绳杆模型

合集下载

向心力习题课_绳杆模型

向心力习题课_绳杆模型

要点三
碰撞过程中的动量守恒
对于弹性碰撞,动量守恒定律表述为“系统总动量在碰撞前后保持不变”。
要点一
要点二
碰撞过程中的能量守恒
对于完全弹性碰撞,能量守恒定律表述为“系统总动能等于碰撞前各物体动能之和”。
碰撞过程中绳杆模型的特点
涉及到多个物体之间的碰撞,需要分析物体之间的相互作用力和运动状态,得到碰撞后绳杆模型的状态。
03
建筑结构风振分析
通过建立建筑物的绳杆模型,可以模拟建筑物在风力作用下的振动情况,有助于评估建筑物的稳定性和安全性。
绳杆模型的应用场景
01
车辆悬挂系统设计
通过建立绳杆模型来模拟车辆悬挂系统的运动和受力情况,有助于优化车辆的操控性能和乘坐舒适度。
02
机器人操作臂分析
在机器人操作臂的设计和分析过程中,可以使用绳杆模型来简化操作臂的运动和动力学问题,提高计算效率。
详细描述
火车转弯问题
总结词
绳杆模型在电梯升降问题中也非常实用,通过分析电梯升降时的受力情况,可以解决许多实际问题。
详细描述
首先需要明确电梯的运动轨迹是直线,因此需要使用直线运动的规律进行分析。其次,需要分析电梯在升降时受到的力,包括重力、支持力和摩擦力。根据这些力的关系,可以得出电梯升降所需的加速度和速度。在具体问题中,可以通过分析电梯的质量和升降速度来得到电梯所需的最大加速度和功率。
详细描述
绳杆模型的扩展研究
04
绳杆模型在复合运动中的扩展应用
转动惯量的计算
角速度和角动量的关系
绳杆模型在复合运动中的应用
绳杆模型在机械能守恒定律中的应用
机械能守恒定律的表述
机械能守恒定律表述为“系统机械能总量保持不变”,涉及到动能、势能和内能的转化和守恒。

圆周运动绳杆模型

圆周运动绳杆模型

轻绳模型
轻杆模型
常见 类型
过最高 点的临 界条件
由mg=mvr2 得v临= gr
由小球能运动即可得v临=0
(1)当 v=0 时,FN=mg,
FN 为支持力,沿半径背
讨论 分析
(1)过最高点时, v≥ gr,FN+mg= mvr2,绳、轨道对球 产生弹力 FN (2)不能过最高点 v< gr,在到达最高 点前小球已经脱离
由上述三式知 a0=4g
设小球受盒子右侧面的作用力为 F,受上侧面的作用力为
FN,根据牛顿运动定律知
在水平方向上 F=ma0 即 F=4mg
在竖直方向上 FN+mg=0 即 FN=-mg
因为 F 为正值、FN 为负值,由牛顿第三定律知小球对盒子
的右侧面和下侧面有作用力,大小分别为 4mg 和 mg.
【答案】 (1)2π
R g
(2)小球对盒子的右侧面和下侧面有
作用力,大小分别为 4mg 和 mg
在判断盒子对小球的作用力的大小和方向 时,可以首先做出假设,然后应用牛顿第二定律列式求解,最后 根据结果的符号判断力的真实方向.
在 2012 年第 30 届伦敦奥运会体操男团中国 队卫晟冠军.如右图张成龙在单杆比赛中正完成一个单臂回环动 作,且恰好静止在最高点.设张成龙的重心离杠 1.60 米,体重 大约 56 公斤.忽略摩擦力,认为张成龙做的是圆周运动,试求:
答案:(1)8 m/s (2)560 N 2800 N
了圆轨道
离圆心
(2)当 0<v< gr时,-FN 支+mg=mvr2,FN 背向 圆心,随 v 的增大而减 小
(3)当 v= gr时,FN=0 (4)当 v> gr时, FN 拉+mg=mvr2,FN 指

绳杆模型知识点总结

绳杆模型知识点总结

绳杆模型知识点总结1. 绳杆模型的基本原理绳杆模型假设绳子或杆子足够细长和柔软,可以被简化为一条线或一根棍子。

在这种假设下,我们可以忽略其质量和其自身的刚度,只考虑它们所受到的拉力和压力。

这样一来,我们可以将绳子或杆子看作一种延伸的点质量,从而简化了问题的分析和计算。

2. 绳杆模型的应用绳杆模型可以应用于各种物理问题中。

其中一个经典的例子就是钟摆问题。

在这个问题中,我们可以用绳杆模型来描述钟摆线上的细绳和钟摆的钢杆。

另外,绳杆模型还可以应用于弦乐器和建筑物等系统的分析中。

3. 绳杆模型的基本方程绳杆模型的基本方程可以由牛顿第二定律推导得出。

对于细绳来说,可以将其视为一种只能受到拉力的物体。

而对于杆来说,可以将其视为一种只能受到压力作用的物体。

因此,我们可以将绳和杆的力学性质用拉力和压力来描述,而不需要考虑其质量和刚度。

4. 绳杆模型的应力和应变在应用绳杆模型解决物理问题时,我们需要考虑绳和杆所受到的应力和应变。

在受力分析中,我们需要根据受力方向和大小来计算绳和杆所受到的拉力和压力。

而在应变分析中,我们需要考虑绳和杆的形变以及其材料的性质,从而确定其应变情况。

5. 绳杆模型的动力学在动力学分析中,我们可以用绳杆模型来描述系统的运动情况。

例如,在钟摆问题中,我们可以用绳杆模型来描述钟摆的摆动运动,从而确定其摆动周期和频率。

此外,绳杆模型还可以应用于建筑物和桥梁等结构的动力学分析中,用来确定它们的振动模态和固有频率。

6. 绳杆模型的应用案例绳杆模型的应用案例非常广泛。

其中一个经典的案例就是悬索桥的设计。

在悬索桥的设计中,工程师需要考虑到细绳和杆的受力情况,从而确定桥梁的结构和稳定性。

另外,绳杆模型还可以应用于舞台上吊横幅和灯光设备等系统的设计中,用来确定吊索和支杆的受力情况。

7. 绳杆模型的优点和局限绳杆模型的优点在于其简化了问题的分析和计算。

由于绳和杆可以被视为线和点,因此可以忽略其复杂的形状和材料性质,从而简化了问题的分析。

圆周运动绳杆模型

圆周运动绳杆模型
悬索桥
悬索桥的吊索通过绳杆模型将主梁与主缆连接,使主梁能够 悬挂在主缆上并保持平衡。
卫星轨道的设计与运行
人造卫星轨道
人造卫星的轨道通过绳杆模型与地球 连接,通过地球引力与绳杆模型的拉 力平衡,使卫星能够绕地球做圆周运 动。
月球探测器轨道
月球探测器的轨道通过绳杆模型与月 球连接,通过月球引力与绳杆模型的 拉力平衡,使探测器能够绕月球做圆 周运动。
05
绳杆模型在现实生活中的应用
游乐场的旋转设施
旋转木马
绳杆模型在旋转木马中起到支撑和传动的作用,通过绳索与木马连接,实现木马 的旋转运动。
摩天轮
摩天轮的旋转臂通过绳索与座舱连接,使座舱在旋转臂上做圆周运动,同时绳索 也起到安全保护的作用。
桥梁的拉索设计
斜拉桥
斜拉桥的拉索通过绳杆模型将主梁与桥墩连接,使主梁能够 承受载荷并保持稳定。
双摆运动
总结词
双摆运动是指两个单摆同时进行摆动,其运动轨迹为两个圆弧或椭圆弧的组合,适用于分析具有两个 固定圆心和摆长的双摆系统。
详细描述
双摆运动是两个单摆同时进行摆动的组合运动,其运动轨迹为两个圆弧或椭圆弧的组合。在双摆运动 中,两个单摆的摆线长度和初始角度都可以不同,但它们都受到重力的作用。在摆动过程中,双摆系 统的角速度、角加速度、回复力、动能和势能等物理量都随时间变化。
运动。
向心力的方向始终指向圆心,与 速度方向垂直。
绳杆模型中的离心力分析
离心力:当物体做圆周运动时, 若没有向心力作用,物体将沿 切线方向飞出。
在圆周运动绳杆模型中,离心 力与向心力大小相等、方向相 反。
离心力的大小与物体的质量、 速度和圆周半径有关。
04
圆周运动绳杆模型的实例分析

《绳模型和杆模型》课件

《绳模型和杆模型》课件

绳模型
什么是绳模型?
绳模型是一种用于描述物体力学性质的理论模 型,将物体看作是柔软的绳索。
绳模型的应用
绳模型常用于弹性力学、建筑结构分析以及机 械工程等领域。
绳模型的基本假设
绳模型的基本假设是物体无穷小的体积、无穷 强度以及无限可分的形状。
绳模型的局限性
绳模型忽略了物体的刚性和其它非线性效应, 因此在某些情况下可能会产生误差。
2 知识拓展
可以深入学习杆模型的非线性版本,以及绳 模型和杆模型的多体动力学分析方法。
3 实际应用
绳模型可用于分析悬链线和桥梁等结构,杆 模型可应用于机器人运动学和动力学控制。
4 推荐阅读
《Mechanics of Materials》by Ferdinan d P. Beer and E. Russell Johnsto n Jr.
杆模型
什么是杆模型?
杆模型是一种物理模 型,将物体看作是无 质量、无弯曲的杆子, 用于描述刚体运动。
杆模型的基本假设
杆模型假设物体只存 在线性位移和角位移, 而忽略了物体弯曲、 扭转等非线性变形。
杆模型的应用
杆模型常用于机器人 学、动力学分析以及 空间刚体运动等领域。
杆模型的局限性
杆模型无法准确描述 弹性和非线性效应, 因此在某些情况下可 能会失去精确性。
Q& A
常见问题解答
在应用绳模型和杆模型时可能 遇到的常见问题和解决方法。
课程反馈
请提供宝贵的课程反馈,以帮 助我们改进教学质量。
课程结束
感谢您参与本课程,祝您日后 的学习和工作顺利!Biblioteka 《绳模型和杆模型》PPT 课件
The presentation explores the concepts of rope models and rod models, discussing their applications, limitations, and a comparison between the two. Get ready for an enlightening journey!

2022年高考物理模型专题突破-绳杆模型

2022年高考物理模型专题突破-绳杆模型

真题模型(二)——竖直平面的圆周运动“绳、杆”模型来源图例考向模型核心归纳2014·新课标全国卷Ⅱ第17题受力分析、圆周运动、动能定理1.常考的模型(1)物体运动满足“绳”模型特征,竖直圆轨道光滑(2)物体运动满足“绳”模型特征,竖直圆轨道粗糙(3)物体运动满足“杆”模型特征,竖直圆轨道光滑(4)物体运动满足“杆”模型特征,竖直圆轨道粗糙(5)两个物体沿竖直圆轨道做圆周运动(6)同一物体在不同的竖直圆轨道做圆周运动(7)物体受弹簧弹力、电场力或洛伦兹力共同作用下的圆周运动2.模型解法2015·新课标全国卷Ⅰ第22题圆周运动、超重、失重2016·新课标全国卷Ⅱ第16题受力分析、牛顿第二定律、圆周运动、动能定理2016·课新标全国卷Ⅱ第25题受力分析、机械能守恒定律、圆周运动、牛顿第二定律2016·新课标全国卷Ⅲ第24题受力分析、圆周运动、机械能守恒定律、牛顿第二定律2017·全国卷Ⅱ第17题平抛运动、功能关系及极值的求解方法【预测1】 (多选)如图1所示,半径为R 的内壁光滑的圆轨道竖直固定在桌面上,一个可视为质点的质量为m 的小球静止在轨道底部A 点。

现用小锤沿水平方向快速击打小球,使小球在极短的时间内获得一个水平速度后沿轨道在竖直面内运动。

当小球回到A 点时,再次用小锤沿运动方向击打小球,通过两次击打,小球才能运动到圆轨道的最高点。

已知小球在运动过程中始终未脱离轨道,在第一次击打过程中小锤对小球做功W 1,第二次击打过程中小锤对小球做功W 2。

设先后两次击打过程中小锤对小球做功全部用来增加小球的动能,则W 1W 2的值可能是( )图1A.34B.13C.23D.1解析 第一次击打后球最多到达与球心O 等高位置,根据功能关系,有W 1≤mgR ,两次击打后球可以运动到轨道最高点,根据功能关系,有W 1+W 2-2mgR =12mv 2,在最高点有mg +N =m v 2R ≥mg ,由以上各式可解得W 1≤mgR ,W 2≥32mgR ,因此W 1W 2≤23,B 、C 正确。

圆周运动中的绳杆模型

圆周运动中的绳杆模型

• 对应力的计算

• 对应能量的计算
- mg
=
mv 2 r
G
24

物理情景


细绳拉着小球在竖直 平面内运动



小球在竖直放置的光

滑圆环内侧运动


小球固定在轻杆上在

竖直面内运动



小球在竖直放置的光 滑管中运动

图示
在最高点的临界特点
T=0
mg
v2 m
r
v gr
N=0
mg
v2 m
r
v gr
V>0 F向>0 F向=FT+mg 或F向=mg-Fn
【解答】解:A、B、在最高点时,绳对小球的拉力和重力的合力提供向心力,则得:mg+T=m
得:T=
- mg…①
由图象知,T=0时,v2=b.图象的斜率k= ,则得: =
得绳长 L= 当v2=0时,T=﹣a,由①得:﹣a=﹣mg,得 g= ;故A正确,B正确;
C、只要v2≥b,绳子的拉力大于0,根据牛顿第二定律得:
A.①④ C.③④
B.②④ D.②③
.
【解答】解:对于第(1)种情况,当v0较大时,小球能够通过最高点,这时小球在最高 点处需要满足的条件是mg≤m ,又根据机械能守恒定律有
mv2+2mgr=
,可求得v0≥2 m/s;
对于第(2)种情况,当v0较小时,小球不能通过最高点,这时对应的临界条件是小球 上升到与圆心等高位置处,速度恰好减为零,根据机械能守恒定律有mgr≥
则此时小球对管道的内壁的作用力为3mg
.

微课:绳杆模型圆周运动最高点分析(罗新勇)

微课:绳杆模型圆周运动最高点分析(罗新勇)
专题:绳、杆模型最高点受力分析 (竖直平面内圆周运动)
苏州园区二中
罗新勇
2014.4
a
1
模型一:绳模型
用长为L的细绳拴着质量为m的小球,使小球在竖 直平面内做圆周运动,小球在最高点的速度为v .
试分析:绳的张力与速度的关系怎样?
v
L mg
F
o
分析:小球受重力和拉力 v2
F mg m L
v2 F m mg
(1) mg m v2 时, 即:v gL
L
杆对球的作用力向下
a
5
v L mg
F
o

v L mg
o
mgF mv2 L
F
v2 m
mg
L
(2)
mg
m v2 L
时,
即:v
gL
重力恰好提供向心力,杆没有作用力;
v2 (3) mg m L
时, 即:v
gL
杆对球的作用力向上
mgF mv2 L
F mgmv2 L
L
绳子对小球的力只能向下,即:
F0
a
2
v
L mg
F
o
得:
v2 m mg 0
L
v gL
取 v0 gL 叫临界速度。
(1) v v0 时, F0
绳中拉力为零,重力提供向心力;
(2) v v0
时,
v2 F m mg0
L
重力和拉力的合力提供向心力;
(3) v v0 时,
物体离开圆轨道做曲线运动;
a
3
拓展: 若物体沿竖直轨道内侧运动,在
最高点的情况与绳模型一致。
v
a
4
模型二:杆模型:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆周运动中绳模型和杆模型的一般解析
一:绳模型:若已不可伸长的绳子长L,其一端栓有一质量m的小球(可看成质点)。

现使绳子拉着小球绕一点O做匀速圆周运动,则(1)小球恰好通过最高点的速度v。

(2)当能通过最高点时,绳子拉F。

解:(1)小球恰能通过最高点的临界条件是绳子没有拉力,
则对小球研究,其只受重力mg作用,
故,由其做圆周运动得: mg=mv2/L
故v=√(gL )
(2)由分析得,当小球到最高点时速度v’﹥v=√(gl)时,
则,F=mv’2 /L-mg
而,当v’<v=√(gL)时,那么小球重力mg大于其所需向心力,因此小球做向心运动。

二:杆模型:若一硬质轻杆长L,其一端有一质量m 的小球(可看成质点)。

现使杆和小球绕一点O做匀速圆周运动,

(1)小球恰好通过最高点的速度v。

(2)当能通过最高点时,杆对小球的作用力F。

解:(1)因为杆具有不可弯曲不可伸长的性质,所以小球在最高点,当速度为0时,恰好能通过。

(2)①由绳模型可知,当小球通过最高点速度v=√(gL)
时,恰好有绳子拉力为0,则同理可知,当杆拉小球到最高点时,若小球速度v=√(gL)时,小球所需向心力恰好等于重力mg,故,此时杆对小球没有作用力。

②当小球通过最高点时速度v>√(gL)时,则小球所需向心力比重力mg,所以此时杆对小球表现为拉力,使小球不至于做离心运动故对小球有,F+mg=mv2 /L ③同理,当小球通过最高点时速度v<√(gL)时,则小球所需向心力小于重力mg,所以此时小球对杆有压力作用,有牛顿第三定律得,杆对小球表现为支持力作用,故对小球有,
mg-F=mv2/L。

相关文档
最新文档