的取值范围是(1,2);故答案为:(1,2).9.在锐角三角形ABC中,3sin5A=,1tan()3A B-=-,则3tan C的值为.解:锐角三角形ABC中,3sin5A=,1tan()3A B-=-,A B∴<,4cos5A==,sin3tancos4AAA==.3tan1tan tan4tan()331tan tan1tan4BA BA BA B B---=-==++,13tan9B∴=.则tan tan3tan3tan()3791tan tanA BC A BA B+=-+=-=-,故答案为:79.10.设nS为数列{}na的前n项和,若*3(1)()n nS na n n n N=--∈,且211a=,则20S的值为.解:由2122232(21)S a a a=+=-⨯-,211a=,可得15a=.解法1:当2n时,由1n n na S S-=-,得13(1)[(1)3(1)(2)]n n na na n n n a n n-=-------,1(1)(1)6(1)n nn a n a n-∴---=-,即*16(2,)n na a n n N--=∈,∴数列{}na是首项15a=,公差为6的等差数列,202019205612402S⨯∴=⨯+⨯=.解法2:当2n时,由13(1)()3(1)n n n nS na n n n S S n n-=--=---,可得1(1)3(1)n nn S nS n n---=-,∴131n nS Sn n--=-,∴数列{}nSn是首项151S=,公差为3的等差数列,∴2053196220S=+⨯=,201240S∴=.11.设正实数x,y满足x yxyx y+=-,则实数x的最小值为.解:由正实数x,y满足x yxyx y+=-,化为22(1)0xy x y x+-+=,∴22221212(1)401010x x x y y x y y ⎧=--⎪-⎪+=>⎨⎪=>⎪⎩,化为426101x x x ⎧-+⎨>⎩, 解得21x+.因此实数x1.1.12.如图,正四棱柱1111ABCD A B C D -的体积为27,点E ,F 分别为棱1B B ,1C C 上的点(异于端点),且//EF BC ,则四棱锥1A AEFD -的体积为 .解:连接DE ,正四棱柱1111ABCD A B C D -的体积为27,点E ,F 分别为棱1B B ,1C C 上的点(异于端点),且//EF BC , ∴11A AED A FED V V --=,∴11113A AED E A AD A ADV V SAB --==111111119662A ADD ABCD A C D S AB V -===, ∴四棱锥1A AEFD -的体积19A AEFD V -=.故答案为:9.13.已知向量a ,b ,c 满足0a b c ++=,且a 与b 的夹角的正切为12-,b 与c 的夹角的正切为13-,||2b =,则a c 的值为 .解:可设ABa =,BCb =,CAc =,由题意可得1tan 2B =,1tan 3C =, 则11tan tan 23tan tan()1111tan tan 123B C A B C B C ++=-+=-=-=---⨯, 即为135A =︒,又B ,C 为锐角,22sin cos 1B B +=,sin 1cos 2B B =,可得sin B =同理可得sin C =由正弦定理可得2sin1355==︒ 即有210||5c =,25||5a =, 则2102524||||cos455525a c c a =︒==.故答案为:45.14.已知()(2)(3)f x m x m x m =-++,()22x g x =-,若同时满足条件: ①x R ∀∈,()0f x <或()0g x <; ②(,4)x ∃∈-∞-,()()0f x g x <. 则m 的取值范围是 . 解:对于①()22x g x =-,当1x <时,()0g x <,又①x R ∀∈,()0f x <或()0g x <()(2)(3)0f x m x mx m ∴=-++<在1x 时恒成立则由二次函数的性质可知开口只能向下,且二次函数与x 轴交点都在(1,0)的左面 则03121m m m <⎧⎪--<⎨⎪<⎩40m ∴-<<即①成立的范围为40m -<<又②(,4)x ∈-∞-,()()0f x g x < ∴此时()220x g x =-<恒成立()(2)(3)0f x m x m x m ∴=-++>在(,4)x ∈-∞-有成立的可能,则只要4-比1x ,2x 中的较小的根大即可,()i 当10m -<<时,较小的根为3m --,34m --<-不成立, ()ii 当1m =-时,两个根同为24->-,不成立,()iii 当41m -<<-时,较小的根为2m ,24m <-即2m <-成立.综上可得①②成立时42m -<<-. 故答案为:(4,2)--.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答.解答时应写出文字说明、证明过程或演算步骤 15.(本小题满分14分)已知ABC ∆的面积为,且()18AC AB CB -=,向量(tan tan ,sin 2)m A B C =+和向量(1,cos cos )n A B =是共线向量.(1)求角C ;(2)求ABC ∆的边长c . 解:(1)//m n ,(tan tan )cos cos sin 2A B A B C ∴+=,即sin cos cos sin sin2A B A B C +=,sin()sin 2A B C ∴+=,sin 2sin cos C C C ∴= sin 0C ≠,∴1cos 2C =, (0,)C π∈ ∴3C π=(2)由()18AC AB CB -=得:2()18AC AB BC AC +==,∴113sin 3293222b ab C a ====∴a =2222cos 54c a b ab C ∴=+-=,∴c =16.(本小题满分14分)如图,四棱锥P ABCD -的底面为矩形,且AB =1BC =,E ,F 分别为AB ,PC 中点.(1)求证://EF 平面PAD ;(2)若平面PAC ⊥平面ABCD ,求证:平面PAC ⊥平面PDE .证明:(1)方法一:取线段PD 的中点M ,连接FM ,AM .因为F 为PC 的中点,所以//FM CD ,且12FM CD =.因为四边形ABCD 为矩形,E 为AB 的中点,所以//EA CD ,且12EA CD =.所以//FM EA ,且FM EA =. 所以四边形AEFM 为平行四边形. 所以//EF AM .又AM ⊂平面PAD ,EF ⊂/平面PAD ,所以//EF 平面PAD . 方法二:连接CE 并延长交DA 的延长线于N ,连接PN . 因为四边形ABCD 为矩形,所以//AD BC , 所以BCE ANE ∠=∠,CBE NAE ∠=∠.又AE EB =,所以CEB NEA ∆≅∆.所以CE NE =. 又F 为PC 的中点,所以//EF NP .⋯(5分)又NP ⊂平面PAD ,EF ⊂/平面PAD ,所以//EF 平面PAD . 方法三:取CD 的中点Q ,连接FQ ,EQ .在矩形ABCD 中,E 为AB 的中点,所以AE DQ =,且//AE DQ . 所以四边形AEQD 为平行四边形,所以//EQ AD .又AD ⊂平面PAD ,EQ ⊂/平面PAD ,所以//EQ 平面PAD . 因为Q ,F 分别为CD ,CP 的中点,所以//FQ PD . 又PD ⊂平面PAD ,FQ ⊂/平面PAD ,所以//FQ 平面PAD . 又FQ ,EQ ⊂平面EQF ,FQEQ Q =,所以平面//EQF 平面PAD .因为EF ⊂平面EQF ,所以//EF 平面PAD . (2)设AC ,DE 相交于G .在矩形ABCD 中,因为AB ,E 为AB 的中点.所以DA CDAE DA= 又DAE CDA ∠=∠,所以DAE CDA ∆∆∽,所以ADE DCA ∠=∠. 又90ADE CDE ADC ∠+∠=∠=︒,所以90DCA CDE ∠+∠=︒. 由DGC ∆的内角和为180︒,得90DGC ∠=︒.即DE AC ⊥. 因为平面PAC ⊥平面ABCD因为DE ⊂平面ABCD ,所以DE ⊥平面PAC , 又DE ⊂平面PDE ,所以平面PAC ⊥平面PDE .17.(本小题满分14分)如图,OM ,ON 是两条海岸线,Q 为海中一个小岛,A 为海岸线OM 上的一个码头.已知tan 3MON ∠=-,6OA km =,Q 到海岸线OM ,ON 的距离分别为3km .现要在海岸线ON 上再建一个码头,使得在水上旅游直线AB 经过小岛Q . (1)求水上旅游线AB 的长;(2)若小岛正北方向距离小岛6km 处的海中有一个圆形强水波P ,从水波生成th 时的半径为r a =为大于零的常数).强水波开始生成时,一游轮以/h 的速度自码头A 开往码头B ,问实数a 在什么范围取值时,强水波不会波及游轮的航行.解:(1)以点O 为坐标原点,直线OM 为x 轴,建立直角坐标系如图所示. 则由题设得:(6,0)A ,直线ON 的方程为3y x =-,0(Q x ,03)(0)x >.=00x > 得03x =,(3,3)Q ∴. ∴直线AQ 的方程为(6)y x =--,即60x y +-=,由360y xx y =-⎧⎨+-=⎩ 得39x y =-⎧⎨=⎩ 即(3,9)B -,∴AB ==即水上旅游线AB 的长为. (2)设试验产生的强水波圆P ,由题意可得(3,9)P ,生成t 小时时,游轮在线段AB 上的点C 处,则AC =,102t,(618,18)C t t ∴-. 强水波不会波及游轮的航行即2210,2PC r t ⎡⎤>∈⎢⎥⎣⎦对恒成立.2222(183)(189)9PC t t r at =-+->=,当0t = 时,上式恒成立,当10,0,2t t ⎛⎤≠∈ ⎥⎝⎦时即时,()101017248.7248,0,2a t g t t t t t ⎛⎤<+-=+-∈ ⎥⎝⎦令,10()724824548g t t t=+--,当且仅当1(0,]2t 时等号成立,所以,在048a << 时r PC < 恒成立,亦即强水波不会波及游轮的航行.18.(本小题满分16分)在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y E a b a b+=>>过点,其左、右焦点分别为1F 、2F,离心率为2. (1)求椭圆E 的方程;(2)若A 、B 分别为椭圆E 的左、右顶点,动点M 满足MB AB ⊥,且MA 交椭圆E 于点P .()i 求证:OP OM 为定值;()ii 设PB 与以PM 为直径的圆的另一交点为Q ,问:直线MQ 是否过定点,并说明理由. 解:(1)由题意可得2213122a b c a⎧+=⎪⎪⎨⎪=⎪⎩且222a b c -=,解得2a =,b =,即有椭圆方程为22142x y +=; (2)()i 证明:由(2,0)A -,(2,0)B ,MB AB ⊥, 设0(2,)M y ,1(P x ,1)y , 可得00:42y y MA y x =+, 代入椭圆方程可得,2222000(1)40822y y y x x +++-=,由201204(8)28y x y --=+,可得201202(8)8y x y -=-+,00011208428y y yy x y ==+=+,则200022004(8)8488y y OP OM y y y -=-+=++为定值; ()ii 直线MQ 过定点(0,0)O .理由如下:由题意可得2001222100088282(8)2(8)PBy y y k x y y y +==-+---+02y =-, 由PB 与以PM 为直径的圆的另一交点为Q , 可得MQ PB ⊥,即有02MQ y k =. 则直线0:0(2)2y MQ y y x -=-, 即02y y x =, 故直线MQ 过定点(0,0)O . 19.(本小题满分16分)已知数列{}n a 满足:123a a a k ===(常数0)k >,*112(3,)n n n n k a a a n n N a -+-+=∈.数列{}n b 满足:*21()n n n n a a b n N a +++=∈. (1)求1b ,2b ,3b ,4b 的值; (2)求出数列{}n b 的通项公式;(3)问:数列{}n a 的每一项能否均为整数?若能,求出k 的所有可能值;若不能,请说明理由.解:(1)由已知可知:41a k =+,52a k =+,624a k k=++. 把数列{}n a 的项代入21n n n n a a b a +++=,求得132b b ==,2421k b b k+==;(2)由*112(3,)n n n n k a a a n n N a -+-+=∈,可知:121n n n n a a k a a +--=+.⋯① 则:211n n n n a a k a a +-+=+.⋯② ①-②有:2211n n n nn n a a a a a a +-+-++=,即:2n n b b -= ∴132123122n n a a b b b a --+==⋯===,242222321n n a a k b b b a k-++==⋯===. ∴41(1)22nn k b k k+-=+;(3)假设存在正数k ,使得数列{}n a 的每一项均为整数, 则由(2)可知:2122122212221n n n n n n a a a k a a a k +-++=-⎧⎪+⎨=-⎪⎩,⋯③ 由1a k Z =∈,624a k Z k =++∈,可知1k =,2.当1k =时,213k k+=为整数,利用1a ,2a ,3a Z ∈,结合③式,可知{}n a 的每一项均为整数;当2k =时,③变为2122122212252n n n n n n a a a a a a +-++=-⎧⎪⎨=-⎪⎩,⋯④ 用数学归纳法证明21n a -为偶数,2n a 为整数.1n =时,结论显然成立,假设n k =时结论成立,这时21n a -为偶数,2n a 为整数,故212212n n n a a a +-=-为偶数,22n a +为整数,1n k ∴=+时,命题成立. 故数列{}n a 是整数列.综上所述,k 为1,2时,数列{}n a 是整数列. 20.(本小题满分16分)设函数()()f x x a lnx x a =--+,a R ∈. (1)若0a =,求函数()f x 的单调区间;(2)若0a <,试判断函数()f x 在区间2(e -,2)e 内的极值点的个数,并说明理由; (3)求证:对任意的正数a ,都存在实数t ,满足:对任意的(,)x t t a ∈+,()1f x a <-. 解:(1)当0a =时,()f x xlnx x =-,()f x lnx '=, 令()0f x '=,1x =,列表分析故()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞. (2)()()f x x a lnx x a =--+,()af x lnx x'=-,其中0x >,令()g x xlnx a =-,分析()g x 的零点情况.()1g x lnx '=+,令()0g x '=,1x e=,列表分析11()()min g x g a e e==--,而11()1f ln ae ae e e '=-=--,222()2(2)f e ae ae -'=--=-+,221()2(2)22a f e e a e e '=-=-,①若1a e -,则()0a f x lnx x '=-,故()f x 在2(e -,2)e 内没有极值点;②若122a e e -<<-,则11()0f ln ae e e '=-<,22()(2)0f e ae -'=-+>,221()(2)02f e e a e '=->,因此()f x '在2(e -,2)e 有两个零点,()f x 在2(e -,2)e 内有两个极值点; ③若202a e -<,则11()0f ln ae e e '=-<,22()(2)0f e ae -'=-+,221()(2)02f e e a e '=->,因此()f x '在2(e -,2)e 有一个零点,()f x 在2(e -,2)e 内有一个极值点;综上所述,当(a ∈-∞,1]e -时,()f x 在2(e -,2)e 内没有极值点;当1(a e ∈-,2)2e -时,()f x 在2(e -,2)e 内有两个极值点;当2[2a e ∈-,0)时,()f x 在2(e -,2)e 内有一个极值点. (3)猜想:(1,1)x a ∈+,()1f x a <-恒成立. 证明如下:由(2)得()g x 在1(e ,)+∞上单调递增,且g (1)0a =-<,(1)(1)(1)g a a ln a a +=++-.因为当1x >时,11(*)lnx x >-,所以1(1)(1)(1)01g a a a a +>+--=+.故()g x 在(1,1)a +上存在唯一的零点,设为0x . 由知,(1,1)x a ∈+,(){f x max f <(1),(1)}f a +. 又(1)(1)1f a ln a +=+-,而1x >时,1(**)lnx x <-, 所以(1)(1)111f a a a f +<+--=-=(1). 即(1,1)x a ∈+,()1f x a <-.所以对任意的正数a ,都存在实数1t =,使对任意的(,)x t t a ∈+,使()1f x a <-. 补充证明(*): 令1()1F x lnx x =+-,1x .111()022x F x x x x -'=-=, 所以()F x 在[1,)+∞上单调递增.所以1x >时,()F x F >(1)0=,即11lnx x>-. 补充证明(**)令()1G x lnx x =-+,1x .1()10G x x'=-, 所以()G x 在[1,)+∞上单调递减.所以1x >时,()G x G <(1)0=,即1lnx x <-.海安中学2020届高三阶段测试三数学附加题21.[选做题,本题包括三小题,请选定其中两题,并在相应区域作答] A.已知二阶矩阵[]a b A c d =,矩阵A 属于特征值11λ=-的一个特征向量为11[]1a =-,属于特征值24λ=的一个特征向量为13[]2a =.求矩阵A .解:由特征值、特征向量定义可知,111A αλα=, 即1111111a b c d ⎡⎤⎡⎤⎡⎤⎡⎤=-⨯⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦,得11a b c d -=-⎧⎨-=⎩ 同理可得3212328a b c d +=⎧⎨+=⎩ 解得2a =,3b =,2c =,1d =.因此矩阵2321A ⎡⎤=⎢⎥⎣⎦. B .在极坐标系中,已知(A 1,3π ),(B 9,3π),线段AB 的垂直平分线l 与极轴交于点C ,求l 的极坐标方程及ABC ∆的面积. 解:由题意,线段AB 的中点坐标为(5,)3π,设点(,)P ρθ为直线l 上任意一点, 在直角三角形OMP 中,cos()53πρθ-=,所以,l 的极坐标方程为cos()53πρθ-=,令0θ=,得10ρ=,即(10,0)C .(8分)所以,ABC ∆的面积为:1(91)10sin 23π⨯-⨯⨯=.22.已知实数a ,b 满足||2a b +,求证:22|22|4(||2)a a b b a +-++. 证明:由||||||2b a a b -+,可得||||2b a +,22|22||()()2()|a a b b a b a b a b +-+=+-++|||2|2|2|a b a b a b =+-+-+,要证22|22|4(||2)a a b b a +-++,即证|2|2(||2)a b a -++, 由于|2|||||2a b a b -+++,即证||||22(||2)a b a +++, 即为||||2b a +,显然成立.故原不等式成立.23.如图,在四棱锥P ABCD -中,已知棱AB ,AD ,AP 两两垂直,长度分别为1,2,2.若DC AB λ=,且向量PC 与BD . (1)求实数λ的值;(2)求直线PB 与平面PCD 所成角的正弦值.解:以A 为坐标原点,分别以AB ,AD ,AP 为x ,y ,z 轴建立如图所示空间直角坐标系; 则:(0A ,0,0),(1B ,0,0),(0D ,2,0),(0P ,0,2);DC AB λ=, 可得(C λ,2,0).(1)(PC λ=,2,2)-,(1BD =-,2,0),向量PC 与BD .4814+=+,解得10λ=(舍去)或2λ=.实数λ的值为2.;(2)(2PC =,2,2)-,(0PD =,2,2)-,平面PCD 的法向量(n x =,y ,)z . 则0n PC =且0n PD =,即:0x y z +-=,0y z -=,0x ∴=,不妨去1y z ==, 平面PCD 的法向量(0n =,1,1).又(1PB =,0,2).故cos ,||||n PB n PB n PB <>==-.直线PB 与平面PCD .24.已知数列{}n a 的通项公式为]n nn a -,*n N ∈.记1212nn n n n n S C a C a C a =++⋯+.(1)求1S ,2S 的值;(2)求所有正整数n ,使得n S 能被8整除.解:(1)1212nn nn n n S C a C a C a =++⋯+ 122151515()())222nn nn n C C C +++=++⋯+- 122151515(()())]222nn nn n C C C ---++⋯+(1]n n=+-+]n n =-, 即有151S ==;2353S ==;(2)]n nn S =-,222]]n n n n n S +++=-=-1]3n nn n S S +--=-, 即213n n n S S S ++=-,*n N ∈,因此2n S +除以8的余数,完全由1n S +,n S 除以8的余数确定, 因为11a =,21a =,所以11111S C a ==,12221223S C a C a =+=,3213918S S S =-=-=, 432324321S S S =-=-=,543363855S S S =-=-=, 654316521144S S S =-=-=,765343255377S S S =-=-=, 87631131144987S S S =-=-=,987329613772584S S S =-=-=,由以上计算及213n n n S S S ++=-可知,数列{}n S 各项除以8的余数依次是: 1,3,0,5,7,0,1,3,0,5,7,0,⋯,它是一个以6为周期的数列,从而n S 除以8的余数等价于n 除以3的余数, 所以3n k =,*k N ∈,即所求集合为:{|3n n k =,*}k N ∈.。

江苏省海安高级中学2020届高三3月线上考试数学试题及答案word

江苏省海安高级中学2020届高三3月线上考试数学试题及答案word

江苏省海安中学高三数学模拟考试数学试卷数学1方差公式()()()2222121n s x x x x x x n ⎡⎤=-+-++-⎢⎥⎣⎦L ,其中()121n x x x x n=+++L .一、填空题:本大题共14小题,每小题5分,共70分.不需要写出解答过程,请把答案直接填在答题卡相....应位置上..... 1. 已知集合{}|02A x x =<<,{}|1B x x =>,则A B =I ______. 2. 复数()1z i i =-的共轭复数在复平面内对应的点位于第______象限.3. 为了解某一段公路汽车通过时的车速情况,现随机抽测了通过这段公路的200辆汽车的时速,所得数据均在区间[]40,80中,其频率分布直方图如图所示,则在抽测的200辆汽车中,时速在区间[]40,60内的汽车有______辆.4. 袋中装有5个大小相同的球,其中3个黑球,2个白球,从中一次摸出2个球,则摸出1个黑球和1个白球的概率等于______.5. 在一次知识竞赛中,抽取5名选手,答对的题数分布情况如下表,则这组样本的方差为______.6. 如图所示的算法流程图中,最后输出值为______.7. 已知m ,n 是两条不同的直线,α,β是两个不同的平面. ①若m α⊂,m β⊥,则αβ⊥; ②若m α⊂,n αβ=I ,αβ⊥,则m n ⊥; ③若m α⊂,n β⊂,//αβ,则//m n ;④若//m α,m β⊂,n αβ=I ,则//m n .上述命题中为真命题的是______.(填写所有真命题的序号).8. 公元五世纪张丘建所著《张丘建算经》卷22题为:“今有女善织,日益功疾,初日织五尺,今一月日织九匹三丈,问日益几何”.题目的意思是:有个女子善于织布,一天比一天织得快(每天增加的数量相同),已知第一天织布5尺,一个月(30天)共织布9匹3丈,则该女子每天织尺布的增加量为______尺.(1匹=4丈,1丈=10尺) 9. 若cos 2cos 4παα⎛⎫=+⎪⎝⎭,则tan 8πα⎛⎫+= ⎪⎝⎭______. 10. 如图,已知O 为矩形ABCD 内的一点,且2OA =,4OC =,5AC =,则OB OD ⋅=u u u r u u u r______.11. 已知关于x 的方程()1x x a -=在()2,-+∞上有三个相异实根,则实数a 的取值范围是______. 12. 已知0a >,0b >,且111a b +=,则32ba b a++上的最小值等于______. 13. 如图,已知8AC =,B 为AC 的中点,分别以AB ,AC 为直径在AC 的同侧作半圆,M ,N 分别为两半圆上的动点(不含端点A ,B ,C ),且BM BN ⊥,则AM CN ⋅u u u u r u u u r的最大值为______.14. 若关于x 的不等式3230x x ax b -++<对任意的实数[]1,3x ∈及任意的实数[]2,4b ∈恒成立,则实数a 的取值范围是______.二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15. 已知ABC ∆内接于单位圆(半径为1个单位长度的圆),且()()1tan 1tan 2A B ++=. (1)求角C 的大小; (2)求ABC ∆面积的最大值.16. 如图,在四面体ABCD 中,AB AC DB DC ===,点E 是BC 的中点,点F 在线段AC 上,且AFACλ=.(1)若//EF 平面ABD ,求实数λ的值; (2)求证:平面BCD ⊥平面AED .17. 如图,长方形材料ABCD 中,已知AB =4AD =.点P 为材料ABCD 内部一点,PE AB ⊥于E ,PF AD ⊥于F ,且1PE =,PF =现要在长方形材料ABCD 中裁剪出四边形材料AMPN ,满足150MPN ∠=︒,点M ,N 分别在边AB ,AD 上.(1)设FPN θ∠=,试将四边形材料AMPN 的面积S 表示为θ的函数,并指明θ的取值范围; (2)试确定点N 在AD 上的位置,使得四边形材料AMPN 的面积S 最小,并求出其最小值. 18. 已知椭圆E :()22290x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与E 有两个交点A ,B ,线段AB 的中点为M .(1)若3m =,点K 在椭圆E 上,1F 、2F 分别为椭圆的两个焦点,求12KF KF ⋅u u u r u u u u r的范围;(2)证明:直线OM 的斜率与l 的斜率的乘积为定值; (3)若l 过点,3m m ⎛⎫⎪⎝⎭,射线OM 与椭圆E 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时直线l 斜率;若不能,说明理由.19. 已知函数()xf x ae =,()ln lng x x a =-,其中a 为常数,且曲线()y f x =在其与y 轴的交点处的切线记为1l ,曲线()y g x =在其与x 轴的交点处的切线记为2l ,且12//l l . (1)求1l ,2l 之间的距离;(2)若存在x 使不等式()x mf x ->m 的取值范围; (3)对于函数()f x 和()g x 的公共定义域中的任意实数0x ,称()()00f x g x -的值为两函数在0x 处的偏差.求证:函数()f x 和()g x 在其公共定义域内的所有偏差都大于2. 20. 设数列{}n a 的前n 项和为n S ,23n n S a +=,*n N ∈. (1)求数列{}n a 的通项公式;(2)设数列{}n b 满足:对于任意的*n N ∈,都有11213211333n n n n n a b a b a b a b n ---⎛⎫++++=+- ⎪⎝⎭L 成立.①求数列{}n b 的通项公式;②设数列n n n c a b =⋅,问:数列{}n c 中是否存在三项,使得它们构成等差数列?若存在,求出这三项;若不存在,请说明理由.数学(理科)附加题说明:1. 以下题目的答案请直接填写在答卷上.2. 本卷总分40分,考试时间30分钟.21.【选做题】本题包括A 、B 、C 、D 四小题,请选定其中两小题........,并.在相应的答题区域内作答...........,若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A. [选修4—1:几何证明选讲]如图,四边形ABCD 内接于圆O ,弧AB 与弧AD 长度相等,过A 点的切线交CB 的延长线于E 点.求证:2AB BE CD =⋅.B. [选修4-2:矩阵与变换]已知矩阵2132A ⎡⎤=⎢⎥⎣⎦,列向量x X y ⎡⎤=⎢⎥⎣⎦,47B ⎡⎤=⎢⎥⎣⎦,且AX B =.(1)求矩阵A 的逆矩阵1A -; (2)求x ,y 的值.C. [选修4-4:坐标系与参数方程]已知点P 在曲线C :4cos 3sin x y θθ=⎧⎨=⎩(θ为参数)上,直线l:3232x t y ⎧=+⎪⎪⎨⎪=-+⎪⎩(t 为参数),求P 到直线l 距离的最小值.D. [选修4—5:不等式选讲] 已知x ,y ,z 均为正数.求证:111x y z yz zx xy x y z++≥++. 22. 如图所示,在直三棱柱111ABC A B C -中,4CA =,4CB =,1CC =90ACB ∠=︒,点M 在线段11A B 上.(1)若113A M MB =,求异面直线AM 和1A C 所成角的余弦值; (2)若直线AM 与平面1ABC 所成角为30︒,试确定点M 的位置.23. 在平面直角坐标系xOy 中,已知焦点为F 的抛物线24x y =上有两个动点A 、B ,且满足AF FB λ=u u u r u u u r,过A 、B 两点分别作抛物线的切线,设两切线的交点为M .(1)求:OA OB ⋅u u u r u u u r的值;(2)证明:FM AB ⋅u u u u r u u u r为定值.答案一、填空题:1. ()1,22. 四3. 804. 355. 2256. 257. ①④8.1629 9. 13 10. 52- 11. 5,22⎛⎫-- ⎪⎝⎭12. 11 13. 4 14. (),2-∞- 二、解答题:本大题共6小题,共90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15. 命题立意:本题主要考查两角和与差的正切公式与正、余弦定理等基础知识,考查运算求解能力. (1)由()()1tan 1tan 2A B ++=得tan tan 1tan tan A B A B +=-, 所以()tan tan tan 11tan tan A B A B A B++==-, 故ABC ∆中,A B π+=4,C π3=4.(2)由正弦定理得2sin c π=34,即c =由余弦定理得2222cosa b ab π3=+-4,即222a b =+,由2222a b ab =++≥+得2ab ≤(当且仅当a b =时取等号)所以13sin 2S ab π=≤4.16. 命题立意:本题主要考查直线与平面、平面与平面的位置关系,考查空间想象与推理论证能力. 解:(1)因为//EF 平面ABD ,易得EF ⊂平面ABC , 平面ABC I 平面ABD AB =, 所以//EF AB ,又点E 是BC 的中点,点F 在线段AC 上, 所以点F 为AC 的中点, 由AF AC λ=得12λ=; (2)因为AB AC DB DC ===,点E 是BC 的中点, 所以BC AE ⊥,BC DE ⊥,又AE DE E =I ,AE DE ⊂、平面AED , 所以BC ⊥平面AED , 而BC ⊂平面BCD ,所以平面BCD ⊥平面AED .17. 解:(1)在直角NFP ∆中,因为PF =FPN θ∠=,所以NF θ=,所以()11122NAP S NA PF θ∆=⋅=+ 在直角MEP ∆中,因为1PE =,3EPM πθ∠=-,所以tan 3ME πθ⎛⎫=- ⎪⎝⎭,所以11tan 1223AMP S AM PE πθ∆⎤⎛⎫=⋅=-⨯ ⎪⎥⎝⎭⎦.所以31tan tan 223NAP AMP S S S πθθ∆∆⎛⎫=+=+-+ ⎪⎝⎭0,3πθ⎡⎤∈⎢⎥⎣⎦. (注:定义域错误扣1分)(2)因为313tan tan tan2232S πθθθ⎛⎫=+-=+ ⎪⎝⎭令1t θ=,由0,3πθ⎡⎤∈⎢⎥⎣⎦,得[]1,4t ∈,所以243S t t ⎫==++⎪⎝⎭22≥=.当且仅当3t =时,即2tan 3θ=时等号成立.此时,AN =,min 2S =+.答:当AN =时,四边形材料AMPN 的面积S 最小,最小值为2+.18. 解:(Ⅰ)3m =,椭圆E :2219x y +=,两个焦点()1F -,()2F ,设(),K x y ,()1F K x y =+u u u u r ,()2F K x y =-u u u u r,()()1212=KF KF FK F K x y x y ⋅=⋅+⋅-u u u r u u u u r u u u u r u u u u r2228=81x y y =+--+,∵11-≤≤y ,∴12KF KF ⋅u u u r u u u u r的范围是[]7,1-. (2)设A ,B 的坐标分别为()11,x y ,()22,x y ,则222112222299x y mx y m⎧+=⎪⎨+=⎪⎩,两式相减,得()()()()1212121290x x x x y y y y +-++-=,()()()()12121212190y y y y x x x x +-+=+-,即190+⋅=OM l k k ,故19⋅=-OM l k k ;(3)∵直线l 过点,3m m ⎛⎫ ⎪⎝⎭, ∴直线l 不过原点且与椭圆E 有两个交点的充要条件是0>k 且13≠k . 设(),P P P x y ,设直线l :()()0,03m y k x m m k =-+≠≠,即l :3m y kx km =-+, 由(2)的结论可知OM :19y x k =-,代入椭圆方程得,2222991=+P m k x k , 由()3m y k x m =-+与19=-y x k ,联立得222933,9191⎛⎫- ⎪-- ⎪++ ⎪⎝⎭m km k m km M k k . 若四边形OAPB 为平行四边形,那么M 也是OP 的中点,所以02P x x =,即22222293949191⎛⎫-= ⎪++⎝⎭k m km m k k k ,整理得29810-+=k k解得,k .所以当k 时,四边形OAPB 为平行四边形. 19. 解:(1)()'xf x ae =,()1'g x x=,()y f x =的图像与坐标轴的交点为()0,a ,()y g x =的图像与坐标轴的交点为(),0a ,由题意得()()'0'f g a =,即1a a=,又∵0a >,∴1a =.∴()xf x e =,()lng x x =,∴函数()y f x =和()y g x =的图像在其坐标轴的交点处的切线方程分别为:10x y -+=,10x y --=(2)由()x m f x ->x x me->x m x <在[)0,x ∈+∞有解, 令()xh x x =,则()max m h x <.当0x =时,0m <;当0x >时,∵()'11x x x h x e ⎫=-=-⎪⎭,∵0x >,=1x e >,∴x e >,故()'10x h x e =-<,即()x h x x =在区间[)0,+∞上单调递减,故()()max 00h x h ==,∴0m <. 即实数m 的取值范围为(),0-∞. (3)解法一:∵函数()y f x =和()y g x =的偏差为:()()()ln x F x f x g x e x =-=-,()0,x ∈+∞, ∴()1'x F x e x =-,设x t =为()1'0x f x e x=-=的解,则当()0,x t ∈,()'0F x <; 当(),x t ∈+∞,()'0F x >,∴()F x 在()0,t 单调递减,在(),t +∞单调递增, ∴()min 1ln ln t t tt F x e t e e t e=-=-=+,∵()'110f e =->,1'202f ⎛⎫=<⎪⎝⎭,∴112t <<,故()12min 1112222tF x e t e =+=+=>=. 即函数()y f x =和()y g x =在其公共定义域内的所有偏差都大于2. 解法二:由于函数()y f x =和()y g x =的偏差:()()()ln x F x f x g x e x =-=-,()0,x ∈+∞, 令()1xF x e x =-,()0,x ∈+∞;令()2ln F x x x =-,()0,x ∈+∞,∵()'11xF x e =-,()'2111xF x x x-=-=, ∴()1F x 在()0,+∞单调递增,()2F x 在()0,1单调递减,在()1,+∞单调递增, ∴()()1101F x F >=,()()2211F x F ≥=,∴()()()12ln 2xF x e x F x F x =-=+>,即函数()y f x =和()y g x =在其公共定义域内的所有偏差都大于2.20. 解:(1)由23n n S a +=,① 得()11232n n S a n --+=≥,② 由①–②得120n n n a a a -+-=,即()1123n n a a n -=≥. 对①取1n =得,110a =≠,所以0n a ≠,所以113n n a a -=为常数, 所以{}n a 为等比数列,首项为1,公比为13,即113n n a -⎛⎫= ⎪⎝⎭,*n N ∈.(2)①由113n n a -⎛⎫= ⎪⎝⎭,可得对于任意*n N ∈有2111121111333333n n n n n b b b b n ----⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+=+- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,③则()()2221231111131323333n n n n n b b b b n n -----⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+=+--≥ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,④则()23111231111112233333n n n n n b b b b n n -----⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+=+-≥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,⑤由③–⑤得()212n b n n =-≥. 对③取1n =得,11b =也适合上式, 因此21n b n =-,*n N ∈. ②由(1)(2)可知1213n n n n n c a b --==, 则()11412121333n n n n nn n n c c +--+--=-=, 所以当1n =时,1n n c c +=,即12c c =,当2n ≥时,1n n c c +<,即{}n c 在2n ≥且*n N ∈上单调递减, 故12345c c c c c =>>>>L .假设存在三项s c ,p c ,r c 成等差数列,其中*,,s p r N ∈,由于12345c c c c c =>>>>L ,可不妨设s p r <<,则2p s r c c c =+()*, 即()1112212121333p s r p s r ------=+.因为*,,s p r N ∈且s p r <<,则1s p ≤-且2p ≥,由数列{}n c 的单调性可知,1s p c c -≥,即12212333s p s p ----≥. 因为12103r r r c --=>,所以()11122212121233333p s r p p s r p --------=+>, 即()122212333p p p p ---->,化简得72p <, 又2p ≥且*p N ∈,所以2p =或3p =.当2p =时,1s =,即121c c ==,由3r ≥时,21r c c <=,此时1c ,2c ,r c 不构成等差数列,不合题意. 当3p =时,由题意1s =或2s =,即1s c =,又359p c c ==,代入()*式得19r c =. 因为数列{}n c 在2n ≥且*n N ∈上单调递减,且519c =,4r ≥,所以5r =. 综上所述,数列{}n c 中存在三项1c ,3c ,5c 或2c ,3c ,5c 构成等差数列.数学(理科)附加题说明:1. 以下题目的答案请直接填写在答卷上.2. 本卷总分40分,考试时间30分钟. 21. A. 连结AC ,因为EA 切圆O 于A ,所以EAB ACB ∠=∠.因为弧AB 与弧AD 长度相等,所以ACD ACB ∠=∠,AB AD =. 于是EAB ACD ∠=∠.又四边形ABCD 内接于圆O ,所以ABE D ∠=∠. 所以ABE CDA ∆∆:. 于是AB BECD DA=,即AB DA BE CD ⋅=⋅, 所以2AB BE CD =⋅.21. B. 解:由2132A ⎡⎤=⎢⎥⎣⎦,()det 223110A =⨯-⨯=≠,所以A 可逆,从而12132A --⎡⎤=⎢⎥-⎣⎦.由AX B =得到121413272X A B --⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦.12x y =⎧⎨=⎩, (也可由AX B =得到214327x y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,即24327x y x y +=⎧⎨+=⎩,解得12x y =⎧⎨=⎩. C. 解:将直线l 化为普通方程为:60x y --=. 则()4cos ,3sin P θθ到直线l的距离d ==,其中3tan 4ϕ=. 所以当()cos1θϕ+=时,min 2d =,即点P 到直线l 的距离的最小值为2. D. 因为x ,y ,z 无为正数.所以12x y x y yz zx z y x z⎛⎫+=+≥ ⎪⎝⎭, 同理可得2y z zx xy x +≥,2z x xy yz y+≥, 当且仅当x y z ==时,以上三式等号都成立.将上述三个不等式两边分别相加,并除以2,得111x y z yz zx xy x y z++≥++. 22. 解:(1)以C 为坐标原点,分别以CA ,CB ,1CC 所在直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系,则()0,0,0C ,()4,0,0A ,(14,0,A ,(10,4,B . (1)因为113A M MB =,所以(M .所以(14,0,CA=u u u r ,(AM =-u u u u r.所以111cos ,CA AM CA AM CA AM⋅===u u u r u u u u ru u u r u u u u r u u u r u u u u r . 所以异面直线AM和1A C . (2)由()4,0,0A,()0,4,0B ,(10,0,C ,知()4,4,0AB =-u u u r,(1AC =-u u u u r .设平面1ABC 的法向量为(),,n a b c =r ,由100n AB n AC ⎧⋅=⎪⎨⋅=⎪⎩r u u u rr u u u u r得44040a b a -+=⎧⎪⎨-+=⎪⎩, 令1a =,则1b =,c =1ABC的一个法向量为(n =r.因为点M 在线段11A B上,所以可设(,4M x x -,所以(4,4AM x x =--u u u u r,因为直线AM 与平面1ABC 所成角为30︒,所以1cos ,sin 302n AM =︒=r u u u u r .由cos ,n AM n AM n AM ⋅=r u u u u r r u u u u r r u u u u r,得()()1141422x x ⋅-+⋅-+=, 解得2x =或6x =.因为点M 在线段11A B 上,所以2x =, 即点(2,2,M 是线段11A B 的中点.23.(1).解:设211,4x A x ⎛⎫ ⎪⎝⎭,222,4x B x ⎛⎫ ⎪⎝⎭,∵焦点()0,1F ,∴211,14x AF x ⎛⎫=-- ⎪⎝⎭u u u r ,222,14x FB x ⎛⎫=- ⎪⎝⎭u u u r ,∵AF FB λ=u u u r u u u r ,∴2212121144x x x x λλ⎛⎫-=- ⎪⎝⎭-=⎧⎪⎨⎪⎩消λ得22211211044x x x x ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,化简整理得()1212104x x x x ⎛⎫-+= ⎪⎝⎭,∵12x x ≠,∴124x x =-,∴221212144x x y y =⋅=. ∴12123OA OB x x y y ⋅=+=-u u u r u u u r(定值).(2)抛物线方程为214y x =,∴1'2y x =, ∴过抛物线A 、B 两点的切线方程分别为()2111124x y x x x =-+和()2222124x y x x x =-+,即211124x y x x =-和222124x y x x =-,联立解出两切线交点M 的坐标为12,12x x +⎛⎫-⎪⎝⎭,∴221221212,24x x x x FM AB x x ⎛⎫+-⎛⎫⋅=-- ⎪ ⎪⎝⎭⎝⎭u u u u r u u u r 22222121022x x x x -=--=(定值).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省海安中学2020届高三数学上学期阶段测试试题三(含解析)一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.设全集{1U =,2,3,4,5},若{1U A =ð,2,4},则集合A = . 解:全集{1U =,2,3,4,5}, 若{1U A =ð,2,4}, 则集合{3A =,5}. 故答案为:{3,5}.2.已知复数z 满足(2)1(z i i i -=+为虚数单位),则z 的模为 . 解:Q 复数z 满足(2)1(z i i i -=+为虚数单位),21()(1)22i i i z i i +-+∴=+=+- 213i i =+-=-,||9110z ∴=+=,故答案为:10.3.已知一组数据123,,,n a a a a L 的平均数为a ,极差为d ,方差为2S ,则数据12+1a ,22+1a ,32+1a ,L 2+1n a 的方差为_____.故答案为:24S4.如图是一个算法的伪代码,其输出的结果为 .解:模拟执行伪代码,可得:111111111100(1)()()11223101122310111111S =+++⋯+=-+-+⋯+-=-=⨯⨯⨯.故答案为:1011. 5.从0、2中选一个数字.从1、3、5中选两个数字,组成无重复数字的三位数.其中无重复的个数为 .解:从0、2中选一个数字0,则0不只能排在百位,从1、3、5中选两个数字之一排在百位,共有122312A A =种; 从0、2中选一个数字2,从1、3、5中选两个数字全排列,共有233318C A =种; 故共有121830+=种. 故答案为:30.6.在平面直角坐标系xoy 中,若双曲线2222:1(0,0)x y C a b a b-=>>线C 的渐近线方程为 .解:因为22()1()10c ba a =+=,所以3b a =,所以渐近线方程为3y x =±.故答案为:3y x =±. 7.将函数()f x 的图象向右平移6π个单位后得到函数4sin(2)3y x π=-的图象,则()4f π的值为 .解:由将函数()f x 的图象向右平移6π个单位后得到函数4sin(2)3y x π=-的图象, 可得把函数4sin(2)3y x π=-的图象向左平移6π个单位后得函数()f x 的图象,故()4sin(2)4sin 233f x x x ππ=+-=,则()4sin 442f ππ==,故答案为:4.8.设定义在R 上的奇函数()f x 在区间[0,)+∞上是单调减函数,且2(3)f x x f -+(2)0>,则实数x 的取值范围是 .解:根据题意,()f x 是在R 上的奇函数()f x ,且在区间[0,)+∞上是单调减函数, 则其在区间(,0])-∞上递减, 则函数()f x 在R 上为减函数,2(3)f x x f -+(2)20(3)f x x f >⇒->-(2)22(3)(2)32f x x f x x ⇒->-⇒-<-,解可得:12x <<;即实数x 的取值范围是(1,2);故答案为:(1,2).9.在锐角三角形ABC中,3sin5A=,1tan()3A B-=-,则3tan C的值为.解:锐角三角形ABC中,3sin5A=,1tan()3A B-=-,A B∴<,4cos5A=,sin3tancos4AAA==.3tan1tan tan4tan()331tan tan1tan4BA BA BA B B---=-==++Qg,13tan9B∴=.则tan tan3tan3tan()3791tan tanA BC A BA B+=-+=-=-g,故答案为:79.10.设nS为数列{}na的前n项和,若*3(1)()n nS na n n n N=--∈,且211a=,则20S的值为.解:由2122232(21)S a a a=+=-⨯-,211a=,可得15a=.解法1:当2n…时,由1n n na S S-=-,得13(1)[(1)3(1)(2)]n n na na n n n a n n-=-------,1(1)(1)6(1)n nn a n a n-∴---=-,即*16(2,)n na a n n N--=∈…,∴数列{}na是首项15a=,公差为6的等差数列,202019205612402S⨯∴=⨯+⨯=.解法2:当2n…时,由13(1)()3(1)n n n nS na n n n S S n n-=--=---,可得1(1)3(1)n nn S nS n n---=-,∴131n nS Sn n--=-,∴数列{}nSn是首项151S=,公差为3的等差数列,∴2053196220S=+⨯=,201240S∴=.11.设正实数x,y满足x yxyx y+=-,则实数x的最小值为.解:由正实数x,y满足x yxyx y+=-,化为22(1)0xy x y x +-+=,∴22221212(1)401010xx x y y x y y ⎧=--⎪-⎪+=>⎨⎪=>⎪⎩V …,化为426101x x x ⎧-+⎨>⎩…, 解得21x +….因此实数x 的最小值为21+. 故答案为:21+.12.如图,正四棱柱1111ABCD A B C D -的体积为27,点E ,F 分别为棱1B B ,1C C 上的点(异于端点),且//EF BC ,则四棱锥1A AEFD -的体积为 .解:连接DE ,Q 正四棱柱1111ABCD A B C D -的体积为27,点E ,F 分别为棱1B B ,1C C 上的点(异于端点),且//EF BC , ∴11A AED A FED V V --=,∴11113A AED E A AD A AD V V S AB --==V g111111119662A ADD ABCD A C D S AB V -===g , ∴四棱锥1A AEFD -的体积19A AEFD V -=.故答案为:9.13.已知向量a r ,b r ,c r 满足0a b c ++=r r r r ,且a r 与b r 的夹角的正切为12-,b r 与c r的夹角的正切为13-,||2b =r ,则a c r rg 的值为 .解:可设AB a =u u u r r ,BC b =u u u r r ,CA c =u u u r r,由题意可得1tan 2B =,1tan 3C =, 则11tan tan 23tan tan()1111tan tan 123B C A B C B C ++=-+=-=-=---⨯, 即为135A =︒,又B ,C 为锐角,22sin cos 1B B +=,sin 1cos 2B B =, 可得5sin B =, 同理可得10sin C =, 由正弦定理可得2sin135510==︒r r, 即有210||c =r ,25||a =r ,则2102524||||cos455a c c a =︒==r r r rg g g g g .故答案为:45.14.已知()(2)(3)f x m x m x m =-++,()22x g x =-,若同时满足条件: ①x R ∀∈,()0f x <或()0g x <; ②(,4)x ∃∈-∞-,()()0f x g x <. 则m 的取值范围是 .解:对于①()22x g x =-Q ,当1x <时,()0g x <, 又Q ①x R ∀∈,()0f x <或()0g x <()(2)(3)0f x m x m x m ∴=-++<在1x …时恒成立 则由二次函数的性质可知开口只能向下,且二次函数与x 轴交点都在(1,0)的左面则03121m m m <⎧⎪--<⎨⎪<⎩40m ∴-<<即①成立的范围为40m -<<又Q ②(,4)x ∈-∞-,()()0f x g x < ∴此时()220x g x =-<恒成立()(2)(3)0f x m x m x m ∴=-++>在(,4)x ∈-∞-有成立的可能,则只要4-比1x ,2x 中的较小的根大即可,()i 当10m -<<时,较小的根为3m --,34m --<-不成立, ()ii 当1m =-时,两个根同为24->-,不成立,()iii 当41m -<<-时,较小的根为2m ,24m <-即2m <-成立.综上可得①②成立时42m -<<-. 故答案为:(4,2)--.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答.解答时应写出文字说明、证明过程或演算步骤 15.(本小题满分14分)已知ABC ∆的面积为93()18AC AB CB -=u u u r u u u r u u u r g ,向量(tan tan ,sin 2)m A B C =+r和向量(1,cos cos )n A B =r是共线向量.(1)求角C ;(2)求ABC ∆的边长c .解:(1)Q //m n r r,(tan tan )cos cos sin 2A B A B C ∴+=,即sin cos cos sin sin2A B A B C +=,sin()sin 2A B C ∴+=,sin 2sin cos C C C ∴= sin 0C ≠Q ,∴1cos 2C =,(0,)C π∈Q ∴3C π=(2)由()18AC AB CB -=u u u r u u u r u u u rg 得:2()18AC AB BC AC +==u u u r u u u r u u u r u u u r g ,∴11332sin 329322b S ab C a ====V g g , ∴62a =,2222cos 54c a b ab C ∴=+-=,∴36c =16.(本小题满分14分)如图,四棱锥P ABCD -的底面为矩形,且2AB =,1BC =,E ,F 分别为AB ,PC 中点.(1)求证://EF 平面PAD ;(2)若平面PAC ⊥平面ABCD ,求证:平面PAC ⊥平面PDE .证明:(1)方法一:取线段PD 的中点M ,连接FM ,AM .因为F 为PC 的中点,所以//FM CD ,且12FM CD =.因为四边形ABCD 为矩形,E 为AB 的中点,所以//EA CD ,且12EA CD =.所以//FM EA ,且FM EA =. 所以四边形AEFM 为平行四边形. 所以//EF AM .又AM ⊂平面PAD ,EF ⊂/平面PAD ,所以//EF 平面PAD . 方法二:连接CE 并延长交DA 的延长线于N ,连接PN . 因为四边形ABCD 为矩形,所以//AD BC , 所以BCE ANE ∠=∠,CBE NAE ∠=∠.又AE EB =,所以CEB NEA ∆≅∆.所以CE NE =. 又F 为PC 的中点,所以//EF NP .⋯(5分)又NP ⊂平面PAD ,EF ⊂/平面PAD ,所以//EF 平面PAD . 方法三:取CD 的中点Q ,连接FQ ,EQ .在矩形ABCD 中,E 为AB 的中点,所以AE DQ =,且//AE DQ . 所以四边形AEQD 为平行四边形,所以//EQ AD .又AD ⊂平面PAD ,EQ ⊂/平面PAD ,所以//EQ 平面PAD . 因为Q ,F 分别为CD ,CP 的中点,所以//FQ PD . 又PD ⊂平面PAD ,FQ ⊂/平面PAD ,所以//FQ 平面PAD .又FQ ,EQ ⊂平面EQF ,FQ EQ Q =I ,所以平面//EQF 平面PAD . 因为EF ⊂平面EQF ,所以//EF 平面PAD . (2)设AC ,DE 相交于G .在矩形ABCD 中,因为2AB BC =,E 为AB 的中点.所以2DA CDAE DA==. 又DAE CDA ∠=∠,所以DAE CDA ∆∆∽,所以ADE DCA ∠=∠. 又90ADE CDE ADC ∠+∠=∠=︒,所以90DCA CDE ∠+∠=︒. 由DGC ∆的内角和为180︒,得90DGC ∠=︒.即DE AC ⊥. 因为平面PAC ⊥平面ABCD因为DE ⊂平面ABCD ,所以DE ⊥平面PAC , 又DE ⊂平面PDE ,所以平面PAC ⊥平面PDE .17.(本小题满分14分)如图,OM ,ON 是两条海岸线,Q 为海中一个小岛,A 为海岸线OM 上的一个码头.已知tan 3MON ∠=-,6OA km =,Q 到海岸线OM ,ON 的距离分别为3km 610.现要在海岸线ON 上再建一个码头,使得在水上旅游直线AB 经过小岛Q .(1)求水上旅游线AB 的长;(2)若小岛正北方向距离小岛6km 处的海中有一个圆形强水波P ,从水波生成th 时的半径为3(r at a =为大于零的常数).强水波开始生成时,一游轮以182/km h 的速度自码头A 开往码头B ,问实数a 在什么范围取值时,强水波不会波及游轮的航行.解:(1)以点O 为坐标原点,直线OM 为x 轴,建立直角坐标系如图所示. 则由题设得:(6,0)A ,直线ON 的方程为3y x =-,0(Q x ,03)(0)x >. 061010=00x > 得03x =,(3,3)Q ∴. ∴直线AQ 的方程为(6)y x =--,即60x y +-=,由360y x x y =-⎧⎨+-=⎩ 得39x y =-⎧⎨=⎩ 即(3,9)B -,∴22(36)992AB =--+即水上旅游线AB 的长为92km . (2)设试验产生的强水波圆P ,由题意可得(3,9)P ,生成t 小时时,游轮在线段AB 上的点C 处,则 182AC t =,102t剟,(618,18)C t t ∴-. 强水波不会波及游轮的航行即2210,2PC r t ⎡⎤>∈⎢⎥⎣⎦对恒成立.2222(183)(189)9PC t t r at =-+->=,当0t = 时,上式恒成立,当10,0,2t t ⎛⎤≠∈ ⎥⎝⎦时即时,()101017248.7248,0,2a t g t t t t t ⎛⎤<+-=+-∈ ⎥⎝⎦令,10()724824548g t t t=+-…,当且仅当51(0,]2t 时等号成立, 所以,在024548a << 时r PC < 恒成立,亦即强水波不会波及游轮的航行.18.(本小题满分16分)在平面直角坐标系xOy 中,已知椭圆2222:1(0)x y E a b a b+=>>过点6),其左、右焦点分别为1F 、2F ,离心率为22. (1)求椭圆E 的方程;(2)若A 、B 分别为椭圆E 的左、右顶点,动点M 满足MB AB ⊥,且MA 交椭圆E 于点P . ()i 求证:OP OM u u u r u u u u rg为定值; ()ii 设PB 与以PM 为直径的圆的另一交点为Q ,问:直线MQ 是否过定点,并说明理由. 解:(1)由题意可得22131222ab c a⎧+=⎪⎪⎨⎪=⎪⎩且222a b c -=,解得2a =,2b =,即有椭圆方程为22142x y +=; (2)()i 证明:由(2,0)A -,(2,0)B ,MB AB ⊥, 设0(2,)M y ,1(P x ,1)y , 可得00:42y yMA y x =+, 代入椭圆方程可得,2222000(1)40822y y y x x +++-=,由201204(8)28y x y --=+,可得201202(8)8y x y -=-+,00011208428y y yy x y ==+=+, 则200022004(8)8488y y OP OM y y y -=-+=++u u u r u u u u r gg 为定值;()ii 直线MQ 过定点(0,0)O .理由如下:由题意可得2001222100088282(8)2(8)PBy y y k x y y y +==-+---+g 02y =-, 由PB 与以PM 为直径的圆的另一交点为Q , 可得MQ PB ⊥,即有02MQ y k =. 则直线0:0(2)2y MQ y y x -=-, 即02y y x =, 故直线MQ 过定点(0,0)O . 19.(本小题满分16分)已知数列{}n a 满足:123a a a k ===(常数0)k >,*112(3,)n n n n k a a a n n N a -+-+=∈….数列{}n b 满足:*21()n n n n a a b n N a +++=∈. (1)求1b ,2b ,3b ,4b 的值; (2)求出数列{}n b 的通项公式;(3)问:数列{}n a 的每一项能否均为整数?若能,求出k 的所有可能值;若不能,请说明理由.解:(1)由已知可知:41a k =+,52a k =+,624a k k=++. 把数列{}n a 的项代入21n n n n a a b a +++=,求得132b b ==,2421k b b k+==;(2)由*112(3,)n n n n k a a a n n N a -+-+=∈…,可知:121n n n n a a k a a +--=+.⋯① 则:211n n n n a a k a a +-+=+.⋯② ①-②有:2211n n n nn n a a a a a a +-+-++=,即:2n n b b -= ∴132123122n n a a b b b a --+==⋯===,242222321n n a a k b b b a k -++==⋯===. ∴41(1)22nn k b k k+-=+;(3)假设存在正数k ,使得数列{}n a 的每一项均为整数,则由(2)可知:2122122212221n n n n n n a a a k a a a k +-++=-⎧⎪+⎨=-⎪⎩,⋯③ 由1a k Z =∈,624a k Z k =++∈,可知1k =,2.当1k =时,213k k+=为整数,利用1a ,2a ,3a Z ∈,结合③式,可知{}n a 的每一项均为整数;当2k =时,③变为2122122212252n n n n n n a a a a a a +-++=-⎧⎪⎨=-⎪⎩,⋯④ 用数学归纳法证明21n a -为偶数,2n a 为整数.1n =时,结论显然成立,假设n k =时结论成立,这时21n a -为偶数,2n a 为整数,故212212n n n a a a +-=-为偶数,22n a +为整数,1n k ∴=+时,命题成立. 故数列{}n a 是整数列.综上所述,k 为1,2时,数列{}n a 是整数列. 20.(本小题满分16分)设函数()()f x x a lnx x a =--+,a R ∈. (1)若0a =,求函数()f x 的单调区间;(2)若0a <,试判断函数()f x 在区间2(e -,2)e 内的极值点的个数,并说明理由; (3)求证:对任意的正数a ,都存在实数t ,满足:对任意的(,)x t t a ∈+,()1f x a <-. 解:(1)当0a =时,()f x xlnx x =-,()f x lnx '=, 令()0f x '=,1x =,列表分析故()f x 的单调递减区间为(0,1),单调递增区间为(1,)+∞.(2)()()f x x a lnx x a =--+,()af x lnx x'=-,其中0x >,令()g x xlnx a =-,分析()g x 的零点情况.()1g x lnx '=+,令()0g x '=,1x e=,列表分析11()()min g x g a e e==--,而11()1f ln ae ae e e '=-=--,222()2(2)f e ae ae -'=--=-+,221()2(2)22a f e e a e e '=-=-,①若1a e -„,则()0a f x lnx x '=-…,故()f x 在2(e -,2)e 内没有极值点;②若122a e e -<<-,则11()0f ln ae e e '=-<,22()(2)0f e ae -'=-+>,221()(2)02f e e a e '=->,因此()f x '在2(e -,2)e 有两个零点,()f x 在2(e -,2)e 内有两个极值点; ③若202a e -<„,则11()0f ln ae e e '=-<,22()(2)0f e ae -'=-+„,221()(2)02f e e a e '=->,因此()f x '在2(e -,2)e 有一个零点,()f x 在2(e -,2)e 内有一个极值点;综上所述,当(a ∈-∞,1]e-时,()f x 在2(e -,2)e 内没有极值点;当1(a e ∈-,2)2e -时,()f x 在2(e -,2)e 内有两个极值点;当2[2a e ∈-,0)时,()f x 在2(e -,2)e 内有一个极值点. (3)猜想:(1,1)x a ∈+,()1f x a <-恒成立. 证明如下:由(2)得()g x 在1(e ,)+∞上单调递增,且g (1)0a =-<,(1)(1)(1)g a a ln a a +=++-.因为当1x >时,11(*)lnx x >-,所以1(1)(1)(1)01g a a a a +>+--=+.故()g x 在(1,1)a +上存在唯一的零点,设为0x . 由知,(1,1)x a ∈+,(){f x max f <(1),(1)}f a +.又(1)(1)1f a ln a +=+-,而1x >时,1(**)lnx x <-, 所以(1)(1)111f a a a f +<+--=-=(1). 即(1,1)x a ∈+,()1f x a <-.所以对任意的正数a ,都存在实数1t =,使对任意的(,)x t t a ∈+,使()1f x a <-. 补充证明(*): 令1()1F x lnx x =+-,1x ….111()022x F x x x x -'=-=…,所以()F x 在[1,)+∞上单调递增.所以1x >时,()F x F >(1)0=,即11lnx x>-. 补充证明(**)令()1G x lnx x =-+,1x ….1()10G x x'=-„, 所以()G x 在[1,)+∞上单调递减.所以1x >时,()G x G <(1)0=,即1lnx x <-.海安中学2020届高三阶段测试三数学附加题21.[选做题,本题包括三小题,请选定其中两题,并在相应区域作答]A.已知二阶矩阵[]a b A c d =,矩阵A 属于特征值11λ=-的一个特征向量为11[]1a =-,属于特征值24λ=的一个特征向量为13[]2a =.求矩阵A .解:由特征值、特征向量定义可知,111A αλα=, 即1111111a b c d ⎡⎤⎡⎤⎡⎤⎡⎤=-⨯⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦,得11a b c d -=-⎧⎨-=⎩同理可得3212328a b c d +=⎧⎨+=⎩ 解得2a =,3b =,2c =,1d =.因此矩阵2321A ⎡⎤=⎢⎥⎣⎦. B .在极坐标系中,已知(A 1,3π ),(B 9,3π),线段AB 的垂直平分线l 与极轴交于点C ,求l 的极坐标方程及ABC ∆的面积. 解:由题意,线段AB 的中点坐标为(5,)3π,设点(,)P ρθ为直线l 上任意一点, 在直角三角形OMP 中,cos()53πρθ-=,所以,l 的极坐标方程为cos()53πρθ-=,令0θ=,得10ρ=,即(10,0)C .(8分)所以,ABC ∆的面积为:1(91)10sin 23π⨯-⨯⨯=22.已知实数a ,b 满足||2a b +„,求证:22|22|4(||2)a a b b a +-++„. 证明:由||||||2b a a b -+剟,可得||||2b a +„,22|22||()()2()|a a b b a b a b a b +-+=+-++|||2|2|2|a b a b a b =+-+-+g „,要证22|22|4(||2)a a b b a +-++„, 即证|2|2(||2)a b a -++„, 由于|2|||||2a b a b -+++„, 即证||||22(||2)a b a +++„, 即为||||2b a +„,显然成立. 故原不等式成立.23.如图,在四棱锥P ABCD -中,已知棱AB ,AD ,AP 两两垂直,长度分别为1,2,2.若DC AB λ=u u u r u u u r ,且向量PC u u u r 与BD u u u r 夹角的余弦值为15.(1)求实数λ的值;(2)求直线PB 与平面PCD 所成角的正弦值.解:以A 为坐标原点,分别以AB ,AD ,AP 为x ,y ,z 轴建立如图所示空间直角坐标系; 则:(0A ,0,0),(1B ,0,0),(0D ,2,0),(0P ,0,2);DC AB λ=u u u r u u u r ,可得(C λ,2,0).(1)(PC λ=u u u r ,2,2)-,(1BD =-u u u r ,2,0),向量PC u u u r 与BD u u u r 15.215814λ=++g 10λ=(舍去)或2λ=.实数λ的值为2.;(2)(2PC =u u u r ,2,2)-,(0PD =u u u r ,2,2)-,平面PCD 的法向量(n x =r,y ,)z .则0n PC =u u u r r g 且0n PD =u u ur r g ,即:0x y z +-=,0y z -=,0x ∴=,不妨去1y z ==, 平面PCD 的法向量(0n =r,1,1).又(1PB =u u u r ,0,2).故10cos ,||||n PB n PB n PB <>==u u u r r u u ur g r u u u r r .直线PB 与平面PCD 10.24.已知数列{}n a 的通项公式为1515[(()]5n nn a +--,*n N ∈.记1212nn n n n n S C a C a C a =++⋯+.(1)求1S ,2S 的值;(2)求所有正整数n ,使得n S 能被8整除.解:(1)1212nn nn n n S C a C a C a =++⋯+ 122151515()()5nn n n n C C C +++=+⋯+-g g122151515((()]nn n n n C C C ---++⋯+g g1515(1]5n n+-=+-+ 3535[()(]5n n +-=-, 即有1515S ==g ;23535S =g ;(2)3535[((]5n nn S +-=-, 22235353535[((][()(]55n n n n n S ++++-+-=-=-g 135353535()[()(]3n nn n S S ++-+---=-,即213n n n S S S ++=-,*n N ∈,因此2n S +除以8的余数,完全由1n S +,n S 除以8的余数确定, 因为11a =,21a =,所以11111S C a ==,12221223S C a C a =+=,3213918S S S =-=-=, 432324321S S S =-=-=,543363855S S S =-=-=, 654316521144S S S =-=-=,765343255377S S S =-=-=, 87631131144987S S S =-=-=,987329613772584S S S =-=-=,由以上计算及213n n n S S S ++=-可知,数列{}n S 各项除以8的余数依次是: 1,3,0,5,7,0,1,3,0,5,7,0,⋯,它是一个以6为周期的数列,从而n S 除以8的余数等价于n 除以3的余数, 所以3n k =,*k N ∈,即所求集合为:{|3n n k =,*}k N ∈.。

相关文档
最新文档